|  | // Copyright 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "cc/base/math_util.h" | 
|  |  | 
|  | #include <stdint.h> | 
|  |  | 
|  | #include <cmath> | 
|  |  | 
|  | #include "cc/test/geometry_test_utils.h" | 
|  | #include "testing/gmock/include/gmock/gmock.h" | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  | #include "ui/gfx/geometry/rect.h" | 
|  | #include "ui/gfx/geometry/rect_f.h" | 
|  | #include "ui/gfx/transform.h" | 
|  |  | 
|  | namespace cc { | 
|  | namespace { | 
|  |  | 
|  | TEST(MathUtilTest, ProjectionOfPerpendicularPlane) { | 
|  | // In this case, the m33() element of the transform becomes zero, which could | 
|  | // cause a divide-by-zero when projecting points/quads. | 
|  |  | 
|  | gfx::Transform transform; | 
|  | transform.MakeIdentity(); | 
|  | transform.matrix().set(2, 2, 0); | 
|  |  | 
|  | gfx::RectF rect = gfx::RectF(0, 0, 1, 1); | 
|  | gfx::RectF projected_rect = MathUtil::ProjectClippedRect(transform, rect); | 
|  |  | 
|  | EXPECT_EQ(0, projected_rect.x()); | 
|  | EXPECT_EQ(0, projected_rect.y()); | 
|  | EXPECT_TRUE(projected_rect.IsEmpty()); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, ProjectionOfAlmostPerpendicularPlane) { | 
|  | // In this case, the m33() element of the transform becomes almost zero, which | 
|  | // could cause a divide-by-zero when projecting points/quads. | 
|  |  | 
|  | gfx::Transform transform; | 
|  | // The transform is from an actual test page: | 
|  | // [ +1.0000 +0.0000 -1.0000 +3144132.0000 | 
|  | //   +0.0000 +1.0000 +0.0000 +0.0000 | 
|  | //   +16331238407143424.0000 +0.0000 -0.0000 +51346917453137000267776.0000 | 
|  | //   +0.0000 +0.0000 +0.0000 +1.0000 ] | 
|  | transform.MakeIdentity(); | 
|  | transform.matrix().set(0, 2, static_cast<SkMScalar>(-1)); | 
|  | transform.matrix().set(0, 3, static_cast<SkMScalar>(3144132.0)); | 
|  | transform.matrix().set(2, 0, static_cast<SkMScalar>(16331238407143424.0)); | 
|  | transform.matrix().set(2, 2, static_cast<SkMScalar>(-1e-33)); | 
|  | transform.matrix().set(2, 3, | 
|  | static_cast<SkMScalar>(51346917453137000267776.0)); | 
|  |  | 
|  | gfx::RectF rect = gfx::RectF(0, 0, 1, 1); | 
|  | gfx::RectF projected_rect = MathUtil::ProjectClippedRect(transform, rect); | 
|  |  | 
|  | EXPECT_EQ(0, projected_rect.x()); | 
|  | EXPECT_EQ(0, projected_rect.y()); | 
|  | EXPECT_TRUE(projected_rect.IsEmpty()) << projected_rect.ToString(); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, EnclosingClippedRectHandlesInfinityY) { | 
|  | HomogeneousCoordinate h1(100, 10, 0, 1); | 
|  | HomogeneousCoordinate h2(10, 10, 0, 1); | 
|  | HomogeneousCoordinate h3(-10, -1, 0, -1); | 
|  | HomogeneousCoordinate h4(-100, -1, 0, -1); | 
|  |  | 
|  | // The bounds of the enclosing clipped rect should be 100 to 10 for x | 
|  | // and 10 to infinity for y. However, if there is a bug where the result | 
|  | // is set so big as to destroy the precision of ymin, we can't deal well | 
|  | // with the resulting rect. | 
|  | gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); | 
|  |  | 
|  | EXPECT_FALSE(result.IsEmpty()); | 
|  | EXPECT_TRUE(result.Contains(50.0f, 50.0f)); | 
|  | EXPECT_TRUE(result.Contains(10.1f, 10.1f)); | 
|  | EXPECT_TRUE(result.Contains(50.0f, 50000.0f)); | 
|  | EXPECT_FALSE(result.Contains(100.1f, 50.0f)); | 
|  | EXPECT_FALSE(result.Contains(9.9f, 50.0f)); | 
|  | EXPECT_FALSE(result.Contains(50.0f, 9.9f)); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, EnclosingClippedRectHandlesNegativeInfinityX) { | 
|  | HomogeneousCoordinate h1(100, 10, 0, 1); | 
|  | HomogeneousCoordinate h2(-110, -10, 0, -1); | 
|  | HomogeneousCoordinate h3(-110, -100, 0, -1); | 
|  | HomogeneousCoordinate h4(100, 100, 0, 1); | 
|  |  | 
|  | // The bounds of the enclosing clipped rect should be 100 to -infinity for x | 
|  | // and 10 to 100 for y. However, if there is a bug where the result | 
|  | // is set so big as to destroy the precision of ymin, we can't deal well | 
|  | // with the resulting rect. | 
|  | gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); | 
|  |  | 
|  | EXPECT_FALSE(result.IsEmpty()); | 
|  | EXPECT_TRUE(result.Contains(50.0f, 50.0f)); | 
|  | EXPECT_TRUE(result.Contains(10.1f, 10.1f)); | 
|  | EXPECT_TRUE(result.Contains(0.0f, 99.9f)); | 
|  | EXPECT_FALSE(result.Contains(100.1f, 50.0f)); | 
|  | EXPECT_FALSE(result.Contains(50.0f, 100.1f)); | 
|  | EXPECT_FALSE(result.Contains(50.0f, 9.9f)); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, EnclosingClippedRectHandlesInfinityXY) { | 
|  | HomogeneousCoordinate h1(10, 10, 0, 1); | 
|  | HomogeneousCoordinate h2(0, 0, 0, -1); | 
|  | HomogeneousCoordinate h3(20, -10, 0, 1); | 
|  | HomogeneousCoordinate h4(10, -10, 0, 1); | 
|  |  | 
|  | // The bounds of the enclosing clipped rect should be 10 to infinity for x | 
|  | // and -infinity to infinity for y. | 
|  | // It would be quite easy for this result to not include anything useful. | 
|  | gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); | 
|  |  | 
|  | // Notes: (A) In the mapped shape, (B) In the enclosing rect, but not the | 
|  | // mapped shape, (C) In the mapped shape, but clipped. | 
|  | EXPECT_FALSE(result.IsEmpty()); | 
|  | EXPECT_TRUE(result.Contains(10.0f, 10.0f));      // Note (A) | 
|  | EXPECT_TRUE(result.Contains(10.11f, 10.1f));     // Note (A) | 
|  | EXPECT_TRUE(result.Contains(10.1f, 10.11f));     // Note (B) | 
|  | EXPECT_TRUE(result.Contains(1000.1f, 1000.2f));  // Note (B) | 
|  | EXPECT_TRUE(result.Contains(20.0f, -10.0f));     // Note (A) | 
|  | EXPECT_TRUE(result.Contains(20.1f, -10.0f));     // Note (A) | 
|  | EXPECT_TRUE(result.Contains(20.0f, -10.1f));     // Note (B) | 
|  | EXPECT_TRUE(result.Contains(10.0f, -10.0f));     // Note (A) | 
|  | EXPECT_TRUE(result.Contains(10.0f, -10.1f));     // Note (B) | 
|  | EXPECT_FALSE(result.Contains(0.0f, 0.0f));       // Note (C) | 
|  | EXPECT_FALSE(result.Contains(0.0f, -9.9f));      // Note (C) | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, EnclosingClippedRectUsesCorrectInitialBounds) { | 
|  | HomogeneousCoordinate h1(-100, -100, 0, 1); | 
|  | HomogeneousCoordinate h2(-10, -10, 0, 1); | 
|  | HomogeneousCoordinate h3(10, 10, 0, -1); | 
|  | HomogeneousCoordinate h4(100, 100, 0, -1); | 
|  |  | 
|  | // The bounds of the enclosing clipped rect should be -100 to -10 for both x | 
|  | // and y. However, if there is a bug where the initial xmin/xmax/ymin/ymax are | 
|  | // initialized to numeric_limits<float>::min() (which is zero, not -flt_max) | 
|  | // then the enclosing clipped rect will be computed incorrectly. | 
|  | gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4); | 
|  |  | 
|  | // Due to floating point math in ComputeClippedPointForEdge this result | 
|  | // is fairly imprecise.  0.15f was empirically determined. | 
|  | EXPECT_RECT_NEAR( | 
|  | gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)), result, 0.15f); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, EnclosingRectOfVerticesUsesCorrectInitialBounds) { | 
|  | gfx::PointF vertices[3]; | 
|  | int num_vertices = 3; | 
|  |  | 
|  | vertices[0] = gfx::PointF(-10, -100); | 
|  | vertices[1] = gfx::PointF(-100, -10); | 
|  | vertices[2] = gfx::PointF(-30, -30); | 
|  |  | 
|  | // The bounds of the enclosing rect should be -100 to -10 for both x and y. | 
|  | // However, if there is a bug where the initial xmin/xmax/ymin/ymax are | 
|  | // initialized to numeric_limits<float>::min() (which is zero, not -flt_max) | 
|  | // then the enclosing clipped rect will be computed incorrectly. | 
|  | gfx::RectF result = | 
|  | MathUtil::ComputeEnclosingRectOfVertices(vertices, num_vertices); | 
|  |  | 
|  | EXPECT_FLOAT_RECT_EQ(gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)), | 
|  | result); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, SmallestAngleBetweenVectors) { | 
|  | gfx::Vector2dF x(1, 0); | 
|  | gfx::Vector2dF y(0, 1); | 
|  | gfx::Vector2dF test_vector(0.5, 0.5); | 
|  |  | 
|  | // Orthogonal vectors are at an angle of 90 degress. | 
|  | EXPECT_EQ(90, MathUtil::SmallestAngleBetweenVectors(x, y)); | 
|  |  | 
|  | // A vector makes a zero angle with itself. | 
|  | EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(x, x)); | 
|  | EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(y, y)); | 
|  | EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(test_vector, test_vector)); | 
|  |  | 
|  | // Parallel but reversed vectors are at 180 degrees. | 
|  | EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(x, -x)); | 
|  | EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(y, -y)); | 
|  | EXPECT_FLOAT_EQ( | 
|  | 180, MathUtil::SmallestAngleBetweenVectors(test_vector, -test_vector)); | 
|  |  | 
|  | // The test vector is at a known angle. | 
|  | EXPECT_FLOAT_EQ( | 
|  | 45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, x))); | 
|  | EXPECT_FLOAT_EQ( | 
|  | 45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, y))); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, VectorProjection) { | 
|  | gfx::Vector2dF x(1, 0); | 
|  | gfx::Vector2dF y(0, 1); | 
|  | gfx::Vector2dF test_vector(0.3f, 0.7f); | 
|  |  | 
|  | // Orthogonal vectors project to a zero vector. | 
|  | EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(x, y)); | 
|  | EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(y, x)); | 
|  |  | 
|  | // Projecting a vector onto the orthonormal basis gives the corresponding | 
|  | // component of the vector. | 
|  | EXPECT_VECTOR_EQ(gfx::Vector2dF(test_vector.x(), 0), | 
|  | MathUtil::ProjectVector(test_vector, x)); | 
|  | EXPECT_VECTOR_EQ(gfx::Vector2dF(0, test_vector.y()), | 
|  | MathUtil::ProjectVector(test_vector, y)); | 
|  |  | 
|  | // Finally check than an arbitrary vector projected to another one gives a | 
|  | // vector parallel to the second vector. | 
|  | gfx::Vector2dF target_vector(0.5, 0.2f); | 
|  | gfx::Vector2dF projected_vector = | 
|  | MathUtil::ProjectVector(test_vector, target_vector); | 
|  | EXPECT_EQ(projected_vector.x() / target_vector.x(), | 
|  | projected_vector.y() / target_vector.y()); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, MapEnclosedRectWith2dAxisAlignedTransform) { | 
|  | gfx::Rect input(1, 2, 3, 4); | 
|  | gfx::Rect output; | 
|  | gfx::Transform transform; | 
|  |  | 
|  | // Identity. | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_EQ(input, output); | 
|  |  | 
|  | // Integer translate. | 
|  | transform.Translate(2.0, 3.0); | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_EQ(gfx::Rect(3, 5, 3, 4), output); | 
|  |  | 
|  | // Non-integer translate. | 
|  | transform.Translate(0.5, 0.5); | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_EQ(gfx::Rect(4, 6, 2, 3), output); | 
|  |  | 
|  | // Scale. | 
|  | transform = gfx::Transform(); | 
|  | transform.Scale(2.0, 3.0); | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_EQ(gfx::Rect(2, 6, 6, 12), output); | 
|  |  | 
|  | // Rotate Z. | 
|  | transform = gfx::Transform(); | 
|  | transform.Translate(1.0, 2.0); | 
|  | transform.RotateAboutZAxis(90.0); | 
|  | transform.Translate(-1.0, -2.0); | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_EQ(gfx::Rect(-3, 2, 4, 3), output); | 
|  |  | 
|  | // Rotate X. | 
|  | transform = gfx::Transform(); | 
|  | transform.RotateAboutXAxis(90.0); | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_TRUE(output.IsEmpty()); | 
|  |  | 
|  | transform = gfx::Transform(); | 
|  | transform.RotateAboutXAxis(180.0); | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_EQ(gfx::Rect(1, -6, 3, 4), output); | 
|  |  | 
|  | // Rotate Y. | 
|  | transform = gfx::Transform(); | 
|  | transform.RotateAboutYAxis(90.0); | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_TRUE(output.IsEmpty()); | 
|  |  | 
|  | transform = gfx::Transform(); | 
|  | transform.RotateAboutYAxis(180.0); | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_EQ(gfx::Rect(-4, 2, 3, 4), output); | 
|  |  | 
|  | // Translate Z. | 
|  | transform = gfx::Transform(); | 
|  | transform.ApplyPerspectiveDepth(10.0); | 
|  | transform.Translate3d(0.0, 0.0, 5.0); | 
|  | output = | 
|  | MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input); | 
|  | EXPECT_EQ(gfx::Rect(2, 4, 6, 8), output); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, MapEnclosingRectWithLargeTransforms) { | 
|  | gfx::Rect input(1, 2, 100, 200); | 
|  | gfx::Rect output; | 
|  |  | 
|  | gfx::Transform large_x_scale; | 
|  | large_x_scale.Scale(SkDoubleToMScalar(1e37), 1.0); | 
|  |  | 
|  | gfx::Transform infinite_x_scale; | 
|  | infinite_x_scale = large_x_scale * large_x_scale; | 
|  |  | 
|  | gfx::Transform large_y_scale; | 
|  | large_y_scale.Scale(1.0, SkDoubleToMScalar(1e37)); | 
|  |  | 
|  | gfx::Transform infinite_y_scale; | 
|  | infinite_y_scale = large_y_scale * large_y_scale; | 
|  |  | 
|  | gfx::Transform rotation; | 
|  | rotation.RotateAboutYAxis(170.0); | 
|  |  | 
|  | int max_int = std::numeric_limits<int>::max(); | 
|  |  | 
|  | output = MathUtil::MapEnclosingClippedRect(large_x_scale, input); | 
|  | EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output); | 
|  |  | 
|  | output = MathUtil::MapEnclosingClippedRect(large_x_scale * rotation, input); | 
|  | EXPECT_EQ(gfx::Rect(), output); | 
|  |  | 
|  | output = MathUtil::MapEnclosingClippedRect(infinite_x_scale, input); | 
|  | EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output); | 
|  |  | 
|  | output = | 
|  | MathUtil::MapEnclosingClippedRect(infinite_x_scale * rotation, input); | 
|  | EXPECT_EQ(gfx::Rect(), output); | 
|  |  | 
|  | output = MathUtil::MapEnclosingClippedRect(large_y_scale, input); | 
|  | EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output); | 
|  |  | 
|  | output = MathUtil::MapEnclosingClippedRect(large_y_scale * rotation, input); | 
|  | EXPECT_EQ(gfx::Rect(-100, max_int, 100, 0), output); | 
|  |  | 
|  | output = MathUtil::MapEnclosingClippedRect(infinite_y_scale, input); | 
|  | EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output); | 
|  |  | 
|  | output = | 
|  | MathUtil::MapEnclosingClippedRect(infinite_y_scale * rotation, input); | 
|  | EXPECT_EQ(gfx::Rect(), output); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, ProjectEnclosingRectWithLargeTransforms) { | 
|  | gfx::Rect input(1, 2, 100, 200); | 
|  | gfx::Rect output; | 
|  |  | 
|  | gfx::Transform large_x_scale; | 
|  | large_x_scale.Scale(SkDoubleToMScalar(1e37), 1.0); | 
|  |  | 
|  | gfx::Transform infinite_x_scale; | 
|  | infinite_x_scale = large_x_scale * large_x_scale; | 
|  |  | 
|  | gfx::Transform large_y_scale; | 
|  | large_y_scale.Scale(1.0, SkDoubleToMScalar(1e37)); | 
|  |  | 
|  | gfx::Transform infinite_y_scale; | 
|  | infinite_y_scale = large_y_scale * large_y_scale; | 
|  |  | 
|  | gfx::Transform rotation; | 
|  | rotation.RotateAboutYAxis(170.0); | 
|  |  | 
|  | int max_int = std::numeric_limits<int>::max(); | 
|  |  | 
|  | output = MathUtil::ProjectEnclosingClippedRect(large_x_scale, input); | 
|  | EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output); | 
|  |  | 
|  | output = | 
|  | MathUtil::ProjectEnclosingClippedRect(large_x_scale * rotation, input); | 
|  | EXPECT_EQ(gfx::Rect(), output); | 
|  |  | 
|  | output = MathUtil::ProjectEnclosingClippedRect(infinite_x_scale, input); | 
|  | EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output); | 
|  |  | 
|  | output = | 
|  | MathUtil::ProjectEnclosingClippedRect(infinite_x_scale * rotation, input); | 
|  | EXPECT_EQ(gfx::Rect(), output); | 
|  |  | 
|  | output = MathUtil::ProjectEnclosingClippedRect(large_y_scale, input); | 
|  | EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output); | 
|  |  | 
|  | output = | 
|  | MathUtil::ProjectEnclosingClippedRect(large_y_scale * rotation, input); | 
|  | EXPECT_EQ(gfx::Rect(-103, max_int, 102, 0), output); | 
|  |  | 
|  | output = MathUtil::ProjectEnclosingClippedRect(infinite_y_scale, input); | 
|  | EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output); | 
|  |  | 
|  | output = | 
|  | MathUtil::ProjectEnclosingClippedRect(infinite_y_scale * rotation, input); | 
|  | EXPECT_EQ(gfx::Rect(), output); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, RoundUp) { | 
|  | for (int multiplier = 1; multiplier <= 10; ++multiplier) { | 
|  | // Try attempts in descending order, so that we can | 
|  | // determine the correct value before it's needed. | 
|  | int correct; | 
|  | for (int attempt = 5 * multiplier; attempt >= -5 * multiplier; --attempt) { | 
|  | if ((attempt % multiplier) == 0) | 
|  | correct = attempt; | 
|  | EXPECT_EQ(correct, MathUtil::UncheckedRoundUp(attempt, multiplier)) | 
|  | << "attempt=" << attempt << " multiplier=" << multiplier; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned multiplier = 1; multiplier <= 10; ++multiplier) { | 
|  | // Try attempts in descending order, so that we can | 
|  | // determine the correct value before it's needed. | 
|  | unsigned correct; | 
|  | for (unsigned attempt = 5 * multiplier; attempt > 0; --attempt) { | 
|  | if ((attempt % multiplier) == 0) | 
|  | correct = attempt; | 
|  | EXPECT_EQ(correct, MathUtil::UncheckedRoundUp(attempt, multiplier)) | 
|  | << "attempt=" << attempt << " multiplier=" << multiplier; | 
|  | } | 
|  | EXPECT_EQ(0u, MathUtil::UncheckedRoundUp(0u, multiplier)) | 
|  | << "attempt=0 multiplier=" << multiplier; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, RoundUpOverflow) { | 
|  | // Rounding up 123 by 50 is 150, which overflows int8_t, but fits in uint8_t. | 
|  | EXPECT_FALSE(MathUtil::VerifyRoundup<int8_t>(123, 50)); | 
|  | EXPECT_TRUE(MathUtil::VerifyRoundup<uint8_t>(123, 50)); | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, RoundDown) { | 
|  | for (int multiplier = 1; multiplier <= 10; ++multiplier) { | 
|  | // Try attempts in ascending order, so that we can | 
|  | // determine the correct value before it's needed. | 
|  | int correct; | 
|  | for (int attempt = -5 * multiplier; attempt <= 5 * multiplier; ++attempt) { | 
|  | if ((attempt % multiplier) == 0) | 
|  | correct = attempt; | 
|  | EXPECT_EQ(correct, MathUtil::UncheckedRoundDown(attempt, multiplier)) | 
|  | << "attempt=" << attempt << " multiplier=" << multiplier; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned multiplier = 1; multiplier <= 10; ++multiplier) { | 
|  | // Try attempts in ascending order, so that we can | 
|  | // determine the correct value before it's needed. | 
|  | unsigned correct; | 
|  | for (unsigned attempt = 0; attempt <= 5 * multiplier; ++attempt) { | 
|  | if ((attempt % multiplier) == 0) | 
|  | correct = attempt; | 
|  | EXPECT_EQ(correct, MathUtil::UncheckedRoundDown(attempt, multiplier)) | 
|  | << "attempt=" << attempt << " multiplier=" << multiplier; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(MathUtilTest, RoundDownUnderflow) { | 
|  | // Rounding down -123 by 50 is -150, which underflows int8_t, but fits in | 
|  | // int16_t. | 
|  | EXPECT_FALSE(MathUtil::VerifyRoundDown<int8_t>(-123, 50)); | 
|  | EXPECT_TRUE(MathUtil::VerifyRoundDown<int16_t>(-123, 50)); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  | }  // namespace cc |