| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "courgette/disassembler_elf_32_arm.h" |
| |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "base/logging.h" |
| #include "courgette/assembly_program.h" |
| #include "courgette/courgette.h" |
| |
| namespace courgette { |
| |
| CheckBool DisassemblerElf32ARM::Compress(ARM_RVA type, |
| uint32_t arm_op, |
| RVA rva, |
| uint16_t* c_op, |
| uint32_t* addr) { |
| // Notation for bit ranges in comments: |
| // - Listing bits from highest to lowest. |
| // - A-Z or (j1), (j2), etc.: single bit in source. |
| // - a-z: multiple, consecutive bits in source. |
| switch (type) { |
| case ARM_OFF8: { |
| // Encoding T1. |
| // The offset is given by lower 8 bits of the op. It is a 9-bit offset, |
| // shifted right 1 bit, and signed extended. |
| // arm_op = aaaaaaaa Snnnnnnn |
| // *addr := SSSSSSSS SSSSSSSS SSSSSSSS nnnnnnn0 + 100 |
| // *c_op := 00010000 aaaaaaaa |
| uint32_t temp = (arm_op & 0x00FF) << 1; |
| if (temp & 0x0100) |
| temp |= 0xFFFFFE00; |
| temp += 4; // Offset from _next_ PC. |
| |
| (*addr) = temp; |
| (*c_op) = static_cast<uint16_t>(arm_op >> 8) | 0x1000; |
| break; |
| } |
| case ARM_OFF11: { |
| // Encoding T2. |
| // The offset is given by lower 11 bits of the op, and is a 12-bit offset, |
| // shifted right 1 bit, and sign extended. |
| // arm_op = aaaaaSnn nnnnnnnn |
| // *addr := SSSSSSSS SSSSSSSS SSSSSnnn nnnnnnn0 + 100 |
| // *c_op := 00100000 000aaaaa |
| uint32_t temp = (arm_op & 0x07FF) << 1; |
| if (temp & 0x00000800) |
| temp |= 0xFFFFF000; |
| temp += 4; // Offset from _next_ PC. |
| |
| (*addr) = temp; |
| (*c_op) = static_cast<uint16_t>(arm_op >> 11) | 0x2000; |
| break; |
| } |
| case ARM_OFF24: { |
| // The offset is given by the lower 24-bits of the op, shifted |
| // left 2 bits, and sign extended. |
| // arm_op = aaaaaaaa Snnnnnnn nnnnnnnn nnnnnnnn |
| // *addr := SSSSSSSn nnnnnnnn nnnnnnnn nnnnnn00 + 1000 |
| // *c_op := 00110000 aaaaaaaa |
| uint32_t temp = (arm_op & 0x00FFFFFF) << 2; |
| if (temp & 0x02000000) |
| temp |= 0xFC000000; |
| temp += 8; |
| |
| (*addr) = temp; |
| (*c_op) = (arm_op >> 24) | 0x3000; |
| break; |
| } |
| case ARM_OFF25: { |
| // Encoding T4. |
| // arm_op = aaaaaSmm mmmmmmmm BC(j1)D(j2)nnn nnnnnnnn |
| // where CD is in {01, 10, 11} |
| // i1 := ~(j1 ^ S) |
| // i2 := ~(j2 ^ S) |
| // If CD == 10: |
| // pppp := (rva % 4 == 0) ? 0100 : 0010 |
| // Else: |
| // pppp := 0100 |
| // *addr := SSSSSSSS (i1)(i2)mmmmmm mmmmnnnn nnnnnnn0 + pppp |
| // *c_op := 0100pppp aaaaaBCD |
| // TODO(huangs): aaaaa = 11110 and B = 1 always? Investigate and fix. |
| uint32_t temp = 0; |
| temp |= (arm_op & 0x000007FF) << 1; // imm11 |
| temp |= (arm_op & 0x03FF0000) >> 4; // imm10 |
| |
| uint32_t S = (arm_op & (1 << 26)) >> 26; |
| uint32_t j2 = (arm_op & (1 << 11)) >> 11; |
| uint32_t j1 = (arm_op & (1 << 13)) >> 13; |
| bool bit12 = ((arm_op & (1 << 12)) >> 12) != 0; // D |
| bool bit14 = ((arm_op & (1 << 14)) >> 14) != 0; // C |
| |
| uint32_t i2 = ~(j2 ^ S) & 1; |
| uint32_t i1 = ~(j1 ^ S) & 1; |
| bool toARM = bit14 && !bit12; |
| |
| temp |= (S << 24) | (i1 << 23) | (i2 << 22); |
| |
| if (temp & 0x01000000) // sign extension |
| temp |= 0xFE000000; |
| uint32_t prefetch; |
| if (toARM) { |
| // Align PC on 4-byte boundary. |
| uint32_t align4byte = (rva % 4) ? 2 : 4; |
| prefetch = align4byte; |
| } else { |
| prefetch = 4; |
| } |
| temp += prefetch; |
| (*addr) = temp; |
| |
| uint32_t temp2 = 0x4000; |
| temp2 |= (arm_op & (1 << 12)) >> 12; // .......D |
| temp2 |= (arm_op & (1 << 14)) >> 13; // ......C. |
| temp2 |= (arm_op & (1 << 15)) >> 13; // .....B.. |
| temp2 |= (arm_op & 0xF8000000) >> 24; // aaaaa... |
| temp2 |= (prefetch & 0x0000000F) << 8; |
| (*c_op) = static_cast<uint16_t>(temp2); |
| break; |
| } |
| case ARM_OFF21: { |
| // Encoding T3. |
| // arm_op = 11110Scc ccmmmmmm 10(j1)0(j2)nnn nnnnnnnn |
| // *addr := SSSSSSSS SSSS(j1)(j2)mm mmmmnnnn nnnnnnn0 + 100 |
| // *c_op := 01010000 0000cccc |
| uint32_t temp = 0; |
| temp |= (arm_op & 0x000007FF) << 1; // imm11 |
| temp |= (arm_op & 0x003F0000) >> 4; // imm6 |
| |
| uint32_t S = (arm_op & (1 << 26)) >> 26; |
| // TODO(huangs): Check with docs: Perhaps j1, j2 should swap? |
| uint32_t j2 = (arm_op & (1 << 11)) >> 11; |
| uint32_t j1 = (arm_op & (1 << 13)) >> 13; |
| |
| temp |= (S << 20) | (j1 << 19) | (j2 << 18); |
| |
| if (temp & 0x00100000) // sign extension |
| temp |= 0xFFE00000; |
| temp += 4; |
| (*addr) = temp; |
| |
| uint32_t temp2 = 0x5000; |
| temp2 |= (arm_op & 0x03C00000) >> 22; // just save the cond |
| (*c_op) = static_cast<uint16_t>(temp2); |
| break; |
| } |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| CheckBool DisassemblerElf32ARM::Decompress(ARM_RVA type, |
| uint16_t c_op, |
| uint32_t addr, |
| uint32_t* arm_op) { |
| switch (type) { |
| case ARM_OFF8: |
| // addr = SSSSSSSS SSSSSSSS SSSSSSSS nnnnnnn0 + 100 |
| // c_op = 00010000 aaaaaaaa |
| // *arm_op := aaaaaaaa Snnnnnnn |
| (*arm_op) = ((c_op & 0x0FFF) << 8) | (((addr - 4) >> 1) & 0x000000FF); |
| break; |
| case ARM_OFF11: |
| // addr = SSSSSSSS SSSSSSSS SSSSSnnn nnnnnnn0 + 100 |
| // c_op = 00100000 000aaaaa |
| // *arm_op := aaaaaSnn nnnnnnnn |
| (*arm_op) = ((c_op & 0x0FFF) << 11) | (((addr - 4) >> 1) & 0x000007FF); |
| break; |
| case ARM_OFF24: |
| // addr = SSSSSSSn nnnnnnnn nnnnnnnn nnnnnn00 + 1000 |
| // c_op = 00110000 aaaaaaaa |
| // *arm_op := aaaaaaaa Snnnnnnn nnnnnnnn nnnnnnnn |
| (*arm_op) = ((c_op & 0x0FFF) << 24) | (((addr - 8) >> 2) & 0x00FFFFFF); |
| break; |
| case ARM_OFF25: { |
| // addr = SSSSSSSS (i1)(i2)mmmmmm mmmmnnnn nnnnnnn0 + pppp |
| // c_op = 0100pppp aaaaaBCD |
| // j1 := ~i1 ^ S |
| // j2 := ~i2 ^ S |
| // *arm_op := aaaaaSmm mmmmmmmm BC(j1)D(j2)nnn nnnnnnnn |
| uint32_t temp = 0; |
| temp |= (c_op & (1 << 0)) << 12; |
| temp |= (c_op & (1 << 1)) << 13; |
| temp |= (c_op & (1 << 2)) << 13; |
| temp |= (c_op & (0xF8000000 >> 24)) << 24; |
| |
| uint32_t prefetch = (c_op & 0x0F00) >> 8; |
| addr -= prefetch; |
| |
| addr &= 0x01FFFFFF; |
| |
| uint32_t S = (addr & (1 << 24)) >> 24; |
| uint32_t i1 = (addr & (1 << 23)) >> 23; |
| uint32_t i2 = (addr & (1 << 22)) >> 22; |
| |
| uint32_t j1 = ((~i1) ^ S) & 1; |
| uint32_t j2 = ((~i2) ^ S) & 1; |
| |
| temp |= S << 26; |
| temp |= j2 << 11; |
| temp |= j1 << 13; |
| |
| temp |= (addr & (0x000007FF << 1)) >> 1; |
| temp |= (addr & (0x03FF0000 >> 4)) << 4; |
| |
| (*arm_op) = temp; |
| break; |
| } |
| case ARM_OFF21: { |
| // addr = SSSSSSSS SSSS(j1)(j2)mm mmmmnnnn nnnnnnn0 + 100 |
| // c_op = 01010000 0000cccc |
| // *arm_op := 11110Scc ccmmmmmm 10(j1)0(j2)nnn nnnnnnnn |
| uint32_t temp = 0xF0008000; |
| temp |= (c_op & (0x03C00000 >> 22)) << 22; |
| |
| addr -= 4; |
| addr &= 0x001FFFFF; |
| |
| uint32_t S = (addr & (1 << 20)) >> 20; |
| uint32_t j1 = (addr & (1 << 19)) >> 19; |
| uint32_t j2 = (addr & (1 << 18)) >> 18; |
| |
| temp |= S << 26; |
| temp |= j2 << 11; |
| temp |= j1 << 13; |
| |
| temp |= (addr & (0x000007FF << 1)) >> 1; |
| temp |= (addr & (0x003F0000 >> 4)) << 4; |
| |
| (*arm_op) = temp; |
| break; |
| } |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| uint16_t DisassemblerElf32ARM::TypedRVAARM::op_size() const { |
| switch (type_) { |
| case ARM_OFF8: |
| return 2; |
| case ARM_OFF11: |
| return 2; |
| case ARM_OFF24: |
| return 4; |
| case ARM_OFF25: |
| return 4; |
| case ARM_OFF21: |
| return 4; |
| default: |
| return 0xFFFF; |
| } |
| } |
| |
| CheckBool DisassemblerElf32ARM::TypedRVAARM::ComputeRelativeTarget( |
| const uint8_t* op_pointer) { |
| arm_op_ = op_pointer; |
| switch (type_) { |
| case ARM_OFF8: // Falls through. |
| case ARM_OFF11: { |
| RVA relative_target; |
| CheckBool ret = Compress(type_, |
| Read16LittleEndian(op_pointer), |
| rva(), |
| &c_op_, |
| &relative_target); |
| set_relative_target(relative_target); |
| return ret; |
| } |
| case ARM_OFF24: { |
| RVA relative_target; |
| CheckBool ret = Compress(type_, |
| Read32LittleEndian(op_pointer), |
| rva(), |
| &c_op_, |
| &relative_target); |
| set_relative_target(relative_target); |
| return ret; |
| } |
| case ARM_OFF25: // Falls through. |
| case ARM_OFF21: { |
| // A thumb-2 op is 32 bits stored as two 16-bit words |
| uint32_t pval = (Read16LittleEndian(op_pointer) << 16) | |
| Read16LittleEndian(op_pointer + 2); |
| RVA relative_target; |
| CheckBool ret = Compress(type_, pval, rva(), &c_op_, &relative_target); |
| set_relative_target(relative_target); |
| return ret; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| CheckBool DisassemblerElf32ARM::TypedRVAARM::EmitInstruction( |
| Label* label, |
| InstructionReceptor* receptor) { |
| return receptor->EmitRel32ARM(c_op(), label, arm_op_, op_size()); |
| } |
| |
| DisassemblerElf32ARM::DisassemblerElf32ARM(const uint8_t* start, size_t length) |
| : DisassemblerElf32(start, length) {} |
| |
| // Convert an ELF relocation struction into an RVA. |
| CheckBool DisassemblerElf32ARM::RelToRVA(Elf32_Rel rel, RVA* result) const { |
| // The rightmost byte of r_info is the type. |
| elf32_rel_arm_type_values type = |
| static_cast<elf32_rel_arm_type_values>(rel.r_info & 0xFF); |
| |
| // The other 3 bytes of r_info are the symbol. |
| uint32_t symbol = rel.r_info >> 8; |
| |
| switch (type) { |
| case R_ARM_RELATIVE: |
| if (symbol != 0) |
| return false; |
| |
| // This is a basic ABS32 relocation address. |
| *result = rel.r_offset; |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| CheckBool DisassemblerElf32ARM::ParseRelocationSection( |
| const Elf32_Shdr* section_header, |
| InstructionReceptor* receptor) const { |
| // This method compresses a contiguous stretch of R_ARM_RELATIVE entries in |
| // the relocation table with a Courgette relocation table instruction. |
| // It skips any entries at the beginning that appear in a section that |
| // Courgette doesn't support, e.g. INIT. |
| // |
| // Specifically, the entries should be |
| // (1) In the same relocation table |
| // (2) Are consecutive |
| // (3) Are sorted in memory address order |
| // |
| // Happily, this is normally the case, but it's not required by spec so we |
| // check, and just don't do it if we don't match up. |
| // |
| // The expectation is that one relocation section will contain all of our |
| // R_ARM_RELATIVE entries in the expected order followed by assorted other |
| // entries we can't use special handling for. |
| |
| bool match = true; |
| |
| // Walk all the bytes in the section, matching relocation table or not. |
| FileOffset file_offset = section_header->sh_offset; |
| FileOffset section_end = section_header->sh_offset + section_header->sh_size; |
| |
| const Elf32_Rel* section_relocs_iter = reinterpret_cast<const Elf32_Rel*>( |
| FileOffsetToPointer(section_header->sh_offset)); |
| |
| uint32_t section_relocs_count = |
| section_header->sh_size / section_header->sh_entsize; |
| |
| if (abs32_locations_.size() > section_relocs_count) |
| match = false; |
| |
| if (!abs32_locations_.empty()) { |
| std::vector<RVA>::const_iterator reloc_iter = abs32_locations_.begin(); |
| |
| for (uint32_t i = 0; i < section_relocs_count; ++i) { |
| if (section_relocs_iter->r_offset == *reloc_iter) |
| break; |
| |
| if (!ParseSimpleRegion(file_offset, file_offset + sizeof(Elf32_Rel), |
| receptor)) { |
| return false; |
| } |
| |
| file_offset += sizeof(Elf32_Rel); |
| ++section_relocs_iter; |
| } |
| |
| while (match && (reloc_iter != abs32_locations_.end())) { |
| if (section_relocs_iter->r_info != R_ARM_RELATIVE || |
| section_relocs_iter->r_offset != *reloc_iter) { |
| match = false; |
| } |
| |
| ++section_relocs_iter; |
| ++reloc_iter; |
| file_offset += sizeof(Elf32_Rel); |
| } |
| |
| if (match) { |
| // Skip over relocation tables |
| if (!receptor->EmitElfARMRelocation()) |
| return false; |
| } |
| } |
| |
| return ParseSimpleRegion(file_offset, section_end, receptor); |
| } |
| |
| // TODO(huangs): Detect and avoid overlap with abs32 addresses. |
| CheckBool DisassemblerElf32ARM::ParseRel32RelocsFromSection( |
| const Elf32_Shdr* section_header) { |
| FileOffset start_file_offset = section_header->sh_offset; |
| FileOffset end_file_offset = start_file_offset + section_header->sh_size; |
| |
| const uint8_t* start_pointer = FileOffsetToPointer(start_file_offset); |
| const uint8_t* end_pointer = FileOffsetToPointer(end_file_offset); |
| |
| // Quick way to convert from Pointer to RVA within a single Section is to |
| // subtract |pointer_to_rva|. |
| const uint8_t* const adjust_pointer_to_rva = |
| start_pointer - section_header->sh_addr; |
| |
| // Find the rel32 relocations. |
| const uint8_t* p = start_pointer; |
| bool on_32bit = 1; // 32-bit ARM ops appear on 32-bit boundaries, so track it |
| while (p < end_pointer) { |
| // Heuristic discovery of rel32 locations in instruction stream: are the |
| // next few bytes the start of an instruction containing a rel32 |
| // addressing mode? |
| std::unique_ptr<TypedRVAARM> rel32_rva; |
| RVA target_rva = 0; |
| bool found = false; |
| |
| // 16-bit thumb ops |
| if (!found && p + 3 <= end_pointer) { |
| uint16_t pval = Read16LittleEndian(p); |
| if ((pval & 0xF000) == 0xD000) { |
| RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva); |
| |
| rel32_rva.reset(new TypedRVAARM(ARM_OFF8, rva)); |
| if (!rel32_rva->ComputeRelativeTarget(p)) |
| return false; |
| |
| target_rva = rel32_rva->rva() + rel32_rva->relative_target(); |
| found = true; |
| } else if ((pval & 0xF800) == 0xE000) { |
| RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva); |
| |
| rel32_rva.reset(new TypedRVAARM(ARM_OFF11, rva)); |
| if (!rel32_rva->ComputeRelativeTarget(p)) |
| return false; |
| |
| target_rva = rel32_rva->rva() + rel32_rva->relative_target(); |
| found = true; |
| } |
| } |
| |
| // thumb-2 ops comprised of two 16-bit words. |
| if (!found && p + 5 <= end_pointer) { |
| // This is really two 16-bit words, not one 32-bit word. |
| uint32_t pval = (Read16LittleEndian(p) << 16) | Read16LittleEndian(p + 2); |
| if ((pval & 0xF8008000) == 0xF0008000) { |
| // Covers thumb-2's 32-bit conditional/unconditional branches |
| if ((pval & (1 << 14)) || (pval & (1 << 12))) { |
| // A branch, with link, or with link and exchange. |
| RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva); |
| |
| rel32_rva.reset(new TypedRVAARM(ARM_OFF25, rva)); |
| if (!rel32_rva->ComputeRelativeTarget(p)) |
| return false; |
| |
| target_rva = rel32_rva->rva() + rel32_rva->relative_target(); |
| found = true; |
| |
| } else { |
| // TODO(paulgazz) make sure cond is not 111 |
| // A conditional branch instruction |
| RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva); |
| |
| rel32_rva.reset(new TypedRVAARM(ARM_OFF21, rva)); |
| if (!rel32_rva->ComputeRelativeTarget(p)) |
| return false; |
| |
| target_rva = rel32_rva->rva() + rel32_rva->relative_target(); |
| found = true; |
| } |
| } |
| } |
| |
| // 32-bit ARM ops. |
| if (!found && on_32bit && (p + 5) <= end_pointer) { |
| uint32_t pval = Read32LittleEndian(p); |
| if ((pval & 0x0E000000) == 0x0A000000) { |
| // Covers both 0x0A 0x0B ARM relative branches |
| RVA rva = static_cast<RVA>(p - adjust_pointer_to_rva); |
| |
| rel32_rva.reset(new TypedRVAARM(ARM_OFF24, rva)); |
| if (!rel32_rva->ComputeRelativeTarget(p)) |
| return false; |
| |
| target_rva = rel32_rva->rva() + rel32_rva->relative_target(); |
| found = true; |
| } |
| } |
| |
| if (found && IsValidTargetRVA(target_rva)) { |
| uint16_t op_size = rel32_rva->op_size(); |
| rel32_locations_.push_back(std::move(rel32_rva)); |
| #if COURGETTE_HISTOGRAM_TARGETS |
| ++rel32_target_rvas_[target_rva]; |
| #endif |
| p += op_size; |
| |
| // A tricky way to update the on_32bit flag. Here is the truth table: |
| // on_32bit | on_32bit size is 4 |
| // ---------+--------------------- |
| // 1 | 0 0 |
| // 0 | 0 1 |
| // 0 | 1 0 |
| // 1 | 1 1 |
| on_32bit = (~(on_32bit ^ (op_size == 4))) != 0; |
| } else { |
| // Move 2 bytes at a time, but track 32-bit boundaries |
| p += 2; |
| on_32bit = ((on_32bit + 1) % 2) != 0; |
| } |
| } |
| |
| return true; |
| } |
| |
| } // namespace courgette |