blob: d2a80389a3d9f445a9291c34130206021cd47e07 [file] [log] [blame]
// Copyright (c) 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_proxy_client_socket.h"
#include <memory>
#include <tuple>
#include <utility>
#include <vector>
#include "base/bind.h"
#include "base/memory/ptr_util.h"
#include "base/run_loop.h"
#include "base/strings/strcat.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/default_tick_clock.h"
#include "net/base/test_proxy_delegate.h"
#include "net/dns/mock_host_resolver.h"
#include "net/dns/public/secure_dns_policy.h"
#include "net/http/http_auth_cache.h"
#include "net/http/http_auth_handler_factory.h"
#include "net/http/http_response_headers.h"
#include "net/http/transport_security_state.h"
#include "net/log/test_net_log.h"
#include "net/log/test_net_log_util.h"
#include "net/quic/address_utils.h"
#include "net/quic/crypto/proof_verifier_chromium.h"
#include "net/quic/mock_crypto_client_stream_factory.h"
#include "net/quic/mock_quic_data.h"
#include "net/quic/quic_chromium_alarm_factory.h"
#include "net/quic/quic_chromium_client_session.h"
#include "net/quic/quic_chromium_connection_helper.h"
#include "net/quic/quic_chromium_packet_writer.h"
#include "net/quic/quic_crypto_client_config_handle.h"
#include "net/quic/quic_http_utils.h"
#include "net/quic/quic_server_info.h"
#include "net/quic/quic_stream_factory.h"
#include "net/quic/quic_test_packet_maker.h"
#include "net/quic/test_quic_crypto_client_config_handle.h"
#include "net/quic/test_task_runner.h"
#include "net/socket/socket_test_util.h"
#include "net/test/cert_test_util.h"
#include "net/test/gtest_util.h"
#include "net/test/test_data_directory.h"
#include "net/test/test_with_task_environment.h"
#include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h"
#include "net/third_party/quiche/src/quic/core/quic_utils.h"
#include "net/third_party/quiche/src/quic/test_tools/crypto_test_utils.h"
#include "net/third_party/quiche/src/quic/test_tools/mock_clock.h"
#include "net/third_party/quiche/src/quic/test_tools/mock_random.h"
#include "net/third_party/quiche/src/quic/test_tools/qpack/qpack_test_utils.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_connection_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h"
#include "net/traffic_annotation/network_traffic_annotation_test_helper.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using testing::_;
using testing::AnyNumber;
using testing::Return;
namespace net {
namespace test {
namespace {
static const char kOriginHost[] = "www.google.com";
static const int kOriginPort = 443;
static const char kProxyUrl[] = "https://myproxy:6121/";
static const char kProxyHost[] = "myproxy";
static const int kProxyPort = 6121;
static const char kUserAgent[] = "Mozilla/1.0";
static const char kRedirectUrl[] = "https://example.com/";
static const char kMsg1[] = "\0hello!\xff";
static const int kLen1 = 8;
static const char kMsg2[] = "\0a2345678\0";
static const int kLen2 = 10;
static const char kMsg3[] = "bye!";
static const int kLen3 = 4;
static const char kMsg33[] = "bye!bye!";
static const int kLen33 = kLen3 + kLen3;
static const char kMsg333[] = "bye!bye!bye!";
static const int kLen333 = kLen3 + kLen3 + kLen3;
struct TestParams {
quic::ParsedQuicVersion version;
bool client_headers_include_h2_stream_dependency;
};
// Used by ::testing::PrintToStringParamName().
std::string PrintToString(const TestParams& p) {
return base::StrCat(
{ParsedQuicVersionToString(p.version), "_",
(p.client_headers_include_h2_stream_dependency ? "" : "No"),
"Dependency"});
}
std::vector<TestParams> GetTestParams() {
std::vector<TestParams> params;
quic::ParsedQuicVersionVector all_supported_versions =
quic::AllSupportedVersions();
for (const auto& version : all_supported_versions) {
params.push_back(TestParams{version, false});
params.push_back(TestParams{version, true});
}
return params;
}
} // anonymous namespace
class QuicProxyClientSocketTest : public ::testing::TestWithParam<TestParams>,
public WithTaskEnvironment {
protected:
static const bool kFin = true;
static const bool kIncludeVersion = true;
static const bool kIncludeDiversificationNonce = true;
static size_t GetStreamFrameDataLengthFromPacketLength(
quic::QuicByteCount packet_length,
quic::ParsedQuicVersion version,
bool include_version,
bool include_diversification_nonce,
quic::QuicConnectionIdLength connection_id_length,
quic::QuicPacketNumberLength packet_number_length,
quic::QuicStreamOffset offset) {
quic::QuicVariableLengthIntegerLength retry_token_length_length =
quic::VARIABLE_LENGTH_INTEGER_LENGTH_0;
quic::QuicVariableLengthIntegerLength length_length =
quic::QuicVersionHasLongHeaderLengths(version.transport_version) &&
include_version
? quic::VARIABLE_LENGTH_INTEGER_LENGTH_2
: quic::VARIABLE_LENGTH_INTEGER_LENGTH_0;
size_t min_data_length = 1;
size_t min_packet_length =
quic::NullEncrypter(quic::Perspective::IS_CLIENT)
.GetCiphertextSize(min_data_length) +
quic::QuicPacketCreator::StreamFramePacketOverhead(
version.transport_version, quic::PACKET_8BYTE_CONNECTION_ID,
quic::PACKET_0BYTE_CONNECTION_ID, include_version,
include_diversification_nonce, packet_number_length,
retry_token_length_length, length_length, offset);
DCHECK(packet_length >= min_packet_length);
return min_data_length + packet_length - min_packet_length;
}
QuicProxyClientSocketTest()
: version_(GetParam().version),
client_data_stream_id1_(
quic::VersionUsesHttp3(version_.transport_version)
? quic::QuicUtils::GetFirstBidirectionalStreamId(
version_.transport_version,
quic::Perspective::IS_CLIENT)
: quic::QuicUtils::GetFirstBidirectionalStreamId(
version_.transport_version,
quic::Perspective::IS_CLIENT) +
quic::QuicUtils::StreamIdDelta(
version_.transport_version)),
client_headers_include_h2_stream_dependency_(
GetParam().client_headers_include_h2_stream_dependency),
mock_quic_data_(version_),
crypto_config_(
quic::test::crypto_test_utils::ProofVerifierForTesting()),
connection_id_(quic::test::TestConnectionId(2)),
client_maker_(version_,
connection_id_,
&clock_,
kProxyHost,
quic::Perspective::IS_CLIENT,
client_headers_include_h2_stream_dependency_),
server_maker_(version_,
connection_id_,
&clock_,
kProxyHost,
quic::Perspective::IS_SERVER,
false),
random_generator_(0),
user_agent_(kUserAgent),
proxy_host_port_(kProxyHost, kProxyPort),
endpoint_host_port_(kOriginHost, kOriginPort),
http_auth_cache_(
false /* key_server_entries_by_network_isolation_key */),
host_resolver_(new MockCachingHostResolver()),
http_auth_handler_factory_(HttpAuthHandlerFactory::CreateDefault()) {
FLAGS_quic_enable_http3_grease_randomness = false;
IPAddress ip(192, 0, 2, 33);
peer_addr_ = IPEndPoint(ip, 443);
clock_.AdvanceTime(quic::QuicTime::Delta::FromMilliseconds(20));
quic::QuicEnableVersion(version_);
}
void SetUp() override {}
void TearDown() override {
sock_.reset();
EXPECT_TRUE(mock_quic_data_.AllReadDataConsumed());
EXPECT_TRUE(mock_quic_data_.AllWriteDataConsumed());
}
void Initialize() {
std::unique_ptr<MockUDPClientSocket> socket(new MockUDPClientSocket(
mock_quic_data_.InitializeAndGetSequencedSocketData(),
net_log_.bound().net_log()));
socket->Connect(peer_addr_);
runner_ = new TestTaskRunner(&clock_);
send_algorithm_ = new quic::test::MockSendAlgorithm();
EXPECT_CALL(*send_algorithm_, InRecovery()).WillRepeatedly(Return(false));
EXPECT_CALL(*send_algorithm_, InSlowStart()).WillRepeatedly(Return(false));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(testing::AtLeast(1));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillRepeatedly(Return(quic::kMaxOutgoingPacketSize));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(quic::QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
.WillRepeatedly(Return(quic::QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, GetCongestionControlType())
.Times(AnyNumber());
helper_ = std::make_unique<QuicChromiumConnectionHelper>(
&clock_, &random_generator_);
alarm_factory_ =
std::make_unique<QuicChromiumAlarmFactory>(runner_.get(), &clock_);
QuicChromiumPacketWriter* writer = new QuicChromiumPacketWriter(
socket.get(), base::ThreadTaskRunnerHandle::Get().get());
quic::QuicConnection* connection = new quic::QuicConnection(
connection_id_, quic::QuicSocketAddress(),
net::ToQuicSocketAddress(peer_addr_), helper_.get(),
alarm_factory_.get(), writer, true /* owns_writer */,
quic::Perspective::IS_CLIENT, quic::test::SupportedVersions(version_));
connection->set_visitor(&visitor_);
quic::test::QuicConnectionPeer::SetSendAlgorithm(connection,
send_algorithm_);
// Load a certificate that is valid for *.example.org
scoped_refptr<X509Certificate> test_cert(
ImportCertFromFile(GetTestCertsDirectory(), "wildcard.pem"));
EXPECT_TRUE(test_cert.get());
verify_details_.cert_verify_result.verified_cert = test_cert;
verify_details_.cert_verify_result.is_issued_by_known_root = true;
crypto_client_stream_factory_.AddProofVerifyDetails(&verify_details_);
base::TimeTicks dns_end = base::TimeTicks::Now();
base::TimeTicks dns_start = dns_end - base::TimeDelta::FromMilliseconds(1);
session_ = std::make_unique<QuicChromiumClientSession>(
connection, std::move(socket),
/*stream_factory=*/nullptr, &crypto_client_stream_factory_, &clock_,
&transport_security_state_, /*ssl_config_service=*/nullptr,
base::WrapUnique(static_cast<QuicServerInfo*>(nullptr)),
QuicSessionKey("mail.example.org", 80, PRIVACY_MODE_DISABLED,
SocketTag(), NetworkIsolationKey(),
SecureDnsPolicy::kAllow),
/*require_confirmation=*/false,
/*migrate_session_early_v2=*/false,
/*migrate_session_on_network_change_v2=*/false,
/*default_network=*/NetworkChangeNotifier::kInvalidNetworkHandle,
quic::QuicTime::Delta::FromMilliseconds(
kDefaultRetransmittableOnWireTimeout.InMilliseconds()),
/*migrate_idle_session=*/true, /*allow_port_migration=*/false,
kDefaultIdleSessionMigrationPeriod, kMaxTimeOnNonDefaultNetwork,
kMaxMigrationsToNonDefaultNetworkOnWriteError,
kMaxMigrationsToNonDefaultNetworkOnPathDegrading,
kQuicYieldAfterPacketsRead,
quic::QuicTime::Delta::FromMilliseconds(
kQuicYieldAfterDurationMilliseconds),
/*go_away_on_path_degrading*/ false,
client_headers_include_h2_stream_dependency_, /*cert_verify_flags=*/0,
quic::test::DefaultQuicConfig(),
std::make_unique<TestQuicCryptoClientConfigHandle>(&crypto_config_),
"CONNECTION_UNKNOWN", dns_start, dns_end,
std::make_unique<quic::QuicClientPushPromiseIndex>(), nullptr,
base::DefaultTickClock::GetInstance(),
base::ThreadTaskRunnerHandle::Get().get(),
/*socket_performance_watcher=*/nullptr, net_log_.bound().net_log());
writer->set_delegate(session_.get());
session_handle_ =
session_->CreateHandle(HostPortPair("mail.example.org", 80));
session_->Initialize();
// Blackhole QPACK decoder stream instead of constructing mock writes.
if (VersionUsesHttp3(version_.transport_version)) {
session_->qpack_decoder()->set_qpack_stream_sender_delegate(
&noop_qpack_stream_sender_delegate_);
}
TestCompletionCallback callback;
EXPECT_THAT(session_->CryptoConnect(callback.callback()), IsOk());
EXPECT_TRUE(session_->OneRttKeysAvailable());
EXPECT_THAT(session_handle_->RequestStream(true, callback.callback(),
TRAFFIC_ANNOTATION_FOR_TESTS),
IsOk());
std::unique_ptr<QuicChromiumClientStream::Handle> stream_handle =
session_handle_->ReleaseStream();
EXPECT_TRUE(stream_handle->IsOpen());
sock_ = std::make_unique<QuicProxyClientSocket>(
std::move(stream_handle), std::move(session_handle_),
ProxyServer(ProxyServer::SCHEME_HTTPS, proxy_host_port_), user_agent_,
endpoint_host_port_, net_log_.bound(),
new HttpAuthController(HttpAuth::AUTH_PROXY,
GURL("https://" + proxy_host_port_.ToString()),
NetworkIsolationKey(), &http_auth_cache_,
http_auth_handler_factory_.get(),
host_resolver_.get()),
proxy_delegate_.get());
session_->StartReading();
}
void PopulateConnectRequestIR(spdy::Http2HeaderBlock* block) {
(*block)[":method"] = "CONNECT";
(*block)[":authority"] = endpoint_host_port_.ToString();
(*block)["user-agent"] = kUserAgent;
}
// Helper functions for constructing packets sent by the client
std::unique_ptr<quic::QuicReceivedPacket> ConstructSettingsPacket(
uint64_t packet_number) {
return client_maker_.MakeInitialSettingsPacket(packet_number);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructAckAndRstOnlyPacket(
uint64_t packet_number,
quic::QuicRstStreamErrorCode error_code,
uint64_t largest_received,
uint64_t smallest_received) {
return client_maker_.MakeAckAndRstPacket(
packet_number, !kIncludeVersion, client_data_stream_id1_, error_code,
largest_received, smallest_received,
/*include_stop_sending=*/false);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructAckAndRstPacket(
uint64_t packet_number,
quic::QuicRstStreamErrorCode error_code,
uint64_t largest_received,
uint64_t smallest_received) {
return client_maker_.MakeAckAndRstPacket(
packet_number, !kIncludeVersion, client_data_stream_id1_, error_code,
largest_received, smallest_received,
/*include_stop_sending_if_v99=*/true);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructRstPacket(
uint64_t packet_number,
quic::QuicRstStreamErrorCode error_code) {
return client_maker_.MakeRstPacket(packet_number, !kIncludeVersion,
client_data_stream_id1_, error_code,
/*include_stop_sending_if_v99=*/true);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructConnectRequestPacket(
uint64_t packet_number,
RequestPriority request_priority = LOWEST) {
spdy::Http2HeaderBlock block;
PopulateConnectRequestIR(&block);
return client_maker_.MakeRequestHeadersPacket(
packet_number, client_data_stream_id1_, kIncludeVersion, !kFin,
ConvertRequestPriorityToQuicPriority(request_priority),
std::move(block), 0, nullptr);
}
std::unique_ptr<quic::QuicReceivedPacket>
ConstructConnectRequestPacketWithExtraHeaders(
uint64_t packet_number,
std::vector<std::pair<std::string, std::string>> extra_headers,
RequestPriority request_priority = LOWEST) {
spdy::Http2HeaderBlock block;
block[":method"] = "CONNECT";
block[":authority"] = endpoint_host_port_.ToString();
for (const auto& header : extra_headers) {
block[header.first] = header.second;
}
return client_maker_.MakeRequestHeadersPacket(
packet_number, client_data_stream_id1_, kIncludeVersion, !kFin,
ConvertRequestPriorityToQuicPriority(request_priority),
std::move(block), 0, nullptr);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructConnectAuthRequestPacket(
uint64_t packet_number) {
RequestPriority request_priority = LOWEST;
spdy::Http2HeaderBlock block;
PopulateConnectRequestIR(&block);
block["proxy-authorization"] = "Basic Zm9vOmJhcg==";
return client_maker_.MakeRequestHeadersPacket(
packet_number, client_data_stream_id1_, kIncludeVersion, !kFin,
ConvertRequestPriorityToQuicPriority(request_priority),
std::move(block), 0, nullptr);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructDataPacket(
uint64_t packet_number,
absl::string_view data) {
return client_maker_.MakeDataPacket(packet_number, client_data_stream_id1_,
!kIncludeVersion, !kFin, data);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructAckAndDataPacket(
uint64_t packet_number,
uint64_t largest_received,
uint64_t smallest_received,
absl::string_view data) {
return client_maker_.MakeAckAndDataPacket(
packet_number, !kIncludeVersion, client_data_stream_id1_,
largest_received, smallest_received, !kFin, data);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructAckPacket(
uint64_t packet_number,
uint64_t largest_received,
uint64_t smallest_received) {
return client_maker_.MakeAckPacket(packet_number, largest_received,
smallest_received);
}
// Helper functions for constructing packets sent by the server
std::unique_ptr<quic::QuicReceivedPacket> ConstructServerRstPacket(
uint64_t packet_number,
quic::QuicRstStreamErrorCode error_code) {
return server_maker_.MakeRstPacket(packet_number, !kIncludeVersion,
client_data_stream_id1_, error_code,
/*include_stop_sending_if_v99=*/true);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructServerDataPacket(
uint64_t packet_number,
absl::string_view data) {
return server_maker_.MakeDataPacket(packet_number, client_data_stream_id1_,
!kIncludeVersion, !kFin, data);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructServerDataFinPacket(
uint64_t packet_number,
absl::string_view data) {
return server_maker_.MakeDataPacket(packet_number, client_data_stream_id1_,
!kIncludeVersion, kFin, data);
}
std::unique_ptr<quic::QuicReceivedPacket> ConstructServerConnectReplyPacket(
uint64_t packet_number,
bool fin,
size_t* header_length = nullptr) {
spdy::Http2HeaderBlock block;
block[":status"] = "200";
return server_maker_.MakeResponseHeadersPacket(
packet_number, client_data_stream_id1_, !kIncludeVersion, fin,
std::move(block), header_length);
}
std::unique_ptr<quic::QuicReceivedPacket>
ConstructServerConnectReplyPacketWithExtraHeaders(
uint64_t packet_number,
bool fin,
std::vector<std::pair<std::string, std::string>> extra_headers) {
spdy::Http2HeaderBlock block;
block[":status"] = "200";
for (const auto& header : extra_headers) {
block[header.first] = header.second;
}
return server_maker_.MakeResponseHeadersPacket(
packet_number, client_data_stream_id1_, !kIncludeVersion, fin,
std::move(block), nullptr);
}
std::unique_ptr<quic::QuicReceivedPacket>
ConstructServerConnectAuthReplyPacket(uint64_t packet_number, bool fin) {
spdy::Http2HeaderBlock block;
block[":status"] = "407";
block["proxy-authenticate"] = "Basic realm=\"MyRealm1\"";
return server_maker_.MakeResponseHeadersPacket(
packet_number, client_data_stream_id1_, !kIncludeVersion, fin,
std::move(block), nullptr);
}
std::unique_ptr<quic::QuicReceivedPacket>
ConstructServerConnectRedirectReplyPacket(uint64_t packet_number, bool fin) {
spdy::Http2HeaderBlock block;
block[":status"] = "302";
block["location"] = kRedirectUrl;
block["set-cookie"] = "foo=bar";
return server_maker_.MakeResponseHeadersPacket(
packet_number, client_data_stream_id1_, !kIncludeVersion, fin,
std::move(block), nullptr);
}
std::unique_ptr<quic::QuicReceivedPacket>
ConstructServerConnectErrorReplyPacket(uint64_t packet_number, bool fin) {
spdy::Http2HeaderBlock block;
block[":status"] = "500";
return server_maker_.MakeResponseHeadersPacket(
packet_number, client_data_stream_id1_, !kIncludeVersion, fin,
std::move(block), nullptr);
}
void AssertConnectSucceeds() {
TestCompletionCallback callback;
ASSERT_THAT(sock_->Connect(callback.callback()), IsError(ERR_IO_PENDING));
ASSERT_THAT(callback.WaitForResult(), IsOk());
}
void AssertConnectFails(int result) {
TestCompletionCallback callback;
ASSERT_THAT(sock_->Connect(callback.callback()), IsError(ERR_IO_PENDING));
ASSERT_EQ(result, callback.WaitForResult());
}
void ResumeAndRun() {
// Run until the pause, if the provider isn't paused yet.
SequencedSocketData* data = mock_quic_data_.GetSequencedSocketData();
data->RunUntilPaused();
data->Resume();
base::RunLoop().RunUntilIdle();
}
void AssertWriteReturns(const char* data, int len, int rv) {
scoped_refptr<IOBufferWithSize> buf =
base::MakeRefCounted<IOBufferWithSize>(len);
memcpy(buf->data(), data, len);
EXPECT_EQ(rv,
sock_->Write(buf.get(), buf->size(), write_callback_.callback(),
TRAFFIC_ANNOTATION_FOR_TESTS));
}
void AssertSyncWriteSucceeds(const char* data, int len) {
scoped_refptr<IOBufferWithSize> buf =
base::MakeRefCounted<IOBufferWithSize>(len);
memcpy(buf->data(), data, len);
EXPECT_EQ(len,
sock_->Write(buf.get(), buf->size(), CompletionOnceCallback(),
TRAFFIC_ANNOTATION_FOR_TESTS));
}
void AssertSyncReadEquals(const char* data, int len) {
scoped_refptr<IOBuffer> buf = base::MakeRefCounted<IOBuffer>(len);
ASSERT_EQ(len, sock_->Read(buf.get(), len, CompletionOnceCallback()));
ASSERT_EQ(std::string(data, len), std::string(buf->data(), len));
ASSERT_TRUE(sock_->IsConnected());
}
void AssertAsyncReadEquals(const char* data, int len) {
scoped_refptr<IOBuffer> buf = base::MakeRefCounted<IOBuffer>(len);
ASSERT_EQ(ERR_IO_PENDING,
sock_->Read(buf.get(), len, read_callback_.callback()));
EXPECT_TRUE(sock_->IsConnected());
ResumeAndRun();
EXPECT_EQ(len, read_callback_.WaitForResult());
EXPECT_TRUE(sock_->IsConnected());
ASSERT_EQ(std::string(data, len), std::string(buf->data(), len));
}
void AssertReadStarts(const char* data, int len) {
// Issue the read, which will be completed asynchronously.
read_buf_ = base::MakeRefCounted<IOBuffer>(len);
ASSERT_EQ(ERR_IO_PENDING,
sock_->Read(read_buf_.get(), len, read_callback_.callback()));
EXPECT_TRUE(sock_->IsConnected());
}
void AssertReadReturns(const char* data, int len) {
EXPECT_TRUE(sock_->IsConnected());
// Now the read will return.
EXPECT_EQ(len, read_callback_.WaitForResult());
ASSERT_EQ(std::string(data, len), std::string(read_buf_->data(), len));
}
std::string ConstructDataHeader(size_t body_len) {
if (!version_.HasIetfQuicFrames()) {
return "";
}
quic::QuicBuffer buffer = quic::HttpEncoder::SerializeDataFrameHeader(
body_len, quic::SimpleBufferAllocator::Get());
return std::string(buffer.data(), buffer.size());
}
RecordingBoundTestNetLog net_log_;
QuicFlagSaver saver_;
const quic::ParsedQuicVersion version_;
const quic::QuicStreamId client_data_stream_id1_;
const bool client_headers_include_h2_stream_dependency_;
// order of destruction of these members matter
quic::MockClock clock_;
MockQuicData mock_quic_data_;
std::unique_ptr<QuicChromiumConnectionHelper> helper_;
std::unique_ptr<QuicChromiumClientSession> session_;
std::unique_ptr<QuicChromiumClientSession::Handle> session_handle_;
std::unique_ptr<QuicProxyClientSocket> sock_;
std::unique_ptr<TestProxyDelegate> proxy_delegate_;
quic::test::MockSendAlgorithm* send_algorithm_;
scoped_refptr<TestTaskRunner> runner_;
std::unique_ptr<QuicChromiumAlarmFactory> alarm_factory_;
testing::StrictMock<quic::test::MockQuicConnectionVisitor> visitor_;
TransportSecurityState transport_security_state_;
quic::QuicCryptoClientConfig crypto_config_;
const quic::QuicConnectionId connection_id_;
QuicTestPacketMaker client_maker_;
QuicTestPacketMaker server_maker_;
IPEndPoint peer_addr_;
quic::test::MockRandom random_generator_;
ProofVerifyDetailsChromium verify_details_;
MockCryptoClientStreamFactory crypto_client_stream_factory_;
std::string user_agent_;
HostPortPair proxy_host_port_;
HostPortPair endpoint_host_port_;
HttpAuthCache http_auth_cache_;
std::unique_ptr<MockHostResolverBase> host_resolver_;
std::unique_ptr<HttpAuthHandlerRegistryFactory> http_auth_handler_factory_;
TestCompletionCallback read_callback_;
scoped_refptr<IOBuffer> read_buf_;
TestCompletionCallback write_callback_;
quic::test::NoopQpackStreamSenderDelegate noop_qpack_stream_sender_delegate_;
DISALLOW_COPY_AND_ASSIGN(QuicProxyClientSocketTest);
};
TEST_P(QuicProxyClientSocketTest, ConnectSendsCorrectRequest) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
ASSERT_FALSE(sock_->IsConnected());
AssertConnectSucceeds();
const HttpResponseInfo* response = sock_->GetConnectResponseInfo();
ASSERT_TRUE(response != nullptr);
ASSERT_EQ(200, response->headers->response_code());
}
TEST_P(QuicProxyClientSocketTest, ProxyDelegateExtraHeaders) {
proxy_delegate_ = std::make_unique<TestProxyDelegate>();
ProxyServer proxy_server(ProxyServer::SCHEME_HTTPS, proxy_host_port_);
const char kResponseHeaderName[] = "foo";
const char kResponseHeaderValue[] = "testing";
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructConnectRequestPacketWithExtraHeaders(
packet_number++,
// Order matters! Keep these alphabetical.
{{"foo", proxy_server.ToURI()}, {"user-agent", kUserAgent}}));
mock_quic_data_.AddRead(
ASYNC, ConstructServerConnectReplyPacketWithExtraHeaders(
1, !kFin, {{kResponseHeaderName, kResponseHeaderValue}}));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
ASSERT_FALSE(sock_->IsConnected());
AssertConnectSucceeds();
const HttpResponseInfo* response = sock_->GetConnectResponseInfo();
ASSERT_TRUE(response != nullptr);
ASSERT_EQ(200, response->headers->response_code());
proxy_delegate_->VerifyOnTunnelHeadersReceived(
proxy_server, kResponseHeaderName, kResponseHeaderValue);
}
TEST_P(QuicProxyClientSocketTest, ConnectWithAuthRequested) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC,
ConstructServerConnectAuthReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
AssertConnectFails(ERR_PROXY_AUTH_REQUESTED);
const HttpResponseInfo* response = sock_->GetConnectResponseInfo();
ASSERT_TRUE(response != nullptr);
ASSERT_EQ(407, response->headers->response_code());
}
TEST_P(QuicProxyClientSocketTest, ConnectWithAuthCredentials) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectAuthRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
// Add auth to cache
const std::u16string kFoo(u"foo");
const std::u16string kBar(u"bar");
http_auth_cache_.Add(GURL(kProxyUrl), HttpAuth::AUTH_PROXY, "MyRealm1",
HttpAuth::AUTH_SCHEME_BASIC, NetworkIsolationKey(),
"Basic realm=MyRealm1", AuthCredentials(kFoo, kBar),
"/");
AssertConnectSucceeds();
const HttpResponseInfo* response = sock_->GetConnectResponseInfo();
ASSERT_TRUE(response != nullptr);
ASSERT_EQ(200, response->headers->response_code());
}
// Tests that a redirect response from a CONNECT fails.
TEST_P(QuicProxyClientSocketTest, ConnectRedirects) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC,
ConstructServerConnectRedirectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
AssertConnectFails(ERR_TUNNEL_CONNECTION_FAILED);
const HttpResponseInfo* response = sock_->GetConnectResponseInfo();
ASSERT_TRUE(response != nullptr);
const HttpResponseHeaders* headers = response->headers.get();
ASSERT_EQ(302, headers->response_code());
ASSERT_TRUE(headers->HasHeader("set-cookie"));
std::string location;
ASSERT_TRUE(headers->IsRedirect(&location));
ASSERT_EQ(location, kRedirectUrl);
}
TEST_P(QuicProxyClientSocketTest, ConnectFails) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ERR_CONNECTION_CLOSED);
Initialize();
ASSERT_FALSE(sock_->IsConnected());
AssertConnectFails(ERR_QUIC_PROTOCOL_ERROR);
ASSERT_FALSE(sock_->IsConnected());
}
TEST_P(QuicProxyClientSocketTest, WasEverUsedReturnsCorrectValue) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
if (VersionUsesHttp3(version_.transport_version))
EXPECT_TRUE(sock_->WasEverUsed()); // Used due to crypto handshake
AssertConnectSucceeds();
EXPECT_TRUE(sock_->WasEverUsed());
sock_->Disconnect();
EXPECT_TRUE(sock_->WasEverUsed());
}
TEST_P(QuicProxyClientSocketTest, GetPeerAddressReturnsCorrectValues) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
mock_quic_data_.AddRead(ASYNC, ERR_CONNECTION_CLOSED);
Initialize();
IPEndPoint addr;
EXPECT_THAT(sock_->GetPeerAddress(&addr), IsError(ERR_SOCKET_NOT_CONNECTED));
AssertConnectSucceeds();
EXPECT_TRUE(sock_->IsConnected());
EXPECT_THAT(sock_->GetPeerAddress(&addr), IsOk());
ResumeAndRun();
EXPECT_FALSE(sock_->IsConnected());
EXPECT_THAT(sock_->GetPeerAddress(&addr), IsError(ERR_SOCKET_NOT_CONNECTED));
sock_->Disconnect();
EXPECT_THAT(sock_->GetPeerAddress(&addr), IsError(ERR_SOCKET_NOT_CONNECTED));
}
TEST_P(QuicProxyClientSocketTest, IsConnectedAndIdle) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(packet_number++, quic::QUIC_STREAM_CANCELLED));
Initialize();
EXPECT_FALSE(sock_->IsConnectedAndIdle());
AssertConnectSucceeds();
EXPECT_TRUE(sock_->IsConnectedAndIdle());
// The next read is consumed and buffered.
ResumeAndRun();
EXPECT_FALSE(sock_->IsConnectedAndIdle());
AssertSyncReadEquals(kMsg1, kLen1);
EXPECT_TRUE(sock_->IsConnectedAndIdle());
}
TEST_P(QuicProxyClientSocketTest, GetTotalReceivedBytes) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
size_t header_length;
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(
ASYNC, ConstructServerConnectReplyPacket(1, !kFin, &header_length));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string data_header = ConstructDataHeader(kLen333);
mock_quic_data_.AddRead(ASYNC,
ConstructServerDataPacket(
2, data_header + std::string(kMsg333, kLen333)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(packet_number++, quic::QUIC_STREAM_CANCELLED));
Initialize();
EXPECT_EQ(0, sock_->GetTotalReceivedBytes());
AssertConnectSucceeds();
if (!VersionUsesHttp3(version_.transport_version)) {
header_length = 0;
EXPECT_EQ(0, sock_->GetTotalReceivedBytes());
} else {
// HTTP/3 sends and receives HTTP headers on the request stream.
EXPECT_EQ((int64_t)(header_length), sock_->GetTotalReceivedBytes());
}
// The next read is consumed and buffered.
ResumeAndRun();
if (!VersionUsesHttp3(version_.transport_version)) {
EXPECT_EQ(0, sock_->GetTotalReceivedBytes());
} else {
// HTTP/3 encodes data with DATA frame. The header is consumed.
EXPECT_EQ((int64_t)(header_length + data_header.length()),
sock_->GetTotalReceivedBytes());
}
// The payload from the single large data frame will be read across
// two different reads.
AssertSyncReadEquals(kMsg33, kLen33);
EXPECT_EQ((int64_t)(header_length + data_header.length() + kLen33),
sock_->GetTotalReceivedBytes());
AssertSyncReadEquals(kMsg3, kLen3);
EXPECT_EQ((int64_t)(header_length + kLen333 + data_header.length()),
sock_->GetTotalReceivedBytes());
}
TEST_P(QuicProxyClientSocketTest, SetStreamPriority) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
// Despite setting the priority to HIGHEST, the requets initial priority of
// LOWEST is used.
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructConnectRequestPacket(packet_number++, LOWEST));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
sock_->SetStreamPriority(HIGHEST);
AssertConnectSucceeds();
}
TEST_P(QuicProxyClientSocketTest, WriteSendsDataInDataFrame) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
if (version_.HasIetfQuicFrames()) {
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructAckAndDataPacket(packet_number++, 1, 1,
{header + std::string(kMsg1, kLen1)}));
std::string header2 = ConstructDataHeader(kLen2);
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructDataPacket(packet_number++,
{header2 + std::string(kMsg2, kLen2)}));
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(packet_number++, quic::QUIC_STREAM_CANCELLED));
} else {
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndDataPacket(packet_number++, 1, 1,
std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructDataPacket(packet_number++, std::string(kMsg2, kLen2)));
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(packet_number++, quic::QUIC_STREAM_CANCELLED));
}
Initialize();
AssertConnectSucceeds();
AssertSyncWriteSucceeds(kMsg1, kLen1);
AssertSyncWriteSucceeds(kMsg2, kLen2);
}
TEST_P(QuicProxyClientSocketTest, WriteSplitsLargeDataIntoMultiplePackets) {
int write_packet_index = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(write_packet_index++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(write_packet_index++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
std::string header = ConstructDataHeader(kLen1);
if (!version_.HasIetfQuicFrames()) {
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndDataPacket(write_packet_index++, 1, 1,
std::string(kMsg1, kLen1)));
} else {
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructAckAndDataPacket(write_packet_index++, 1, 1,
{header + std::string(kMsg1, kLen1)}));
}
// Expect |kNumDataPackets| data packets, each containing the max possible
// amount of data.
int numDataPackets = 3;
std::string data(numDataPackets * quic::kDefaultMaxPacketSize, 'x');
quic::QuicStreamOffset offset = kLen1 + header.length();
if (version_.HasIetfQuicFrames()) {
numDataPackets++;
}
size_t total_data_length = 0;
for (int i = 0; i < numDataPackets; ++i) {
size_t max_packet_data_length = GetStreamFrameDataLengthFromPacketLength(
quic::kDefaultMaxPacketSize, version_, !kIncludeVersion,
!kIncludeDiversificationNonce, quic::PACKET_8BYTE_CONNECTION_ID,
quic::PACKET_1BYTE_PACKET_NUMBER, offset);
if (version_.HasIetfQuicFrames() && i == 0) {
// 3973 is the data frame length from packet length.
std::string header2 = ConstructDataHeader(3973);
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructDataPacket(
write_packet_index++,
{header2 +
std::string(data.c_str(), max_packet_data_length - 7)}));
offset += max_packet_data_length - header2.length() - 1;
} else if (version_.HasIetfQuicFrames() && i == numDataPackets - 1) {
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructDataPacket(write_packet_index++,
std::string(data.c_str(), 7)));
offset += 7;
} else {
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructDataPacket(
write_packet_index++,
std::string(data.c_str(), max_packet_data_length)));
offset += max_packet_data_length;
}
if (i != 3) {
total_data_length += max_packet_data_length;
}
}
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(write_packet_index++, quic::QUIC_STREAM_CANCELLED));
Initialize();
AssertConnectSucceeds();
// Make a small write. An ACK and STOP_WAITING will be bundled. This prevents
// ACK and STOP_WAITING from being bundled with the subsequent large write.
// This allows the test code for computing the size of data sent in each
// packet to not become too complicated.
AssertSyncWriteSucceeds(kMsg1, kLen1);
// Make large write that should be split up
AssertSyncWriteSucceeds(data.c_str(), total_data_length);
}
// ----------- Read
TEST_P(QuicProxyClientSocketTest, ReadReadsDataInDataFrame) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(packet_number++, quic::QUIC_STREAM_CANCELLED));
Initialize();
AssertConnectSucceeds();
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
}
TEST_P(QuicProxyClientSocketTest, ReadDataFromBufferedFrames) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header2 = ConstructDataHeader(kLen2);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(3, header2 + std::string(kMsg2, kLen2)));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 3, 3));
Initialize();
AssertConnectSucceeds();
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
ResumeAndRun();
AssertSyncReadEquals(kMsg2, kLen2);
}
TEST_P(QuicProxyClientSocketTest, ReadDataMultipleBufferedFrames) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
std::string header2 = ConstructDataHeader(kLen2);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(3, header2 + std::string(kMsg2, kLen2)));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 3, 3));
Initialize();
AssertConnectSucceeds();
// The next two reads are consumed and buffered.
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
AssertSyncReadEquals(kMsg2, kLen2);
}
TEST_P(QuicProxyClientSocketTest, LargeReadWillMergeDataFromDifferentFrames) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen3);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg3, kLen3)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
std::string header2 = ConstructDataHeader(kLen3);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(3, header2 + std::string(kMsg3, kLen3)));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 3, 3));
Initialize();
AssertConnectSucceeds();
// The next two reads are consumed and buffered.
ResumeAndRun();
// The payload from two data frames, each with kMsg3 will be combined
// together into a single read().
AssertSyncReadEquals(kMsg33, kLen33);
}
TEST_P(QuicProxyClientSocketTest, MultipleShortReadsThenMoreRead) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
int offset = 0;
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
offset += kLen1 + header.length();
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
std::string header2 = ConstructDataHeader(kLen3);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(3, header2 + std::string(kMsg3, kLen3)));
offset += kLen3 + header2.length();
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(4, header2 + std::string(kMsg3, kLen3)));
offset += kLen3 + header2.length();
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 4, 3));
std::string header3 = ConstructDataHeader(kLen2);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(5, header3 + std::string(kMsg2, kLen2)));
offset += kLen2 + header3.length();
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 5, 5));
Initialize();
AssertConnectSucceeds();
// The next 4 reads are consumed and buffered.
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
// The payload from two data frames, each with kMsg3 will be combined
// together into a single read().
AssertSyncReadEquals(kMsg33, kLen33);
AssertSyncReadEquals(kMsg2, kLen2);
}
TEST_P(QuicProxyClientSocketTest, ReadWillSplitDataFromLargeFrame) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
std::string header2 = ConstructDataHeader(kLen33);
mock_quic_data_.AddRead(ASYNC, ConstructServerDataPacket(
3, header2 + std::string(kMsg33, kLen33)));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 3, 3));
Initialize();
AssertConnectSucceeds();
// The next 2 reads are consumed and buffered.
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
// The payload from the single large data frame will be read across
// two different reads.
AssertSyncReadEquals(kMsg3, kLen3);
AssertSyncReadEquals(kMsg3, kLen3);
}
TEST_P(QuicProxyClientSocketTest, MultipleReadsFromSameLargeFrame) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen333);
mock_quic_data_.AddRead(
ASYNC,
ConstructServerDataPacket(2, header + std::string(kMsg333, kLen333)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(packet_number++, quic::QUIC_STREAM_CANCELLED));
Initialize();
AssertConnectSucceeds();
// The next read is consumed and buffered.
ResumeAndRun();
// The payload from the single large data frame will be read across
// two different reads.
AssertSyncReadEquals(kMsg33, kLen33);
// Now attempt to do a read of more data than remains buffered
scoped_refptr<IOBuffer> buf = base::MakeRefCounted<IOBuffer>(kLen33);
ASSERT_EQ(kLen3, sock_->Read(buf.get(), kLen33, CompletionOnceCallback()));
ASSERT_EQ(std::string(kMsg3, kLen3), std::string(buf->data(), kLen3));
ASSERT_TRUE(sock_->IsConnected());
}
TEST_P(QuicProxyClientSocketTest, ReadAuthResponseBody) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC,
ConstructServerConnectAuthReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
std::string header2 = ConstructDataHeader(kLen2);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(3, header2 + std::string(kMsg2, kLen2)));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 3, 3));
Initialize();
AssertConnectFails(ERR_PROXY_AUTH_REQUESTED);
// The next two reads are consumed and buffered.
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
AssertSyncReadEquals(kMsg2, kLen2);
}
TEST_P(QuicProxyClientSocketTest, ReadErrorResponseBody) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC,
ConstructServerConnectErrorReplyPacket(1, !kFin));
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
SYNCHRONOUS,
ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
std::string header2 = ConstructDataHeader(kLen2);
mock_quic_data_.AddRead(
SYNCHRONOUS,
ConstructServerDataPacket(3, header2 + std::string(kMsg2, kLen2)));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 3, 3));
Initialize();
AssertConnectFails(ERR_TUNNEL_CONNECTION_FAILED);
}
// ----------- Reads and Writes
TEST_P(QuicProxyClientSocketTest, AsyncReadAroundWrite) {
int write_packet_index = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(write_packet_index++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(write_packet_index++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(write_packet_index++, 2, 1));
std::string header2 = ConstructDataHeader(kLen2);
if (version_.HasIetfQuicFrames()) {
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructDataPacket(write_packet_index++,
{header2 + std::string(kMsg2, kLen2)}));
} else {
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructDataPacket(write_packet_index++, std::string(kMsg2, kLen2)));
}
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header3 = ConstructDataHeader(kLen3);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(3, header3 + std::string(kMsg3, kLen3)));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(write_packet_index++,
quic::QUIC_STREAM_CANCELLED, 3, 3));
Initialize();
AssertConnectSucceeds();
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
AssertReadStarts(kMsg3, kLen3);
// Read should block until after the write succeeds.
AssertSyncWriteSucceeds(kMsg2, kLen2);
ASSERT_FALSE(read_callback_.have_result());
ResumeAndRun();
// Now the read will return.
AssertReadReturns(kMsg3, kLen3);
}
TEST_P(QuicProxyClientSocketTest, AsyncWriteAroundReads) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header2 = ConstructDataHeader(kLen3);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(3, header2 + std::string(kMsg3, kLen3)));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(ASYNC, ERR_IO_PENDING); // Pause
std::string header3 = ConstructDataHeader(kLen2);
if (!version_.HasIetfQuicFrames()) {
mock_quic_data_.AddWrite(
ASYNC, ConstructDataPacket(packet_number++, std::string(kMsg2, kLen2)));
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndDataPacket(packet_number++, 3, 3,
std::string(kMsg2, kLen2)));
} else {
mock_quic_data_.AddWrite(
ASYNC, ConstructDataPacket(packet_number++,
{header3 + std::string(kMsg2, kLen2)}));
mock_quic_data_.AddWrite(
ASYNC, ConstructAckAndDataPacket(packet_number++, 3, 3,
header3 + std::string(kMsg2, kLen2)));
}
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(packet_number++, quic::QUIC_STREAM_CANCELLED));
Initialize();
AssertConnectSucceeds();
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
// Write should block until the next read completes.
// QuicChromiumClientStream::Handle::WriteStreamData() will only be
// asynchronous starting with the second time it's called while the UDP socket
// is write-blocked. Therefore, at least two writes need to be called on
// |sock_| to get an asynchronous one.
AssertWriteReturns(kMsg2, kLen2, kLen2);
AssertWriteReturns(kMsg2, kLen2, ERR_IO_PENDING);
AssertAsyncReadEquals(kMsg3, kLen3);
ASSERT_FALSE(write_callback_.have_result());
// Now the write will complete
ResumeAndRun();
EXPECT_EQ(kLen2, write_callback_.WaitForResult());
}
// ----------- Reading/Writing on Closed socket
// Reading from an already closed socket should return 0
TEST_P(QuicProxyClientSocketTest, ReadOnClosedSocketReturnsZero) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
mock_quic_data_.AddRead(ASYNC, ERR_CONNECTION_CLOSED);
Initialize();
AssertConnectSucceeds();
ResumeAndRun();
ASSERT_FALSE(sock_->IsConnected());
ASSERT_EQ(0, sock_->Read(nullptr, 1, CompletionOnceCallback()));
ASSERT_EQ(0, sock_->Read(nullptr, 1, CompletionOnceCallback()));
ASSERT_EQ(0, sock_->Read(nullptr, 1, CompletionOnceCallback()));
ASSERT_FALSE(sock_->IsConnectedAndIdle());
}
// Read pending when socket is closed should return 0
TEST_P(QuicProxyClientSocketTest, PendingReadOnCloseReturnsZero) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
mock_quic_data_.AddRead(ASYNC, ERR_CONNECTION_CLOSED);
Initialize();
AssertConnectSucceeds();
AssertReadStarts(kMsg1, kLen1);
ResumeAndRun();
ASSERT_EQ(0, read_callback_.WaitForResult());
}
// Reading from a disconnected socket is an error
TEST_P(QuicProxyClientSocketTest, ReadOnDisconnectSocketReturnsNotConnected) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
AssertConnectSucceeds();
sock_->Disconnect();
ASSERT_EQ(ERR_SOCKET_NOT_CONNECTED,
sock_->Read(nullptr, 1, CompletionOnceCallback()));
}
// Reading data after receiving FIN should return buffered data received before
// FIN, then 0.
TEST_P(QuicProxyClientSocketTest, ReadAfterFinReceivedReturnsBufferedData) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(ASYNC, ConstructServerDataFinPacket(
2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(packet_number++, quic::QUIC_STREAM_CANCELLED));
Initialize();
AssertConnectSucceeds();
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
ASSERT_EQ(0, sock_->Read(nullptr, 1, CompletionOnceCallback()));
ASSERT_EQ(0, sock_->Read(nullptr, 1, CompletionOnceCallback()));
sock_->Disconnect();
ASSERT_EQ(ERR_SOCKET_NOT_CONNECTED,
sock_->Read(nullptr, 1, CompletionOnceCallback()));
}
// Calling Write() on a closed socket is an error.
TEST_P(QuicProxyClientSocketTest, WriteOnClosedStream) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
mock_quic_data_.AddRead(ASYNC, ERR_CONNECTION_CLOSED);
Initialize();
AssertConnectSucceeds();
ResumeAndRun();
AssertWriteReturns(kMsg1, kLen1, ERR_QUIC_PROTOCOL_ERROR);
}
// Calling Write() on a disconnected socket is an error.
TEST_P(QuicProxyClientSocketTest, WriteOnDisconnectedSocket) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
AssertConnectSucceeds();
sock_->Disconnect();
AssertWriteReturns(kMsg1, kLen1, ERR_SOCKET_NOT_CONNECTED);
}
// If the socket is closed with a pending Write(), the callback should be called
// with the same error the session was closed with.
TEST_P(QuicProxyClientSocketTest, WritePendingOnClose) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(SYNCHRONOUS, ERR_IO_PENDING);
Initialize();
AssertConnectSucceeds();
// QuicChromiumClientStream::Handle::WriteStreamData() will only be
// asynchronous starting with the second time it's called while the UDP socket
// is write-blocked. Therefore, at least two writes need to be called on
// |sock_| to get an asynchronous one.
AssertWriteReturns(kMsg1, kLen1, kLen1);
// This second write will be async. This is the pending write that's being
// tested.
AssertWriteReturns(kMsg1, kLen1, ERR_IO_PENDING);
// Make sure the write actually starts.
base::RunLoop().RunUntilIdle();
session_->CloseSessionOnError(ERR_CONNECTION_CLOSED,
quic::QUIC_INTERNAL_ERROR,
quic::ConnectionCloseBehavior::SILENT_CLOSE);
EXPECT_THAT(write_callback_.WaitForResult(), IsError(ERR_CONNECTION_CLOSED));
}
TEST_P(QuicProxyClientSocketTest, DisconnectWithWritePending) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(SYNCHRONOUS, ERR_IO_PENDING);
Initialize();
AssertConnectSucceeds();
// QuicChromiumClientStream::Handle::WriteStreamData() will only be
// asynchronous starting with the second time it's called while the UDP socket
// is write-blocked. Therefore, at least two writes need to be called on
// |sock_| to get an asynchronous one.
AssertWriteReturns(kMsg1, kLen1, kLen1);
// This second write will be async. This is the pending write that's being
// tested.
AssertWriteReturns(kMsg1, kLen1, ERR_IO_PENDING);
// Make sure the write actually starts.
base::RunLoop().RunUntilIdle();
sock_->Disconnect();
EXPECT_FALSE(sock_->IsConnected());
base::RunLoop().RunUntilIdle();
EXPECT_FALSE(sock_->IsConnected());
EXPECT_FALSE(write_callback_.have_result());
}
// If the socket is Disconnected with a pending Read(), the callback
// should not be called.
TEST_P(QuicProxyClientSocketTest, DisconnectWithReadPending) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstPacket(packet_number++,
quic::QUIC_STREAM_CANCELLED, 1, 1));
Initialize();
AssertConnectSucceeds();
EXPECT_TRUE(sock_->IsConnected());
AssertReadStarts(kMsg1, kLen1);
sock_->Disconnect();
EXPECT_FALSE(sock_->IsConnected());
base::RunLoop().RunUntilIdle();
EXPECT_FALSE(sock_->IsConnected());
EXPECT_FALSE(read_callback_.have_result());
}
// If the socket is Reset when both a read and write are pending,
// both should be called back.
TEST_P(QuicProxyClientSocketTest, RstWithReadAndWritePending) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
mock_quic_data_.AddRead(
ASYNC, ConstructServerRstPacket(2, quic::QUIC_STREAM_CANCELLED));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
std::string header = ConstructDataHeader(kLen2);
if (!version_.HasIetfQuicFrames()) {
mock_quic_data_.AddWrite(
ASYNC, ConstructAckAndDataPacket(packet_number++, 1, 1,
std::string(kMsg2, kLen2)));
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructAckAndRstPacket(packet_number++,
quic::QUIC_RST_ACKNOWLEDGEMENT, 2, 2));
} else {
mock_quic_data_.AddWrite(
ASYNC, ConstructAckAndDataPacket(packet_number++, 1, 1,
{header + std::string(kMsg2, kLen2)}));
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstOnlyPacket(
packet_number++, quic::QUIC_STREAM_CANCELLED, 2, 2));
}
Initialize();
AssertConnectSucceeds();
EXPECT_TRUE(sock_->IsConnected());
AssertReadStarts(kMsg1, kLen1);
// Write should block until the next read completes.
// QuicChromiumClientStream::Handle::WriteStreamData() will only be
// asynchronous starting with the second time it's called while the UDP socket
// is write-blocked. Therefore, at least two writes need to be called on
// |sock_| to get an asynchronous one.
AssertWriteReturns(kMsg2, kLen2, kLen2);
AssertWriteReturns(kMsg2, kLen2, ERR_IO_PENDING);
ResumeAndRun();
EXPECT_TRUE(read_callback_.have_result());
EXPECT_TRUE(write_callback_.have_result());
}
// Makes sure the proxy client socket's source gets the expected NetLog events
// and only the expected NetLog events (No SpdySession events).
TEST_P(QuicProxyClientSocketTest, NetLog) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddRead(
ASYNC, ConstructServerDataPacket(2, header + std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructAckPacket(packet_number++, 2, 1));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructRstPacket(packet_number++, quic::QUIC_STREAM_CANCELLED));
Initialize();
AssertConnectSucceeds();
ResumeAndRun();
AssertSyncReadEquals(kMsg1, kLen1);
NetLogSource sock_source = sock_->NetLog().source();
sock_.reset();
auto entry_list = net_log_.GetEntriesForSource(sock_source);
ASSERT_EQ(entry_list.size(), 10u);
EXPECT_TRUE(
LogContainsBeginEvent(entry_list, 0, NetLogEventType::SOCKET_ALIVE));
EXPECT_TRUE(LogContainsEvent(entry_list, 1,
NetLogEventType::HTTP2_PROXY_CLIENT_SESSION,
NetLogEventPhase::NONE));
EXPECT_TRUE(LogContainsBeginEvent(
entry_list, 2, NetLogEventType::HTTP_TRANSACTION_TUNNEL_SEND_REQUEST));
EXPECT_TRUE(LogContainsEvent(
entry_list, 3, NetLogEventType::HTTP_TRANSACTION_SEND_TUNNEL_HEADERS,
NetLogEventPhase::NONE));
EXPECT_TRUE(LogContainsEndEvent(
entry_list, 4, NetLogEventType::HTTP_TRANSACTION_TUNNEL_SEND_REQUEST));
EXPECT_TRUE(LogContainsBeginEvent(
entry_list, 5, NetLogEventType::HTTP_TRANSACTION_TUNNEL_READ_HEADERS));
EXPECT_TRUE(LogContainsEvent(
entry_list, 6,
NetLogEventType::HTTP_TRANSACTION_READ_TUNNEL_RESPONSE_HEADERS,
NetLogEventPhase::NONE));
EXPECT_TRUE(LogContainsEndEvent(
entry_list, 7, NetLogEventType::HTTP_TRANSACTION_TUNNEL_READ_HEADERS));
EXPECT_TRUE(LogContainsEvent(entry_list, 8,
NetLogEventType::SOCKET_BYTES_RECEIVED,
NetLogEventPhase::NONE));
EXPECT_TRUE(
LogContainsEndEvent(entry_list, 9, NetLogEventType::SOCKET_ALIVE));
}
// A helper class that will delete |sock| when the callback is invoked.
class DeleteSockCallback : public TestCompletionCallbackBase {
public:
explicit DeleteSockCallback(std::unique_ptr<QuicProxyClientSocket>* sock)
: sock_(sock) {}
~DeleteSockCallback() override {}
CompletionOnceCallback callback() {
return base::BindOnce(&DeleteSockCallback::OnComplete,
base::Unretained(this));
}
private:
void OnComplete(int result) {
sock_->reset(nullptr);
SetResult(result);
}
std::unique_ptr<QuicProxyClientSocket>* sock_;
DISALLOW_COPY_AND_ASSIGN(DeleteSockCallback);
};
// If the socket is reset when both a read and write are pending, and the
// read callback causes the socket to be deleted, the write callback should
// not be called.
TEST_P(QuicProxyClientSocketTest, RstWithReadAndWritePendingDelete) {
int packet_number = 1;
if (VersionUsesHttp3(version_.transport_version)) {
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructSettingsPacket(packet_number++));
}
mock_quic_data_.AddWrite(SYNCHRONOUS,
ConstructConnectRequestPacket(packet_number++));
mock_quic_data_.AddRead(ASYNC, ConstructServerConnectReplyPacket(1, !kFin));
mock_quic_data_.AddRead(ASYNC, ERR_IO_PENDING); // Pause
mock_quic_data_.AddRead(
ASYNC, ConstructServerRstPacket(2, quic::QUIC_STREAM_CANCELLED));
mock_quic_data_.AddRead(SYNCHRONOUS, ERR_IO_PENDING);
if (!version_.HasIetfQuicFrames()) {
mock_quic_data_.AddWrite(
ASYNC, ConstructAckAndDataPacket(packet_number++, 1, 1,
std::string(kMsg1, kLen1)));
mock_quic_data_.AddWrite(
SYNCHRONOUS,
ConstructAckAndRstPacket(packet_number++,
quic::QUIC_RST_ACKNOWLEDGEMENT, 2, 2));
} else {
std::string header = ConstructDataHeader(kLen1);
mock_quic_data_.AddWrite(
ASYNC, ConstructAckAndDataPacket(packet_number++, 1, 1,
{header + std::string(kMsg1, kLen1)}));
mock_quic_data_.AddWrite(
SYNCHRONOUS, ConstructAckAndRstOnlyPacket(
packet_number++, quic::QUIC_STREAM_CANCELLED, 2, 2));
}
Initialize();
AssertConnectSucceeds();
EXPECT_TRUE(sock_->IsConnected());
DeleteSockCallback read_callback(&sock_);
scoped_refptr<IOBuffer> read_buf = base::MakeRefCounted<IOBuffer>(kLen1);
ASSERT_EQ(ERR_IO_PENDING,
sock_->Read(read_buf.get(), kLen1, read_callback.callback()));
// QuicChromiumClientStream::Handle::WriteStreamData() will only be
// asynchronous starting with the second time it's called while the UDP socket
// is write-blocked. Therefore, at least two writes need to be called on
// |sock_| to get an asynchronous one.
AssertWriteReturns(kMsg1, kLen1, kLen1);
AssertWriteReturns(kMsg1, kLen1, ERR_IO_PENDING);
ResumeAndRun();
EXPECT_FALSE(sock_.get());
EXPECT_EQ(0, read_callback.WaitForResult());
EXPECT_FALSE(write_callback_.have_result());
}
INSTANTIATE_TEST_SUITE_P(VersionIncludeStreamDependencySequence,
QuicProxyClientSocketTest,
::testing::ValuesIn(GetTestParams()),
::testing::PrintToStringParamName());
} // namespace test
} // namespace net