blob: 43034006319f181888a2c3dde2068f0518981ab7 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/memory/discardable_memory_emulated.h"
#include "base/lazy_instance.h"
#include "base/memory/discardable_memory_manager.h"
namespace base {
namespace {
// This is admittedly pretty magical.
const size_t kEmulatedMemoryLimit = 512 * 1024 * 1024;
const size_t kEmulatedSoftMemoryLimit = 32 * 1024 * 1024;
const size_t kEmulatedHardMemoryLimitExpirationTimeMs = 1000;
// internal::DiscardableMemoryManager has an explicit constructor that takes
// a number of memory limit parameters. The LeakyLazyInstanceTraits doesn't
// handle the case. Thus, we need our own class here.
struct DiscardableMemoryManagerLazyInstanceTraits {
// Leaky as discardable memory clients can use this after the exit handler
// has been called.
static const bool kRegisterOnExit = false;
#ifndef NDEBUG
static const bool kAllowedToAccessOnNonjoinableThread = true;
#endif
static internal::DiscardableMemoryManager* New(void* instance) {
return new (instance) internal::DiscardableMemoryManager(
kEmulatedMemoryLimit,
kEmulatedSoftMemoryLimit,
TimeDelta::FromMilliseconds(kEmulatedHardMemoryLimitExpirationTimeMs));
}
static void Delete(internal::DiscardableMemoryManager* instance) {
instance->~DiscardableMemoryManager();
}
};
LazyInstance<internal::DiscardableMemoryManager,
DiscardableMemoryManagerLazyInstanceTraits>
g_manager = LAZY_INSTANCE_INITIALIZER;
} // namespace
namespace internal {
DiscardableMemoryEmulated::DiscardableMemoryEmulated(size_t bytes)
: bytes_(bytes),
is_locked_(false) {
g_manager.Pointer()->Register(this, bytes);
}
DiscardableMemoryEmulated::~DiscardableMemoryEmulated() {
if (is_locked_)
Unlock();
g_manager.Pointer()->Unregister(this);
}
// static
bool DiscardableMemoryEmulated::ReduceMemoryUsage() {
return g_manager.Pointer()->ReduceMemoryUsage();
}
// static
void DiscardableMemoryEmulated::ReduceMemoryUsageUntilWithinLimit(
size_t bytes) {
g_manager.Pointer()->ReduceMemoryUsageUntilWithinLimit(bytes);
}
// static
void DiscardableMemoryEmulated::PurgeForTesting() {
g_manager.Pointer()->PurgeAll();
}
bool DiscardableMemoryEmulated::Initialize() {
return Lock() != DISCARDABLE_MEMORY_LOCK_STATUS_FAILED;
}
DiscardableMemoryLockStatus DiscardableMemoryEmulated::Lock() {
DCHECK(!is_locked_);
bool purged = false;
if (!g_manager.Pointer()->AcquireLock(this, &purged))
return DISCARDABLE_MEMORY_LOCK_STATUS_FAILED;
is_locked_ = true;
return purged ? DISCARDABLE_MEMORY_LOCK_STATUS_PURGED
: DISCARDABLE_MEMORY_LOCK_STATUS_SUCCESS;
}
void DiscardableMemoryEmulated::Unlock() {
DCHECK(is_locked_);
g_manager.Pointer()->ReleaseLock(this);
is_locked_ = false;
}
void* DiscardableMemoryEmulated::Memory() const {
DCHECK(is_locked_);
DCHECK(memory_);
return memory_.get();
}
bool DiscardableMemoryEmulated::AllocateAndAcquireLock() {
if (memory_)
return true;
memory_.reset(new uint8[bytes_]);
return false;
}
void DiscardableMemoryEmulated::Purge() {
memory_.reset();
}
bool DiscardableMemoryEmulated::IsMemoryResident() const {
return true;
}
} // namespace internal
} // namespace base