blob: dcf839faa0953b5eee3b4ef6416ed805e4634d1b [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <memory>
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/numerics/math_constants.h"
#include "base/strings/string_number_conversions.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "media/base/sinc_resampler.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using testing::_;
namespace media {
static const double kSampleRateRatio = 192000.0 / 44100.0;
// Helper class to ensure ChunkedResample() functions properly.
class MockSource {
public:
MOCK_METHOD2(ProvideInput, void(int frames, float* destination));
};
ACTION(ClearBuffer) {
memset(arg1, 0, arg0 * sizeof(float));
}
ACTION(FillBuffer) {
// Value chosen arbitrarily such that SincResampler resamples it to something
// easily representable on all platforms; e.g., using kSampleRateRatio this
// becomes 1.81219.
memset(arg1, 64, arg0 * sizeof(float));
}
// Test requesting multiples of ChunkSize() frames results in the proper number
// of callbacks.
TEST(SincResamplerTest, ChunkedResample) {
MockSource mock_source;
// Choose a high ratio of input to output samples which will result in quick
// exhaustion of SincResampler's internal buffers.
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
static const int kChunks = 2;
int max_chunk_size = resampler.ChunkSize() * kChunks;
std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]);
// Verify requesting ChunkSize() frames causes a single callback.
EXPECT_CALL(mock_source, ProvideInput(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
// Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, ProvideInput(_, _))
.Times(kChunks)
.WillRepeatedly(ClearBuffer());
resampler.Resample(max_chunk_size, resampled_destination.get());
}
// Verify priming the resampler avoids changes to ChunkSize() between calls.
TEST(SincResamplerTest, PrimedResample) {
MockSource mock_source;
// Choose a high ratio of input to output samples which will result in quick
// exhaustion of SincResampler's internal buffers.
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
// Verify the priming adjusts the chunk size within reasonable limits.
const int first_chunk_size = resampler.ChunkSize();
resampler.PrimeWithSilence();
const int max_chunk_size = resampler.ChunkSize();
EXPECT_NE(first_chunk_size, max_chunk_size);
EXPECT_LE(
max_chunk_size,
static_cast<int>(first_chunk_size + std::ceil(resampler.KernelSize() /
(2 * kSampleRateRatio))));
// Verify Flush() resets to an unprimed state.
resampler.Flush();
EXPECT_EQ(first_chunk_size, resampler.ChunkSize());
resampler.PrimeWithSilence();
EXPECT_EQ(max_chunk_size, resampler.ChunkSize());
const int kChunks = 2;
const int kMaxFrames = max_chunk_size * kChunks;
std::unique_ptr<float[]> resampled_destination(new float[kMaxFrames]);
// Verify requesting ChunkSize() frames causes a single callback.
EXPECT_CALL(mock_source, ProvideInput(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(max_chunk_size, resampled_destination.get());
EXPECT_EQ(max_chunk_size, resampler.ChunkSize());
// Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, ProvideInput(_, _))
.Times(kChunks)
.WillRepeatedly(ClearBuffer());
resampler.Resample(kMaxFrames, resampled_destination.get());
EXPECT_EQ(max_chunk_size, resampler.ChunkSize());
}
// Test flush resets the internal state properly.
TEST(SincResamplerTest, Flush) {
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
std::unique_ptr<float[]> resampled_destination(
new float[resampler.ChunkSize()]);
// Fill the resampler with junk data.
EXPECT_CALL(mock_source, ProvideInput(_, _)).Times(1).WillOnce(FillBuffer());
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
ASSERT_NE(resampled_destination[0], 0);
// Flush and request more data, which should all be zeros now.
resampler.Flush();
testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, ProvideInput(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
for (int i = 0; i < resampler.ChunkSize() / 2; ++i) {
ASSERT_FLOAT_EQ(resampled_destination[i], 0);
}
}
TEST(SincResamplerTest, DISABLED_SetRatioBench) {
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
base::TimeTicks start = base::TimeTicks::Now();
for (int i = 1; i < 10000; ++i) {
resampler.SetRatio(1.0 / i);
}
double total_time_c_ms = (base::TimeTicks::Now() - start).InMillisecondsF();
printf("SetRatio() took %.2fms.\n", total_time_c_ms);
}
// Ensure various optimized Convolve() methods return the same value. Only run
// this test if other optimized methods exist, otherwise the default Convolve()
// will be tested by the parameterized SincResampler tests below.
static const double kKernelInterpolationFactor = 0.5;
TEST(SincResamplerTest, Convolve) {
// Initialize a dummy resampler.
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
// The optimized Convolve methods are slightly more precise than Convolve_C(),
// so comparison must be done using an epsilon.
static const double kEpsilon = 0.00000005;
// Use a kernel from SincResampler as input and kernel data, this has the
// benefit of already being properly sized and aligned for Convolve_SSE().
double result = resampler.Convolve_C(
resampler.KernelSize(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
kKernelInterpolationFactor);
double result2 = resampler.convolve_proc_(
resampler.KernelSize(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
kKernelInterpolationFactor);
EXPECT_NEAR(result2, result, kEpsilon);
// Test Convolve() w/ unaligned input pointer.
result = resampler.Convolve_C(
resampler.KernelSize(), resampler.kernel_storage_.get() + 1,
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
kKernelInterpolationFactor);
result2 = resampler.convolve_proc_(
resampler.KernelSize(), resampler.kernel_storage_.get() + 1,
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
kKernelInterpolationFactor);
EXPECT_NEAR(result2, result, kEpsilon);
}
// Fake audio source for testing the resampler. Generates a sinusoidal linear
// chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the
// resampler for the specific sample rate conversion being used.
class SinusoidalLinearChirpSource {
public:
SinusoidalLinearChirpSource(int sample_rate,
int samples,
double max_frequency)
: sample_rate_(sample_rate),
total_samples_(samples),
max_frequency_(max_frequency),
current_index_(0) {
// Chirp rate.
double duration = static_cast<double>(total_samples_) / sample_rate_;
k_ = (max_frequency_ - kMinFrequency) / duration;
}
SinusoidalLinearChirpSource(const SinusoidalLinearChirpSource&) = delete;
SinusoidalLinearChirpSource& operator=(const SinusoidalLinearChirpSource&) =
delete;
virtual ~SinusoidalLinearChirpSource() = default;
void ProvideInput(int frames, float* destination) {
for (int i = 0; i < frames; ++i, ++current_index_) {
// Filter out frequencies higher than Nyquist.
if (Frequency(current_index_) > 0.5 * sample_rate_) {
destination[i] = 0;
} else {
// Calculate time in seconds.
double t = static_cast<double>(current_index_) / sample_rate_;
// Sinusoidal linear chirp.
destination[i] =
sin(2 * base::kPiDouble * (kMinFrequency * t + (k_ / 2) * t * t));
}
}
}
double Frequency(int position) {
return kMinFrequency +
position * (max_frequency_ - kMinFrequency) / total_samples_;
}
private:
static constexpr int kMinFrequency = 5;
double sample_rate_;
int total_samples_;
double max_frequency_;
double k_;
int current_index_;
};
typedef std::tuple<int, int, double, double, double> SincResamplerTestData;
class SincResamplerTest : public testing::TestWithParam<SincResamplerTestData> {
public:
SincResamplerTest()
: input_rate_(std::get<0>(GetParam())),
output_rate_(std::get<1>(GetParam())),
rms_error_(std::get<2>(GetParam())),
low_freq_error_(std::get<3>(GetParam())),
high_freq_error_(std::get<4>(GetParam())) {}
virtual ~SincResamplerTest() = default;
protected:
int input_rate_;
int output_rate_;
double rms_error_;
double low_freq_error_;
double high_freq_error_;
};
// Tests resampling using a given input and output sample rate.
TEST_P(SincResamplerTest, Resample) {
// Make comparisons using one second of data.
static const double kTestDurationSecs = 1;
int input_samples = kTestDurationSecs * input_rate_;
int output_samples = kTestDurationSecs * output_rate_;
// Nyquist frequency for the input sampling rate.
double input_nyquist_freq = 0.5 * input_rate_;
// Source for data to be resampled.
SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
input_nyquist_freq);
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
SincResampler resampler(
io_ratio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&SinusoidalLinearChirpSource::ProvideInput,
base::Unretained(&resampler_source)));
const int kernel_storage_size = resampler.kernel_storage_size_for_testing();
const int kernel_storage_size_in_bytes = kernel_storage_size * sizeof(float);
// Force an update to the sample rate ratio to ensure dynamic sample rate
// changes are working correctly.
std::unique_ptr<float[]> kernel(new float[kernel_storage_size]);
memcpy(kernel.get(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes);
resampler.SetRatio(base::kPiDouble);
ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes));
resampler.SetRatio(io_ratio);
ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes));
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
std::unique_ptr<float[]> pure_destination(new float[output_samples]);
// Generate resampled signal.
resampler.Resample(output_samples, resampled_destination.get());
// Generate pure signal.
SinusoidalLinearChirpSource pure_source(output_rate_, output_samples,
input_nyquist_freq);
pure_source.ProvideInput(output_samples, pure_destination.get());
// Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
// we refer to as low and high.
static const double kLowFrequencyNyquistRange = 0.7;
static const double kHighFrequencyNyquistRange = 0.9;
// Calculate Root-Mean-Square-Error and maximum error for the resampling.
double sum_of_squares = 0;
double low_freq_max_error = 0;
double high_freq_max_error = 0;
int minimum_rate = std::min(input_rate_, output_rate_);
double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
for (int i = 0; i < output_samples; ++i) {
double error = fabs(resampled_destination[i] - pure_destination[i]);
if (pure_source.Frequency(i) < low_frequency_range) {
if (error > low_freq_max_error) {
low_freq_max_error = error;
}
} else if (pure_source.Frequency(i) < high_frequency_range) {
if (error > high_freq_max_error) {
high_freq_max_error = error;
}
}
// TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
sum_of_squares += error * error;
}
double rms_error = sqrt(sum_of_squares / output_samples);
// Convert each error to dbFS.
#define DBFS(x) 20 * log10(x)
rms_error = DBFS(rms_error);
low_freq_max_error = DBFS(low_freq_max_error);
high_freq_max_error = DBFS(high_freq_max_error);
EXPECT_LE(rms_error, rms_error_);
EXPECT_LE(low_freq_max_error, low_freq_error_);
EXPECT_LE(high_freq_max_error, high_freq_error_);
}
// Tests resampling using a given input and output sample rate, and a small
// kernel size.
TEST_P(SincResamplerTest, Resample_SmallKernel) {
// Make comparisons using one second of data.
static const double kTestDurationSecs = 1;
int input_samples = kTestDurationSecs * input_rate_;
int output_samples = kTestDurationSecs * output_rate_;
// Nyquist frequency for the input sampling rate.
double input_nyquist_freq = 0.5 * input_rate_;
// Source for data to be resampled.
SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
input_nyquist_freq);
constexpr int kSmallKernelLimit = SincResampler::kMaxKernelSize * 3 / 2;
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
SincResampler resampler(
io_ratio, kSmallKernelLimit,
base::BindRepeating(&SinusoidalLinearChirpSource::ProvideInput,
base::Unretained(&resampler_source)));
EXPECT_EQ(resampler.KernelSize(), SincResampler::kMinKernelSize);
const int kernel_storage_size = resampler.kernel_storage_size_for_testing();
const int kernel_storage_size_in_bytes = kernel_storage_size * sizeof(float);
// Force an update to the sample rate ratio to ensure dynamic sample rate
// changes are working correctly.
std::unique_ptr<float[]> kernel(new float[kernel_storage_size]);
memcpy(kernel.get(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes);
resampler.SetRatio(base::kPiDouble);
ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes));
resampler.SetRatio(io_ratio);
ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes));
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
std::unique_ptr<float[]> pure_destination(new float[output_samples]);
// Generate resampled signal.
resampler.Resample(output_samples, resampled_destination.get());
// Do not check for the maximum error range for the small kernel size,
// as there is already quite a bit of test data. This test is only meant to
// exercise code paths, not ensure quality.
}
// Thresholds chosen arbitrarily based on what each resampling reported during
// testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
// Almost all conversions have an RMS error of around -15 dbFS and have a high
// frequency error around -12 dbFS.
static const double kRMSMaxError = -14.94;
static const double kHighFreqMaxError = -12.09;
INSTANTIATE_TEST_SUITE_P(
SincResamplerTest,
SincResamplerTest,
testing::Values(
// To 16kHz
std::make_tuple(8000, 16000, kRMSMaxError, -69.26, kHighFreqMaxError),
std::make_tuple(11025, 16000, kRMSMaxError, -63.97, kHighFreqMaxError),
// The low freq error of -85.28 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(16000, 16000, kRMSMaxError, -85.26, kHighFreqMaxError),
std::make_tuple(22050, 16000, -16.77, -67.98, -10.35),
std::make_tuple(32000, 16000, -19.17, -75.00, -8.82),
std::make_tuple(44100, 16000, -20.26, -62.40, -7.89),
std::make_tuple(48000, 16000, -21.05, -53.22, -7.93),
std::make_tuple(96000, 16000, -23.20, -19.97, -6.98),
std::make_tuple(192000, 16000, -24.28, -11.57, -6.60),
// To 32kHz
std::make_tuple(8000, 32000, kRMSMaxError, -69.26, kHighFreqMaxError),
std::make_tuple(11025, 32000, kRMSMaxError, -63.97, kHighFreqMaxError),
std::make_tuple(16000, 32000, kRMSMaxError, -75.28, kHighFreqMaxError),
std::make_tuple(22050, 32000, kRMSMaxError, -63.82, kHighFreqMaxError),
// The low freq error of -85.25 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(32000, 32000, kRMSMaxError, -85.24, kHighFreqMaxError),
std::make_tuple(44100, 32000, -16.78, -67.79, -10.20),
// The low freq error of -79.11 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(48000, 32000, -17.44, -79.10, -9.73),
std::make_tuple(96000, 32000, -20.73, -52.60, -7.87),
std::make_tuple(192000, 32000, -23.67, -20.00, -6.91),
// To 44.1kHz
std::make_tuple(8000, 44100, kRMSMaxError, -63.85, kHighFreqMaxError),
std::make_tuple(11025, 44100, kRMSMaxError, -72.04, kHighFreqMaxError),
// The low freq error of -63.78 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(16000, 44100, kRMSMaxError, -63.77, kHighFreqMaxError),
std::make_tuple(22050, 44100, kRMSMaxError, -78.06, kHighFreqMaxError),
std::make_tuple(32000, 44100, kRMSMaxError, -64.06, kHighFreqMaxError),
// The low freq error of -85.24 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(44100, 44100, kRMSMaxError, -85.22, kHighFreqMaxError),
std::make_tuple(48000, 44100, -15.31, -65.58, -11.50),
std::make_tuple(96000, 44100, -19.14, -73.16, -8.50),
std::make_tuple(192000, 44100, -22.24, -28.92, -7.20),
// To 48kHz
std::make_tuple(8000, 48000, kRMSMaxError, -64.79, kHighFreqMaxError),
std::make_tuple(11025, 48000, kRMSMaxError, -63.84, kHighFreqMaxError),
std::make_tuple(16000, 48000, kRMSMaxError, -64.93, kHighFreqMaxError),
std::make_tuple(22050, 48000, kRMSMaxError, -63.72, kHighFreqMaxError),
std::make_tuple(32000, 48000, kRMSMaxError, -64.96, kHighFreqMaxError),
std::make_tuple(44100, 48000, kRMSMaxError, -64.13, kHighFreqMaxError),
// The low freq error of -85.25 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(48000, 48000, kRMSMaxError, -85.24, kHighFreqMaxError),
std::make_tuple(96000, 48000, -19.05, -75.32, -8.73),
std::make_tuple(192000, 48000, -22.10, -32.36, -7.28),
// To 96kHz
std::make_tuple(8000, 96000, kRMSMaxError, -64.64, kHighFreqMaxError),
std::make_tuple(11025, 96000, kRMSMaxError, -63.84, kHighFreqMaxError),
std::make_tuple(16000, 96000, kRMSMaxError, -64.75, kHighFreqMaxError),
std::make_tuple(22050, 96000, kRMSMaxError, -63.72, kHighFreqMaxError),
std::make_tuple(32000, 96000, kRMSMaxError, -64.92, kHighFreqMaxError),
std::make_tuple(44100, 96000, kRMSMaxError, -64.04, kHighFreqMaxError),
std::make_tuple(48000, 96000, kRMSMaxError, -84.82, kHighFreqMaxError),
std::make_tuple(96000, 96000, kRMSMaxError, -85.24, kHighFreqMaxError),
std::make_tuple(192000, 96000, -19.01, -75.30, -8.71),
// To 192kHz
std::make_tuple(8000, 192000, kRMSMaxError, -64.63, kHighFreqMaxError),
std::make_tuple(11025, 192000, kRMSMaxError, -63.84, kHighFreqMaxError),
std::make_tuple(16000, 192000, kRMSMaxError, -64.61, kHighFreqMaxError),
std::make_tuple(22050, 192000, kRMSMaxError, -63.72, kHighFreqMaxError),
std::make_tuple(32000, 192000, kRMSMaxError, -64.74, kHighFreqMaxError),
std::make_tuple(44100, 192000, kRMSMaxError, -63.85, kHighFreqMaxError),
std::make_tuple(48000, 192000, kRMSMaxError, -84.82, kHighFreqMaxError),
std::make_tuple(96000, 192000, kRMSMaxError, -85.24, kHighFreqMaxError),
std::make_tuple(192000,
192000,
kRMSMaxError,
-85.24,
kHighFreqMaxError)));
// Verify the resampler properly reports the max number of input frames it would
// request.
TEST(SincResamplerTest, GetMaxInputFramesRequestedTest) {
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
SincResampler::ReadCB());
EXPECT_EQ(SincResampler::kDefaultRequestSize,
resampler.GetMaxInputFramesRequested(resampler.ChunkSize()));
// Request sizes smaller than ChunkSize should still trigger 1 read.
EXPECT_EQ(SincResampler::kDefaultRequestSize,
resampler.GetMaxInputFramesRequested(resampler.ChunkSize() - 10));
// Request sizes bigger than ChunkSize can trigger multiple reads.
EXPECT_EQ(2 * SincResampler::kDefaultRequestSize,
resampler.GetMaxInputFramesRequested(resampler.ChunkSize() + 10));
// The number of input frames requested should grow proportionally to the
// output frames requested.
EXPECT_EQ(
5 * SincResampler::kDefaultRequestSize,
resampler.GetMaxInputFramesRequested(4 * resampler.ChunkSize() + 10));
const int kCustomRequestSize = SincResampler::kDefaultRequestSize + 128;
SincResampler custom_size_resampler(kSampleRateRatio, kCustomRequestSize,
SincResampler::ReadCB());
// The input frames requested should be a multiple of the request size.
EXPECT_EQ(2 * kCustomRequestSize,
custom_size_resampler.GetMaxInputFramesRequested(
custom_size_resampler.ChunkSize() + 10));
// Verify we get results with both downsampling and upsampling ratios.
SincResampler inverse_ratio_resampler(1.0 / kSampleRateRatio,
SincResampler::kDefaultRequestSize,
SincResampler::ReadCB());
EXPECT_EQ(2 * SincResampler::kDefaultRequestSize,
inverse_ratio_resampler.GetMaxInputFramesRequested(
inverse_ratio_resampler.ChunkSize() + 10));
}
class SincResamplerKernelSizeTest : public testing::Test {
public:
SincResamplerKernelSizeTest() = default;
~SincResamplerKernelSizeTest() override = default;
};
TEST_F(SincResamplerKernelSizeTest, KernelSizes) {
constexpr float kTestIoRatio = 2.0;
// Default case.
{
EXPECT_EQ(SincResampler::KernelSizeFromRequestFrames(
SincResampler::kDefaultRequestSize),
SincResampler::kMaxKernelSize);
SincResampler default_request_resampler(
kTestIoRatio, SincResampler::kDefaultRequestSize, base::DoNothing());
EXPECT_EQ(default_request_resampler.KernelSize(),
SincResampler::kMaxKernelSize);
}
constexpr int kSmallKernelLimit = SincResampler::kMaxKernelSize * 3 / 2;
// Smallest request size allowed for SincResampler::kMaxKernelSize.
{
EXPECT_EQ(SincResampler::KernelSizeFromRequestFrames(kSmallKernelLimit + 1),
SincResampler::kMaxKernelSize);
SincResampler limit_request_resampler(kTestIoRatio, kSmallKernelLimit + 1,
base::DoNothing());
EXPECT_EQ(limit_request_resampler.KernelSize(),
SincResampler::kMaxKernelSize);
}
// Smaller request, forcing a smaller kernel.
{
EXPECT_EQ(SincResampler::KernelSizeFromRequestFrames(kSmallKernelLimit),
SincResampler::kMinKernelSize);
SincResampler small_request_resampler(kTestIoRatio, kSmallKernelLimit,
base::DoNothing());
EXPECT_EQ(small_request_resampler.KernelSize(),
SincResampler::kMinKernelSize);
}
// Smallest valid request size.
{
constexpr int kSmallestRequestFrames =
SincResampler::kMinKernelSize * 3 / 2 + 1;
EXPECT_EQ(
SincResampler::KernelSizeFromRequestFrames(kSmallestRequestFrames),
SincResampler::kMinKernelSize);
SincResampler smallest_request_resampler(
kTestIoRatio, kSmallestRequestFrames, base::DoNothing());
EXPECT_EQ(smallest_request_resampler.KernelSize(),
SincResampler::kMinKernelSize);
}
}
} // namespace media