blob: f2e76c3716354070daf1228228631e6d86e1fb2e [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/renderer_host/p2p/socket_host.h"
#include "base/metrics/histogram.h"
#include "base/sys_byteorder.h"
#include "content/browser/renderer_host/p2p/socket_host_tcp.h"
#include "content/browser/renderer_host/p2p/socket_host_tcp_server.h"
#include "content/browser/renderer_host/p2p/socket_host_udp.h"
#include "content/browser/renderer_host/render_process_host_impl.h"
#include "content/public/browser/browser_thread.h"
#include "crypto/hmac.h"
#include "third_party/webrtc/base/asyncpacketsocket.h"
#include "third_party/webrtc/base/byteorder.h"
#include "third_party/webrtc/base/messagedigest.h"
#include "third_party/webrtc/p2p/base/stun.h"
namespace {
const uint32 kStunMagicCookie = 0x2112A442;
const size_t kMinRtpHeaderLength = 12;
const size_t kMinRtcpHeaderLength = 8;
const size_t kRtpExtensionHeaderLength = 4;
const size_t kDtlsRecordHeaderLength = 13;
const size_t kTurnChannelHeaderLength = 4;
const size_t kAbsSendTimeExtensionLength = 3;
const size_t kOneByteHeaderLength = 1;
const size_t kMaxRtpPacketLength = 2048;
// Fake auth tag written by the render process if external authentication is
// enabled. HMAC in packet will be compared against this value before updating
// packet with actual HMAC value.
static const unsigned char kFakeAuthTag[10] = {
0xba, 0xdd, 0xba, 0xdd, 0xba, 0xdd, 0xba, 0xdd, 0xba, 0xdd
};
bool IsTurnChannelData(const char* data, size_t length) {
return length >= kTurnChannelHeaderLength && ((*data & 0xC0) == 0x40);
}
bool IsDtlsPacket(const char* data, size_t length) {
const uint8* u = reinterpret_cast<const uint8*>(data);
return (length >= kDtlsRecordHeaderLength && (u[0] > 19 && u[0] < 64));
}
bool IsRtcpPacket(const char* data, size_t length) {
if (length < kMinRtcpHeaderLength) {
return false;
}
int type = (static_cast<uint8>(data[1]) & 0x7F);
return (type >= 64 && type < 96);
}
bool IsTurnSendIndicationPacket(const char* data, size_t length) {
if (length < content::P2PSocketHost::kStunHeaderSize) {
return false;
}
uint16 type = rtc::GetBE16(data);
return (type == cricket::TURN_SEND_INDICATION);
}
bool IsRtpPacket(const char* data, size_t length) {
return (length >= kMinRtpHeaderLength) && ((*data & 0xC0) == 0x80);
}
// Verifies rtp header and message length.
bool ValidateRtpHeader(const char* rtp, size_t length, size_t* header_length) {
if (header_length) {
*header_length = 0;
}
if (length < kMinRtpHeaderLength) {
return false;
}
size_t cc_count = rtp[0] & 0x0F;
size_t header_length_without_extension = kMinRtpHeaderLength + 4 * cc_count;
if (header_length_without_extension > length) {
return false;
}
// If extension bit is not set, we are done with header processing, as input
// length is verified above.
if (!(rtp[0] & 0x10)) {
if (header_length)
*header_length = header_length_without_extension;
return true;
}
rtp += header_length_without_extension;
if (header_length_without_extension + kRtpExtensionHeaderLength > length) {
return false;
}
// Getting extension profile length.
// Length is in 32 bit words.
uint16 extension_length_in_32bits = rtc::GetBE16(rtp + 2);
size_t extension_length = extension_length_in_32bits * 4;
size_t rtp_header_length = extension_length +
header_length_without_extension +
kRtpExtensionHeaderLength;
// Verify input length against total header size.
if (rtp_header_length > length) {
return false;
}
if (header_length) {
*header_length = rtp_header_length;
}
return true;
}
void UpdateAbsSendTimeExtensionValue(char* extension_data,
size_t length,
uint32 abs_send_time) {
// Absolute send time in RTP streams.
//
// The absolute send time is signaled to the receiver in-band using the
// general mechanism for RTP header extensions [RFC5285]. The payload
// of this extension (the transmitted value) is a 24-bit unsigned integer
// containing the sender's current time in seconds as a fixed point number
// with 18 bits fractional part.
//
// The form of the absolute send time extension block:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=2 | absolute send time |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
if (length != kAbsSendTimeExtensionLength) {
NOTREACHED();
return;
}
// Now() has resolution ~1-15ms
uint32 now_second = abs_send_time;
if (!now_second) {
uint64 now_us =
(base::TimeTicks::Now() - base::TimeTicks()).InMicroseconds();
// Convert second to 24-bit unsigned with 18 bit fractional part
now_second =
((now_us << 18) / base::Time::kMicrosecondsPerSecond) & 0x00FFFFFF;
}
// TODO(mallinath) - Add SetBE24 to byteorder.h in libjingle.
extension_data[0] = static_cast<uint8>(now_second >> 16);
extension_data[1] = static_cast<uint8>(now_second >> 8);
extension_data[2] = static_cast<uint8>(now_second);
}
// Assumes |length| is actual packet length + tag length. Updates HMAC at end of
// the RTP packet.
void UpdateRtpAuthTag(char* rtp,
size_t length,
const rtc::PacketOptions& options) {
// If there is no key, return.
if (options.packet_time_params.srtp_auth_key.empty()) {
return;
}
size_t tag_length = options.packet_time_params.srtp_auth_tag_len;
// ROC (rollover counter) is at the beginning of the auth tag.
const size_t kRocLength = 4;
if (tag_length < kRocLength || tag_length > length) {
NOTREACHED();
return;
}
crypto::HMAC hmac(crypto::HMAC::SHA1);
if (!hmac.Init(reinterpret_cast<const unsigned char*>(
&options.packet_time_params.srtp_auth_key[0]),
options.packet_time_params.srtp_auth_key.size())) {
NOTREACHED();
return;
}
if (tag_length > hmac.DigestLength()) {
NOTREACHED();
return;
}
char* auth_tag = rtp + (length - tag_length);
// We should have a fake HMAC value @ auth_tag.
DCHECK_EQ(0, memcmp(auth_tag, kFakeAuthTag, tag_length));
// Copy ROC after end of rtp packet.
memcpy(auth_tag, &options.packet_time_params.srtp_packet_index, kRocLength);
// Authentication of a RTP packet will have RTP packet + ROC size.
int auth_required_length = length - tag_length + kRocLength;
unsigned char output[64];
if (!hmac.Sign(base::StringPiece(rtp, auth_required_length),
output, sizeof(output))) {
NOTREACHED();
return;
}
// Copy HMAC from output to packet. This is required as auth tag length
// may not be equal to the actual HMAC length.
memcpy(auth_tag, output, tag_length);
}
} // namespace
namespace content {
namespace packet_processing_helpers {
bool ApplyPacketOptions(char* data,
size_t length,
const rtc::PacketOptions& options,
uint32 abs_send_time) {
DCHECK(data != NULL);
DCHECK(length > 0);
// if there is no valid |rtp_sendtime_extension_id| and |srtp_auth_key| in
// PacketOptions, nothing to be updated in this packet.
if (options.packet_time_params.rtp_sendtime_extension_id == -1 &&
options.packet_time_params.srtp_auth_key.empty()) {
return true;
}
DCHECK(!IsDtlsPacket(data, length));
DCHECK(!IsRtcpPacket(data, length));
// If there is a srtp auth key present then packet must be a RTP packet.
// RTP packet may have been wrapped in a TURN Channel Data or
// TURN send indication.
size_t rtp_start_pos;
size_t rtp_length;
if (!GetRtpPacketStartPositionAndLength(
data, length, &rtp_start_pos, &rtp_length)) {
// This method should never return false.
NOTREACHED();
return false;
}
// Skip to rtp packet.
char* start = data + rtp_start_pos;
// If packet option has non default value (-1) for sendtime extension id,
// then we should parse the rtp packet to update the timestamp. Otherwise
// just calculate HMAC and update packet with it.
if (options.packet_time_params.rtp_sendtime_extension_id != -1) {
UpdateRtpAbsSendTimeExtension(
start,
rtp_length,
options.packet_time_params.rtp_sendtime_extension_id,
abs_send_time);
}
UpdateRtpAuthTag(start, rtp_length, options);
return true;
}
bool GetRtpPacketStartPositionAndLength(const char* packet,
size_t length,
size_t* rtp_start_pos,
size_t* rtp_packet_length) {
if (length < kMinRtpHeaderLength || length > kMaxRtpPacketLength) {
return false;
}
size_t rtp_begin;
size_t rtp_length = 0;
if (IsTurnChannelData(packet, length)) {
// Turn Channel Message header format.
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | Channel Number | Length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | |
// / Application Data /
// / /
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
rtp_begin = kTurnChannelHeaderLength;
rtp_length = rtc::GetBE16(&packet[2]);
if (length < rtp_length + kTurnChannelHeaderLength) {
return false;
}
} else if (IsTurnSendIndicationPacket(packet, length)) {
// Validate STUN message length.
const size_t stun_message_length = rtc::GetBE16(&packet[2]);
if (stun_message_length + P2PSocketHost::kStunHeaderSize != length) {
return false;
}
// First skip mandatory stun header which is of 20 bytes.
rtp_begin = P2PSocketHost::kStunHeaderSize;
// Loop through STUN attributes until we find STUN DATA attribute.
bool data_attr_present = false;
while (rtp_begin < length) {
// Keep reading STUN attributes until we hit DATA attribute.
// Attribute will be a TLV structure.
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | Type | Length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | Value (variable) ....
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// The value in the length field MUST contain the length of the Value
// part of the attribute, prior to padding, measured in bytes. Since
// STUN aligns attributes on 32-bit boundaries, attributes whose content
// is not a multiple of 4 bytes are padded with 1, 2, or 3 bytes of
// padding so that its value contains a multiple of 4 bytes. The
// padding bits are ignored, and may be any value.
uint16 attr_type, attr_length;
const int kAttrHeaderLength = sizeof(attr_type) + sizeof(attr_length);
if (length < rtp_begin + kAttrHeaderLength) {
return false;
}
// Getting attribute type and length.
attr_type = rtc::GetBE16(&packet[rtp_begin]);
attr_length = rtc::GetBE16(
&packet[rtp_begin + sizeof(attr_type)]);
rtp_begin += kAttrHeaderLength; // Skip STUN_DATA_ATTR header.
// Checking for bogus attribute length.
if (length < rtp_begin + attr_length) {
return false;
}
if (attr_type != cricket::STUN_ATTR_DATA) {
rtp_begin += attr_length;
if ((attr_length % 4) != 0) {
rtp_begin += (4 - (attr_length % 4));
}
continue;
}
data_attr_present = true;
rtp_length = attr_length;
// We found STUN_DATA_ATTR. We can skip parsing rest of the packet.
break;
}
if (!data_attr_present) {
// There is no data attribute present in the message. We can't do anything
// with the message.
return false;
}
} else {
// This is a raw RTP packet.
rtp_begin = 0;
rtp_length = length;
}
// Making sure we have a valid RTP packet at the end.
if (IsRtpPacket(packet + rtp_begin, rtp_length) &&
ValidateRtpHeader(packet + rtp_begin, rtp_length, NULL)) {
*rtp_start_pos = rtp_begin;
*rtp_packet_length = rtp_length;
return true;
}
return false;
}
// ValidateRtpHeader must be called before this method to make sure, we have
// a sane rtp packet.
bool UpdateRtpAbsSendTimeExtension(char* rtp,
size_t length,
int extension_id,
uint32 abs_send_time) {
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |V=2|P|X| CC |M| PT | sequence number |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | timestamp |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | synchronization source (SSRC) identifier |
// +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
// | contributing source (CSRC) identifiers |
// | .... |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Return if extension bit is not set.
if (!(rtp[0] & 0x10)) {
return true;
}
size_t cc_count = rtp[0] & 0x0F;
size_t header_length_without_extension = kMinRtpHeaderLength + 4 * cc_count;
rtp += header_length_without_extension;
// Getting extension profile ID and length.
uint16 profile_id = rtc::GetBE16(rtp);
// Length is in 32 bit words.
uint16 extension_length_in_32bits = rtc::GetBE16(rtp + 2);
size_t extension_length = extension_length_in_32bits * 4;
rtp += kRtpExtensionHeaderLength; // Moving past extension header.
bool found = false;
// WebRTC is using one byte header extension.
// TODO(mallinath) - Handle two byte header extension.
if (profile_id == 0xBEDE) { // OneByte extension header
// 0
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// | ID |length |
// +-+-+-+-+-+-+-+-+
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | 0xBE | 0xDE | length=3 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | L=0 | data | ID | L=1 | data...
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// ...data | 0 (pad) | 0 (pad) | ID | L=3 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | data |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
const char* extension_start = rtp;
const char* extension_end = extension_start + extension_length;
while (rtp < extension_end) {
const int id = (*rtp & 0xF0) >> 4;
const size_t length = (*rtp & 0x0F) + 1;
if (rtp + kOneByteHeaderLength + length > extension_end) {
return false;
}
// The 4-bit length is the number minus one of data bytes of this header
// extension element following the one-byte header.
if (id == extension_id) {
UpdateAbsSendTimeExtensionValue(
rtp + kOneByteHeaderLength, length, abs_send_time);
found = true;
break;
}
rtp += kOneByteHeaderLength + length;
// Counting padding bytes.
while ((rtp < extension_end) && (*rtp == 0)) {
++rtp;
}
}
}
return found;
}
} // packet_processing_helpers
P2PSocketHost::P2PSocketHost(IPC::Sender* message_sender,
int socket_id,
ProtocolType protocol_type)
: message_sender_(message_sender),
id_(socket_id),
state_(STATE_UNINITIALIZED),
dump_incoming_rtp_packet_(false),
dump_outgoing_rtp_packet_(false),
protocol_type_(protocol_type),
send_packets_delayed_total_(0),
send_packets_total_(0),
send_bytes_delayed_max_(0),
send_bytes_delayed_cur_(0),
weak_ptr_factory_(this) {
}
P2PSocketHost::~P2PSocketHost() {
if (protocol_type_ == P2PSocketHost::UDP) {
UMA_HISTOGRAM_COUNTS_10000("WebRTC.SystemMaxConsecutiveBytesDelayed_UDP",
send_bytes_delayed_max_);
} else {
UMA_HISTOGRAM_COUNTS_10000("WebRTC.SystemMaxConsecutiveBytesDelayed_TCP",
send_bytes_delayed_max_);
}
if (send_packets_total_ > 0) {
int delay_rate = (send_packets_delayed_total_ * 100) / send_packets_total_;
if (protocol_type_ == P2PSocketHost::UDP) {
UMA_HISTOGRAM_PERCENTAGE("WebRTC.SystemPercentPacketsDelayed_UDP",
delay_rate);
} else {
UMA_HISTOGRAM_PERCENTAGE("WebRTC.SystemPercentPacketsDelayed_TCP",
delay_rate);
}
}
}
// Verifies that the packet |data| has a valid STUN header.
// static
bool P2PSocketHost::GetStunPacketType(
const char* data, int data_size, StunMessageType* type) {
if (data_size < kStunHeaderSize) {
return false;
}
uint32 cookie = base::NetToHost32(*reinterpret_cast<const uint32*>(data + 4));
if (cookie != kStunMagicCookie) {
return false;
}
uint16 length = base::NetToHost16(*reinterpret_cast<const uint16*>(data + 2));
if (length != data_size - kStunHeaderSize) {
return false;
}
int message_type = base::NetToHost16(*reinterpret_cast<const uint16*>(data));
// Verify that the type is known:
switch (message_type) {
case STUN_BINDING_REQUEST:
case STUN_BINDING_RESPONSE:
case STUN_BINDING_ERROR_RESPONSE:
case STUN_SHARED_SECRET_REQUEST:
case STUN_SHARED_SECRET_RESPONSE:
case STUN_SHARED_SECRET_ERROR_RESPONSE:
case STUN_ALLOCATE_REQUEST:
case STUN_ALLOCATE_RESPONSE:
case STUN_ALLOCATE_ERROR_RESPONSE:
case STUN_SEND_REQUEST:
case STUN_SEND_RESPONSE:
case STUN_SEND_ERROR_RESPONSE:
case STUN_DATA_INDICATION:
*type = static_cast<StunMessageType>(message_type);
return true;
default:
return false;
}
}
// static
bool P2PSocketHost::IsRequestOrResponse(StunMessageType type) {
return type == STUN_BINDING_REQUEST || type == STUN_BINDING_RESPONSE ||
type == STUN_ALLOCATE_REQUEST || type == STUN_ALLOCATE_RESPONSE;
}
// static
P2PSocketHost* P2PSocketHost::Create(IPC::Sender* message_sender,
int socket_id,
P2PSocketType type,
net::URLRequestContextGetter* url_context,
P2PMessageThrottler* throttler) {
switch (type) {
case P2P_SOCKET_UDP:
return new P2PSocketHostUdp(message_sender, socket_id, throttler);
case P2P_SOCKET_TCP_SERVER:
return new P2PSocketHostTcpServer(
message_sender, socket_id, P2P_SOCKET_TCP_CLIENT);
case P2P_SOCKET_STUN_TCP_SERVER:
return new P2PSocketHostTcpServer(
message_sender, socket_id, P2P_SOCKET_STUN_TCP_CLIENT);
case P2P_SOCKET_TCP_CLIENT:
case P2P_SOCKET_SSLTCP_CLIENT:
case P2P_SOCKET_TLS_CLIENT:
return new P2PSocketHostTcp(message_sender, socket_id, type, url_context);
case P2P_SOCKET_STUN_TCP_CLIENT:
case P2P_SOCKET_STUN_SSLTCP_CLIENT:
case P2P_SOCKET_STUN_TLS_CLIENT:
return new P2PSocketHostStunTcp(
message_sender, socket_id, type, url_context);
}
NOTREACHED();
return NULL;
}
void P2PSocketHost::StartRtpDump(
bool incoming,
bool outgoing,
const RenderProcessHost::WebRtcRtpPacketCallback& packet_callback) {
DCHECK_CURRENTLY_ON(BrowserThread::IO);
DCHECK(!packet_callback.is_null());
DCHECK(incoming || outgoing);
if (incoming) {
dump_incoming_rtp_packet_ = true;
}
if (outgoing) {
dump_outgoing_rtp_packet_ = true;
}
packet_dump_callback_ = packet_callback;
}
void P2PSocketHost::StopRtpDump(bool incoming, bool outgoing) {
DCHECK_CURRENTLY_ON(BrowserThread::IO);
DCHECK(incoming || outgoing);
if (incoming) {
dump_incoming_rtp_packet_ = false;
}
if (outgoing) {
dump_outgoing_rtp_packet_ = false;
}
if (!dump_incoming_rtp_packet_ && !dump_outgoing_rtp_packet_) {
packet_dump_callback_.Reset();
}
}
void P2PSocketHost::DumpRtpPacket(const char* packet,
size_t length,
bool incoming) {
if (IsDtlsPacket(packet, length) || IsRtcpPacket(packet, length)) {
return;
}
size_t rtp_packet_pos = 0;
size_t rtp_packet_length = length;
if (!packet_processing_helpers::GetRtpPacketStartPositionAndLength(
packet, length, &rtp_packet_pos, &rtp_packet_length)) {
return;
}
packet += rtp_packet_pos;
size_t header_length = 0;
bool valid = ValidateRtpHeader(packet, rtp_packet_length, &header_length);
if (!valid) {
DCHECK(false);
return;
}
scoped_ptr<uint8[]> header_buffer(new uint8[header_length]);
memcpy(header_buffer.get(), packet, header_length);
// Posts to the IO thread as the data members should be accessed on the IO
// thread only.
BrowserThread::PostTask(BrowserThread::IO,
FROM_HERE,
base::Bind(&P2PSocketHost::DumpRtpPacketOnIOThread,
weak_ptr_factory_.GetWeakPtr(),
Passed(&header_buffer),
header_length,
rtp_packet_length,
incoming));
}
void P2PSocketHost::DumpRtpPacketOnIOThread(scoped_ptr<uint8[]> packet_header,
size_t header_length,
size_t packet_length,
bool incoming) {
DCHECK_CURRENTLY_ON(BrowserThread::IO);
if ((incoming && !dump_incoming_rtp_packet_) ||
(!incoming && !dump_outgoing_rtp_packet_) ||
packet_dump_callback_.is_null()) {
return;
}
// |packet_dump_callback_| must be called on the UI thread.
BrowserThread::PostTask(BrowserThread::UI,
FROM_HERE,
base::Bind(packet_dump_callback_,
Passed(&packet_header),
header_length,
packet_length,
incoming));
}
void P2PSocketHost::IncrementDelayedPackets() {
send_packets_delayed_total_++;
}
void P2PSocketHost::IncrementTotalSentPackets() {
send_packets_total_++;
}
void P2PSocketHost::IncrementDelayedBytes(uint32 size) {
send_bytes_delayed_cur_ += size;
if (send_bytes_delayed_cur_ > send_bytes_delayed_max_) {
send_bytes_delayed_max_ = send_bytes_delayed_cur_;
}
}
void P2PSocketHost::DecrementDelayedBytes(uint32 size) {
send_bytes_delayed_cur_ -= size;
DCHECK_GE(send_bytes_delayed_cur_, 0);
}
} // namespace content