blob: ab5059f05fb1d70e1c2b52f79f001ed720be0656 [file] [log] [blame]
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "core/timing/MemoryInfo.h"
#include <limits>
#include "base/macros.h"
#include "core/frame/LocalFrame.h"
#include "core/frame/Settings.h"
#include "platform/runtime_enabled_features.h"
#include "platform/wtf/MathExtras.h"
#include "platform/wtf/ThreadSpecific.h"
#include "platform/wtf/Time.h"
#include "v8/include/v8.h"
namespace blink {
static const double kTwentyMinutesInSeconds = 20 * 60;
static void GetHeapSize(HeapInfo& info) {
v8::HeapStatistics heap_statistics;
v8::Isolate::GetCurrent()->GetHeapStatistics(&heap_statistics);
info.used_js_heap_size = heap_statistics.used_heap_size();
info.total_js_heap_size = heap_statistics.total_physical_size();
info.js_heap_size_limit = heap_statistics.heap_size_limit();
}
class HeapSizeCache {
USING_FAST_MALLOC(HeapSizeCache);
public:
HeapSizeCache()
: last_update_time_(CurrentTimeTicksInSeconds() -
kTwentyMinutesInSeconds) {}
void GetCachedHeapSize(HeapInfo& info) {
MaybeUpdate();
info = info_;
}
static HeapSizeCache& ForCurrentThread() {
DEFINE_THREAD_SAFE_STATIC_LOCAL(ThreadSpecific<HeapSizeCache>,
heap_size_cache, ());
return *heap_size_cache;
}
private:
void MaybeUpdate() {
// We rate-limit queries to once every twenty minutes to make it more
// difficult for attackers to compare memory usage before and after some
// event.
double now = CurrentTimeTicksInSeconds();
if (now - last_update_time_ >= kTwentyMinutesInSeconds) {
Update();
last_update_time_ = now;
}
}
void Update() {
GetHeapSize(info_);
info_.used_js_heap_size = QuantizeMemorySize(info_.used_js_heap_size);
info_.total_js_heap_size = QuantizeMemorySize(info_.total_js_heap_size);
info_.js_heap_size_limit = QuantizeMemorySize(info_.js_heap_size_limit);
}
double last_update_time_;
HeapInfo info_;
DISALLOW_COPY_AND_ASSIGN(HeapSizeCache);
};
// We quantize the sizes to make it more difficult for an attacker to see
// precise impact of operations on memory. The values are used for performance
// tuning, and hence don't need to be as refined when the value is large, so we
// threshold at a list of exponentially separated buckets.
size_t QuantizeMemorySize(size_t size) {
const int kNumberOfBuckets = 100;
DEFINE_STATIC_LOCAL(Vector<size_t>, bucket_size_list, ());
if (bucket_size_list.IsEmpty()) {
bucket_size_list.resize(kNumberOfBuckets);
float size_of_next_bucket =
10000000.0; // First bucket size is roughly 10M.
const float kLargestBucketSize = 4000000000.0; // Roughly 4GB.
// We scale with the Nth root of the ratio, so that we use all the bucktes.
const float scaling_factor =
exp(log(kLargestBucketSize / size_of_next_bucket) / kNumberOfBuckets);
size_t next_power_of_ten = static_cast<size_t>(
pow(10, floor(log10(size_of_next_bucket)) + 1) + 0.5);
size_t granularity =
next_power_of_ten / 1000; // We want 3 signficant digits.
for (int i = 0; i < kNumberOfBuckets; ++i) {
size_t current_bucket_size = static_cast<size_t>(size_of_next_bucket);
bucket_size_list[i] =
current_bucket_size - (current_bucket_size % granularity);
size_of_next_bucket *= scaling_factor;
if (size_of_next_bucket >= next_power_of_ten) {
if (std::numeric_limits<size_t>::max() / 10 <= next_power_of_ten) {
next_power_of_ten = std::numeric_limits<size_t>::max();
} else {
next_power_of_ten *= 10;
granularity *= 10;
}
}
// Watch out for overflow, if the range is too large for size_t.
if (i > 0 && bucket_size_list[i] < bucket_size_list[i - 1])
bucket_size_list[i] = std::numeric_limits<size_t>::max();
}
}
for (int i = 0; i < kNumberOfBuckets; ++i) {
if (size <= bucket_size_list[i])
return bucket_size_list[i];
}
return bucket_size_list[kNumberOfBuckets - 1];
}
MemoryInfo::MemoryInfo() {
if (RuntimeEnabledFeatures::PreciseMemoryInfoEnabled())
GetHeapSize(info_);
else
HeapSizeCache::ForCurrentThread().GetCachedHeapSize(info_);
}
} // namespace blink