blob: eb8e89766b612e7bea92a791b3fefe9e1e54706a [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_android.h"
#include <android/looper.h>
#include <errno.h>
#include <fcntl.h>
#include <jni.h>
#include <linux/time.h>
#include <sys/eventfd.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include <utility>
#include "base/android/jni_android.h"
#include "base/android/scoped_java_ref.h"
#include "base/check_op.h"
#include "base/functional/callback_helpers.h"
#include "base/lazy_instance.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/run_loop.h"
#include "base/task/task_features.h"
#include "base/trace_event/base_tracing.h"
#include "build/build_config.h"
// Android stripped sys/timerfd.h out of their platform headers, so we have to
// use syscall to make use of timerfd. Once the min API level is 20, we can
// directly use timerfd.h.
#ifndef __NR_timerfd_create
#error "Unable to find syscall for __NR_timerfd_create"
#endif
#ifndef TFD_TIMER_ABSTIME
#define TFD_TIMER_ABSTIME (1 << 0)
#endif
using base::android::JavaParamRef;
using base::android::ScopedJavaLocalRef;
namespace base {
namespace {
// See sys/timerfd.h
long timerfd_create(int clockid, int flags) {
return syscall(__NR_timerfd_create, clockid, flags);
}
// See sys/timerfd.h
long timerfd_settime(int ufc,
int flags,
const struct itimerspec* utmr,
struct itimerspec* otmr) {
return syscall(__NR_timerfd_settime, ufc, flags, utmr, otmr);
}
// https://crbug.com/873588. The stack may not be aligned when the ALooper calls
// into our code due to the inconsistent ABI on older Android OS versions.
#if defined(ARCH_CPU_X86)
#define STACK_ALIGN __attribute__((force_align_arg_pointer))
#else
#define STACK_ALIGN
#endif
STACK_ALIGN int NonDelayedLooperCallback(int fd, int events, void* data) {
if (events & ALOOPER_EVENT_HANGUP)
return 0;
DCHECK(events & ALOOPER_EVENT_INPUT);
MessagePumpForUI* pump = reinterpret_cast<MessagePumpForUI*>(data);
pump->OnNonDelayedLooperCallback();
return 1; // continue listening for events
}
STACK_ALIGN int DelayedLooperCallback(int fd, int events, void* data) {
if (events & ALOOPER_EVENT_HANGUP)
return 0;
DCHECK(events & ALOOPER_EVENT_INPUT);
MessagePumpForUI* pump = reinterpret_cast<MessagePumpForUI*>(data);
pump->OnDelayedLooperCallback();
return 1; // continue listening for events
}
STACK_ALIGN int ResumeNonDelayedLooperCallback(int fd, int events, void* data) {
if (events & ALOOPER_EVENT_HANGUP)
return 0;
DCHECK(events & ALOOPER_EVENT_INPUT);
MessagePumpForUI* pump = reinterpret_cast<MessagePumpForUI*>(data);
pump->OnResumeNonDelayedLooperCallback();
return 1; // continue listening for events
}
// A bit added to the |non_delayed_fd_| to keep it signaled when we yield to
// native work below.
constexpr uint64_t kTryNativeWorkBeforeIdleBit = uint64_t(1) << 32;
} // namespace
void ClearTimerFD(int timer_fd) {
// Clear the fd.
uint64_t value;
long ret = read(timer_fd, &value, sizeof(value));
// TODO(mthiesse): Figure out how it's possible to hit EAGAIN here.
// According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html
// EAGAIN only happens if no timer has expired. Also according to the man page
// poll only returns readable when a timer has expired. So this function will
// only be called when a timer has expired, but reading reveals no timer has
// expired...
// The functions that use ClearTimerFD are OnResumeNonDelayedLooperCallback(),
// OnDelayedLooperCallback(). For Resume only Quit() and
// ScheduleWorkWithDelay() touch its timer, and similarly for Delayed only
// Quit() and ScheduleDelayedWork() do, but all of them run on the same thread
// as this callback so there are no obvious timing or multi-threading related
// issues.
DPCHECK(ret >= 0 || errno == EAGAIN);
}
itimerspec GetTimerSpecDelay(base::TimeDelta yield_duration) {
struct itimerspec ts;
int64_t nanos = yield_duration.InNanoseconds();
ts.it_interval.tv_sec = 0; // Don't repeat.
ts.it_interval.tv_nsec = 0;
ts.it_value.tv_sec =
static_cast<time_t>(nanos / TimeTicks::kNanosecondsPerSecond);
ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond;
return ts;
}
MessagePumpForUI::MessagePumpForUI()
: env_(base::android::AttachCurrentThread()) {
// The Android native ALooper uses epoll to poll our file descriptors and wake
// us up. We use a simple level-triggered eventfd to signal that non-delayed
// work is available, and a timerfd to signal when delayed work is ready to
// be run.
non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
CHECK_NE(non_delayed_fd_, -1);
DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC);
resume_after_yielding_non_delayed_fd_ = checked_cast<int>(
timerfd_create(CLOCK_MONOTONIC, O_NONBLOCK | O_CLOEXEC));
CHECK_NE(resume_after_yielding_non_delayed_fd_, -1);
// We can't create the timerfd with TFD_NONBLOCK | TFD_CLOEXEC as we can't
// include timerfd.h. See comments above on __NR_timerfd_create. It looks like
// they're just aliases to O_NONBLOCK and O_CLOEXEC anyways, so this should be
// fine.
delayed_fd_ = checked_cast<int>(
timerfd_create(CLOCK_MONOTONIC, O_NONBLOCK | O_CLOEXEC));
CHECK_NE(delayed_fd_, -1);
looper_ = ALooper_prepare(0);
DCHECK(looper_);
// Add a reference to the looper so it isn't deleted on us.
ALooper_acquire(looper_);
ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT,
&NonDelayedLooperCallback, reinterpret_cast<void*>(this));
ALooper_addFd(looper_, resume_after_yielding_non_delayed_fd_, 0,
ALOOPER_EVENT_INPUT, &ResumeNonDelayedLooperCallback,
reinterpret_cast<void*>(this));
ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT,
&DelayedLooperCallback, reinterpret_cast<void*>(this));
}
MessagePumpForUI::~MessagePumpForUI() {
DCHECK_EQ(ALooper_forThread(), looper_);
ALooper_removeFd(looper_, non_delayed_fd_);
ALooper_removeFd(looper_, resume_after_yielding_non_delayed_fd_);
ALooper_removeFd(looper_, delayed_fd_);
ALooper_release(looper_);
looper_ = nullptr;
close(non_delayed_fd_);
close(resume_after_yielding_non_delayed_fd_);
close(delayed_fd_);
}
void MessagePumpForUI::OnDelayedLooperCallback() {
TRACE_EVENT(TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::OnDelayedLooperCallback");
// There may be non-Chromium callbacks on the same ALooper which may have left
// a pending exception set, and ALooper does not check for this between
// callbacks. Check here, and if there's already an exception, just skip this
// iteration without clearing the fd. If the exception ends up being non-fatal
// then we'll just get called again on the next polling iteration.
if (base::android::HasException(env_))
return;
// ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback()
// resulted in Quit() in the same round.
if (ShouldQuit())
return;
ClearTimerFD(delayed_fd_);
DoDelayedLooperWork();
}
void MessagePumpForUI::DoDelayedLooperWork() {
delayed_scheduled_time_.reset();
Delegate::NextWorkInfo next_work_info = delegate_->DoWork();
if (ShouldQuit())
return;
if (next_work_info.is_immediate()) {
ScheduleWork();
return;
}
DoIdleWork();
if (!next_work_info.delayed_run_time.is_max())
ScheduleDelayedWork(next_work_info);
}
void MessagePumpForUI::OnResumeNonDelayedLooperCallback() {
TRACE_EVENT(TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::OnResumeNonDelayedLooperCallback");
// There may be non-Chromium callbacks on the same ALooper which may have left
// a pending exception set, and ALooper does not check for this between
// callbacks. Check here, and if there's already an exception, just skip this
// iteration without clearing the fd. If the exception ends up being non-fatal
// then we'll just get called again on the next polling iteration.
if (base::android::HasException(env_))
return;
// ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback()
// resulted in Quit() in the same round.
if (ShouldQuit())
return;
ClearTimerFD(resume_after_yielding_non_delayed_fd_);
// Resume the execution of the non delayed fd normally after the yield.
DoNonDelayedLooperWork(false);
}
void MessagePumpForUI::OnNonDelayedLooperCallback() {
TRACE_EVENT(TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::OnNonDelayedLooperCallback");
// There may be non-Chromium callbacks on the same ALooper which may have left
// a pending exception set, and ALooper does not check for this between
// callbacks. Check here, and if there's already an exception, just skip this
// iteration without clearing the fd. If the exception ends up being non-fatal
// then we'll just get called again on the next polling iteration.
if (base::android::HasException(env_))
return;
// ALooper_pollOnce may call this after Quit() if OnDelayedLooperCallback()
// resulted in Quit() in the same round.
if (ShouldQuit())
return;
// We're about to process all the work requested by ScheduleWork().
// MessagePump users are expected to do their best not to invoke
// ScheduleWork() again before DoWork() returns a non-immediate
// NextWorkInfo below. Hence, capturing the file descriptor's value now and
// resetting its contents to 0 should be okay. The value currently stored
// should be greater than 0 since work having been scheduled is the reason
// we're here. See http://man7.org/linux/man-pages/man2/eventfd.2.html
uint64_t value = 0;
long ret = read(non_delayed_fd_, &value, sizeof(value));
DPCHECK(ret >= 0);
DCHECK_GT(value, 0U);
bool do_idle_work = value == kTryNativeWorkBeforeIdleBit;
DoNonDelayedLooperWork(do_idle_work);
}
void MessagePumpForUI::DoNonDelayedLooperWork(bool do_idle_work) {
// Note: We can't skip DoWork() even if |do_idle_work| is true here (i.e. no
// additional ScheduleWork() since yielding to native) as delayed tasks might
// have come in and we need to re-sample |next_work_info|.
// Runs all application tasks scheduled to run.
Delegate::NextWorkInfo next_work_info;
do {
if (ShouldQuit())
return;
next_work_info = delegate_->DoWork();
// If we are prioritizing native, and the next work would normally run
// immediately, skip the next work and let the native work items have a
// chance to run. This is useful when user input is waiting for native to
// have a chance to run.
if (next_work_info.is_immediate() && next_work_info.yield_to_native) {
// We should delay calling the DoNonDelayedLooperWork for a some time
// because epoll doesn't guarantee the event handling in the order of
// arrival, by delaying the call back by yield_duration_, we increase
// the likelihood of picking a different starved fd.
ScheduleWorkWithDelay();
return;
}
} while (next_work_info.is_immediate());
// Do not resignal |non_delayed_fd_| if we're quitting (this pump doesn't
// allow nesting so needing to resume in an outer loop is not an issue
// either).
if (ShouldQuit())
return;
// Before declaring this loop idle, yield to native work items and arrange to
// be called again (unless we're already in that second call).non_delayed_fd_
if (!do_idle_work) {
ScheduleWorkInternal(/*do_idle_work=*/true);
return;
}
// We yielded to native work items already and they didn't generate a
// ScheduleWork() request so we can declare idleness. It's possible for a
// ScheduleWork() request to come in racily while this method unwinds, this is
// fine and will merely result in it being re-invoked shortly after it
// returns.
// TODO(scheduler-dev): this doesn't account for tasks that don't ever call
// SchedulerWork() but still keep the system non-idle (e.g., the Java Handler
// API). It would be better to add an API to query the presence of native
// tasks instead of relying on yielding once + kTryNativeWorkBeforeIdleBit.
DCHECK(do_idle_work);
if (ShouldQuit())
return;
// At this point, the java looper might not be idle - it's impossible to know
// pre-Android-M, so we may end up doing Idle work while java tasks are still
// queued up. Note that this won't cause us to fail to run java tasks using
// QuitWhenIdle, as the JavaHandlerThread will finish running all currently
// scheduled tasks before it quits. Also note that we can't just add an idle
// callback to the java looper, as that will fire even if application tasks
// are still queued up.
DoIdleWork();
if (!next_work_info.delayed_run_time.is_max()) {
TRACE_EVENT(TRACE_DISABLED_BY_DEFAULT("base"), "ScheduleWorkIsMax");
ScheduleDelayedWork(next_work_info);
}
}
void MessagePumpForUI::DoIdleWork() {
if (delegate_->DoIdleWork()) {
// If DoIdleWork() resulted in any work, we're not idle yet. We need to pump
// the loop here because we may in fact be idle after doing idle work
// without any new tasks being queued.
TRACE_EVENT(TRACE_DISABLED_BY_DEFAULT("base"), "DoIdleWorkScheduleWork");
ScheduleWork();
}
}
void MessagePumpForUI::Run(Delegate* delegate) {
CHECK(false) << "Unexpected call to Run()";
}
void MessagePumpForUI::Attach(Delegate* delegate) {
DCHECK(!quit_);
// Since the Looper is controlled by the UI thread or JavaHandlerThread, we
// can't use Run() like we do on other platforms or we would prevent Java
// tasks from running. Instead we create and initialize a run loop here, then
// return control back to the Looper.
SetDelegate(delegate);
run_loop_ = std::make_unique<RunLoop>();
// Since the RunLoop was just created above, BeforeRun should be guaranteed to
// return true (it only returns false if the RunLoop has been Quit already).
if (!run_loop_->BeforeRun())
NOTREACHED();
}
void MessagePumpForUI::Quit() {
if (quit_)
return;
quit_ = true;
int64_t value;
// Clear any pending timer.
read(delayed_fd_, &value, sizeof(value));
// Clear any pending timer.
read(resume_after_yielding_non_delayed_fd_, &value, sizeof(value));
// Clear the eventfd.
read(non_delayed_fd_, &value, sizeof(value));
if (run_loop_) {
run_loop_->AfterRun();
run_loop_ = nullptr;
}
if (on_quit_callback_) {
std::move(on_quit_callback_).Run();
}
}
void MessagePumpForUI::ScheduleWork() {
ScheduleWorkInternal(/*do_idle_work=*/false);
}
void MessagePumpForUI::ScheduleWorkInternal(bool do_idle_work) {
// Write (add) |value| to the eventfd. This tells the Looper to wake up and
// call our callback, allowing us to run tasks. This also allows us to detect,
// when we clear the fd, whether additional work was scheduled after we
// finished performing work, but before we cleared the fd, as we'll read back
// >=2 instead of 1 in that case. See the eventfd man pages
// (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how
// the read and write APIs for this file descriptor work, specifically without
// EFD_SEMAPHORE.
// Note: Calls with |do_idle_work| set to true may race with potential calls
// where the parameter is false. This is fine as write() is adding
// |value|,do_idle_work have their values added together. Since idle work is
// only executed when the value read equals kTryNativeWorkBeforeIdleBit, a
// race would prevent idle work from being run and trigger another call to
// this method with |do_idle_work| set to true.delayed_fd_
TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::ScheduleWorkInternal", "do_idle_work",
do_idle_work);
uint64_t value = do_idle_work ? kTryNativeWorkBeforeIdleBit : 1;
long ret = write(non_delayed_fd_, &value, sizeof(value));
DPCHECK(ret >= 0);
}
void MessagePumpForUI::ScheduleWorkWithDelay() {
TRACE_EVENT(TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::ScheduleWorkWithDelay");
// This initialization can't be done in the constructor because the
// FeatureList is not initialized at that time.
if (!yield_duration_.has_value())
yield_duration_ = kBrowserPeriodicYieldingToNativeDelay.Get();
auto timer = TimeTicks::Now();
struct itimerspec ts =
GetTimerSpecDelay(timer.since_origin() + yield_duration_.value());
long ret = timerfd_settime(resume_after_yielding_non_delayed_fd_,
TFD_TIMER_ABSTIME, &ts, nullptr);
DPCHECK(ret >= 0);
}
void MessagePumpForUI::ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) {
if (ShouldQuit())
return;
if (delayed_scheduled_time_ &&
*delayed_scheduled_time_ == next_work_info.delayed_run_time) {
return;
}
DCHECK(!next_work_info.is_immediate());
delayed_scheduled_time_ = next_work_info.delayed_run_time;
TimeDelta yield_delay = next_work_info.delayed_run_time.since_origin();
struct itimerspec ts = GetTimerSpecDelay(yield_delay);
long ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr);
DPCHECK(ret >= 0);
}
void MessagePumpForUI::QuitWhenIdle(base::OnceClosure callback) {
TRACE_EVENT(TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::QuitWhenIdle");
DCHECK(!on_quit_callback_);
DCHECK(run_loop_);
on_quit_callback_ = std::move(callback);
run_loop_->QuitWhenIdle();
// Pump the loop in case we're already idle.
ScheduleWork();
}
MessagePump::Delegate* MessagePumpForUI::SetDelegate(Delegate* delegate) {
return std::exchange(delegate_, delegate);
}
bool MessagePumpForUI::SetQuit(bool quit) {
return std::exchange(quit_, quit);
}
} // namespace base