blob: 702431c30eb185ba6a7eec9d421d043d2cc1b92d [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/color_utils.h"
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <ostream>
#include "base/check_op.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "ui/gfx/color_palette.h"
#if BUILDFLAG(IS_WIN)
#include <windows.h>
#include "skia/ext/skia_utils_win.h"
#endif
namespace color_utils {
namespace {
// The darkest reference color in color_utils.
SkColor g_darkest_color = gfx::kGoogleGrey900;
// The luminance midpoint for determining if a color is light or dark. This is
// the value where white and g_darkest_color contrast equally. This default
// value is the midpoint given kGoogleGrey900 as the darkest color.
float g_luminance_midpoint = 0.211692036f;
constexpr float kWhiteLuminance = 1.0f;
int calcHue(float temp1, float temp2, float hue) {
if (hue < 0.0f)
++hue;
else if (hue > 1.0f)
--hue;
float result = temp1;
if (hue * 6.0f < 1.0f)
result = temp1 + (temp2 - temp1) * hue * 6.0f;
else if (hue * 2.0f < 1.0f)
result = temp2;
else if (hue * 3.0f < 2.0f)
result = temp1 + (temp2 - temp1) * (2.0f / 3.0f - hue) * 6.0f;
return base::ClampRound(result * 255);
}
// Assumes sRGB.
float Linearize(float eight_bit_component) {
const float component = eight_bit_component / 255.0f;
// The W3C link in the header uses 0.03928 here. See
// https://en.wikipedia.org/wiki/SRGB#Theory_of_the_transformation for
// discussion of why we use this value rather than that one.
return (component <= 0.04045f) ? (component / 12.92f)
: pow((component + 0.055f) / 1.055f, 2.4f);
}
constexpr size_t kNumGoogleColors = 12;
constexpr SkColor kGrey[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleGrey050, gfx::kGoogleGrey100,
gfx::kGoogleGrey200, gfx::kGoogleGrey300, gfx::kGoogleGrey400,
gfx::kGoogleGrey500, gfx::kGoogleGrey600, gfx::kGoogleGrey700,
gfx::kGoogleGrey800, gfx::kGoogleGrey900, gfx::kGoogleGrey900,
};
constexpr SkColor kRed[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleRed050, gfx::kGoogleRed100,
gfx::kGoogleRed200, gfx::kGoogleRed300, gfx::kGoogleRed400,
gfx::kGoogleRed500, gfx::kGoogleRed600, gfx::kGoogleRed700,
gfx::kGoogleRed800, gfx::kGoogleRed900, gfx::kGoogleGrey900,
};
constexpr SkColor kOrange[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleOrange050, gfx::kGoogleOrange100,
gfx::kGoogleOrange200, gfx::kGoogleOrange300, gfx::kGoogleOrange400,
gfx::kGoogleOrange500, gfx::kGoogleOrange600, gfx::kGoogleOrange700,
gfx::kGoogleOrange800, gfx::kGoogleOrange900, gfx::kGoogleGrey900,
};
constexpr SkColor kYellow[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleYellow050, gfx::kGoogleYellow100,
gfx::kGoogleYellow200, gfx::kGoogleYellow300, gfx::kGoogleYellow400,
gfx::kGoogleYellow500, gfx::kGoogleYellow600, gfx::kGoogleYellow700,
gfx::kGoogleYellow800, gfx::kGoogleYellow900, gfx::kGoogleGrey900,
};
constexpr SkColor kGreen[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleGreen050, gfx::kGoogleGreen100,
gfx::kGoogleGreen200, gfx::kGoogleGreen300, gfx::kGoogleGreen400,
gfx::kGoogleGreen500, gfx::kGoogleGreen600, gfx::kGoogleGreen700,
gfx::kGoogleGreen800, gfx::kGoogleGreen900, gfx::kGoogleGrey900,
};
constexpr SkColor kCyan[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleCyan050, gfx::kGoogleCyan100,
gfx::kGoogleCyan200, gfx::kGoogleCyan300, gfx::kGoogleCyan400,
gfx::kGoogleCyan500, gfx::kGoogleCyan600, gfx::kGoogleCyan700,
gfx::kGoogleCyan800, gfx::kGoogleCyan900, gfx::kGoogleGrey900,
};
constexpr SkColor kBlue[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleBlue050, gfx::kGoogleBlue100,
gfx::kGoogleBlue200, gfx::kGoogleBlue300, gfx::kGoogleBlue400,
gfx::kGoogleBlue500, gfx::kGoogleBlue600, gfx::kGoogleBlue700,
gfx::kGoogleBlue800, gfx::kGoogleBlue900, gfx::kGoogleGrey900,
};
constexpr SkColor kPurple[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGooglePurple050, gfx::kGooglePurple100,
gfx::kGooglePurple200, gfx::kGooglePurple300, gfx::kGooglePurple400,
gfx::kGooglePurple500, gfx::kGooglePurple600, gfx::kGooglePurple700,
gfx::kGooglePurple800, gfx::kGooglePurple900, gfx::kGoogleGrey900,
};
constexpr SkColor kMagenta[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleMagenta050, gfx::kGoogleMagenta100,
gfx::kGoogleMagenta200, gfx::kGoogleMagenta300, gfx::kGoogleMagenta400,
gfx::kGoogleMagenta500, gfx::kGoogleMagenta600, gfx::kGoogleMagenta700,
gfx::kGoogleMagenta800, gfx::kGoogleMagenta900, gfx::kGoogleGrey900,
};
constexpr SkColor kPink[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGooglePink050, gfx::kGooglePink100,
gfx::kGooglePink200, gfx::kGooglePink300, gfx::kGooglePink400,
gfx::kGooglePink500, gfx::kGooglePink600, gfx::kGooglePink700,
gfx::kGooglePink800, gfx::kGooglePink900, gfx::kGoogleGrey900,
};
SkColor PickGoogleColor(const SkColor (&colors)[kNumGoogleColors],
SkColor color,
SkColor background_color_a,
SkColor background_color_b,
float min_contrast) {
// Compute source color, the color in `colors` which is closest to `color`.
// First set up `lum_colors`, the corresponding relative luminances of
// `colors`. These could be precomputed and recorded next to `kGrey` etc. for
// some runtime speedup at the cost of maintenance pain.
float lum_colors[kNumGoogleColors];
std::transform(std::cbegin(colors), std::cend(colors), std::begin(lum_colors),
&GetRelativeLuminance);
// This function returns an iterator to the least-contrasting luminance (in
// `lum_colors`) to `lum`.
const auto find_nearest_lum_it = [&lum_colors](float lum) {
// Find the first luminance (since they're sorted decreasing) <= `lum`.
const auto* it = std::lower_bound(
std::cbegin(lum_colors), std::cend(lum_colors), lum, std::greater<>());
// If applicable, check against the next greater luminance for whichever is
// lower-contrast.
if (it == std::cend(lum_colors) ||
((it != std::cbegin(lum_colors)) &&
(GetContrastRatio(lum, *it) > GetContrastRatio(*(it - 1), lum)))) {
--it;
}
return it;
};
const auto* const src_it = find_nearest_lum_it(GetRelativeLuminance(color));
// Compute target color, the color in `colors` which maximizes simultaneous
// contrast against both backgrounds, i.e. maximizes the minimum of the
// contrasts with both.
// Skip various unnecessary calculations in the common case that there is
// really only one background color to contrast with.
const bool one_bg = background_color_a == background_color_b;
const float lum_a = GetRelativeLuminance(background_color_a);
const float lum_b = one_bg ? lum_a : GetRelativeLuminance(background_color_b);
// `lum_mid` is a relative luminance between `lum_a` and `lum_b` that
// contrasts equally with both.
const float lum_mid =
one_bg ? lum_a : (std::sqrt((lum_a + 0.05f) * (lum_b + 0.05f)) - 0.05f);
// Of the two luminance endpoints, choose the one that contrasts more with
// `lum_mid`, as this maximizes the contrast against both backgrounds. When
// there is only one background color, this is the target color.
const auto* targ_it = (lum_mid < g_luminance_midpoint)
? std::cbegin(lum_colors)
: (std::cend(lum_colors) - 1);
// This function returns the luminance of whichever background contrasts less
// with `lum`.
const auto bg_lum_near_lum = [&](float lum) {
return ((lum_a > lum_b) == (lum > lum_mid)) ? lum_a : lum_b;
};
if (!one_bg) {
// The most-contrasting color, and thus target, is either the closest color
// to `lum_mid` (if the backgrounds are near both endpoints) or the
// previously-selected endpoint. Compare their minimum contrasts.
const auto* const mid_it = find_nearest_lum_it(lum_mid);
if (GetContrastRatio(bg_lum_near_lum(*mid_it), *mid_it) >
GetContrastRatio(bg_lum_near_lum(*targ_it), *targ_it)) {
targ_it = mid_it;
}
}
// Find first color between source and target, inclusive, for which contrast
// reaches `min_contrast` threshold.
const auto* res_it = src_it;
// This function returns whether the minimum contrast of `lum` against the
// backgrounds is underneath the threshold `con`.
const auto comp = [&](float lum, float con) {
const float lum_near = bg_lum_near_lum(lum);
return GetContrastRatio(lum, lum_near) < con;
};
// Depending on how the colors are arranged, the source may have sufficient
// contrast against both backgrounds while some subsequent colors do not. In
// this case we can return immediately.
if ((src_it != targ_it) && comp(*src_it, min_contrast)) {
// The source does not have sufficient contrast, which means the range of
// `lum_colors` we care about is partitioned into a set that contrasts
// insufficiently followed by a (possibly-empty) set that contrasts
// sufficiently. Use std::lower_bound() to find the first element of the
// latter set (or, if that set is empty, the last element of the former).
if (targ_it < src_it) {
// Reverse iterate over [src_it - 1, targ_it).
const auto res_it_reversed = std::lower_bound(
std::make_reverse_iterator(src_it),
std::make_reverse_iterator(targ_it + 1), min_contrast, comp);
res_it = res_it_reversed.base() - 1;
} else {
res_it = std::lower_bound(src_it + 1, targ_it, min_contrast, comp);
}
}
return colors[res_it - std::begin(lum_colors)];
}
template <typename T>
SkColor PickGoogleColorImpl(SkColor color, T pick_color) {
HSL hsl;
SkColorToHSL(color, &hsl);
if (hsl.s < 0.1) {
// Low saturation, let this be a grey.
return pick_color(kGrey);
}
// Map hue to angles for readability.
const float color_angle = hsl.h * 360;
// Hues in comments below are of the corresponding kGoogleXXX500 color.
// Every cutoff is a halfway point between the two neighboring hue values to
// provide as fair of a representation as possible for what color should be
// used.
// RED: 4
if (color_angle < 15)
return pick_color(kRed);
// ORANGE: 26
if (color_angle < 35)
return pick_color(kOrange);
// YELLOW: 44
if (color_angle < 90)
return pick_color(kYellow);
// GREEN: 136
if (color_angle < 163)
return pick_color(kGreen);
// CYAN: 189
// In dark mode, the Mac system blue hue is right on the border between a
// kGoogleCyan and kGoogleBlue color, so the cutoff point is tweaked to make
// it map to a kGoogleBlue color.
if (color_angle < 202)
return pick_color(kCyan);
// BLUE: 217
if (color_angle < 245)
return pick_color(kBlue);
// PURPLE: 272
if (color_angle < 284)
return pick_color(kPurple);
// MAGENTA: 295
if (color_angle < 311)
return pick_color(kMagenta);
// PINK: 326
if (color_angle < 345)
return pick_color(kPink);
// End of hue wheel is red.
return pick_color(kRed);
}
} // namespace
SkColor PickGoogleColor(SkColor color,
SkColor background_color,
float min_contrast) {
const auto pick_color = [&](const SkColor(&colors)[kNumGoogleColors]) {
return PickGoogleColor(colors, color, background_color, background_color,
min_contrast);
};
return PickGoogleColorImpl(color, pick_color);
}
SkColor PickGoogleColor(SkColor color,
SkColor background_color_a,
SkColor background_color_b,
float min_contrast) {
const auto pick_color = [&](const SkColor(&colors)[kNumGoogleColors]) {
return PickGoogleColor(colors, color, background_color_a,
background_color_b, min_contrast);
};
return PickGoogleColorImpl(color, pick_color);
}
float GetContrastRatio(SkColor color_a, SkColor color_b) {
return GetContrastRatio(GetRelativeLuminance(color_a),
GetRelativeLuminance(color_b));
}
float GetContrastRatio(float luminance_a, float luminance_b) {
DCHECK_GE(luminance_a, 0.0f);
DCHECK_GE(luminance_b, 0.0f);
luminance_a += 0.05f;
luminance_b += 0.05f;
return (luminance_a > luminance_b) ? (luminance_a / luminance_b)
: (luminance_b / luminance_a);
}
float GetRelativeLuminance(SkColor color) {
return (0.2126f * Linearize(SkColorGetR(color))) +
(0.7152f * Linearize(SkColorGetG(color))) +
(0.0722f * Linearize(SkColorGetB(color)));
}
uint8_t GetLuma(SkColor color) {
return base::ClampRound<uint8_t>(0.299f * SkColorGetR(color) +
0.587f * SkColorGetG(color) +
0.114f * SkColorGetB(color));
}
void SkColorToHSL(SkColor c, HSL* hsl) {
float r = SkColorGetR(c) / 255.0f;
float g = SkColorGetG(c) / 255.0f;
float b = SkColorGetB(c) / 255.0f;
float vmax = std::max({r, g, b});
float vmin = std::min({r, g, b});
float delta = vmax - vmin;
hsl->l = (vmax + vmin) / 2;
if (SkColorGetR(c) == SkColorGetG(c) && SkColorGetR(c) == SkColorGetB(c)) {
hsl->h = hsl->s = 0;
} else {
float dr = (((vmax - r) / 6.0f) + (delta / 2.0f)) / delta;
float dg = (((vmax - g) / 6.0f) + (delta / 2.0f)) / delta;
float db = (((vmax - b) / 6.0f) + (delta / 2.0f)) / delta;
// We need to compare for the max value because comparing vmax to r, g, or b
// can sometimes result in values overflowing registers.
if (r >= g && r >= b)
hsl->h = db - dg;
else if (g >= r && g >= b)
hsl->h = (1.0f / 3.0f) + dr - db;
else // (b >= r && b >= g)
hsl->h = (2.0f / 3.0f) + dg - dr;
if (hsl->h < 0.0f)
++hsl->h;
else if (hsl->h > 1.0f)
--hsl->h;
hsl->s = delta / ((hsl->l < 0.5f) ? (vmax + vmin) : (2 - vmax - vmin));
}
}
SkColor HSLToSkColor(const HSL& hsl, SkAlpha alpha) {
float hue = hsl.h;
float saturation = hsl.s;
float lightness = hsl.l;
// If there's no color, we don't care about hue and can do everything based on
// brightness.
if (!saturation) {
const uint8_t light = base::ClampRound<uint8_t>(lightness * 255);
return SkColorSetARGB(alpha, light, light, light);
}
float temp2 = (lightness < 0.5f)
? (lightness * (1.0f + saturation))
: (lightness + saturation - (lightness * saturation));
float temp1 = 2.0f * lightness - temp2;
return SkColorSetARGB(alpha, calcHue(temp1, temp2, hue + 1.0f / 3.0f),
calcHue(temp1, temp2, hue),
calcHue(temp1, temp2, hue - 1.0f / 3.0f));
}
bool IsWithinHSLRange(const HSL& hsl,
const HSL& lower_bound,
const HSL& upper_bound) {
DCHECK(hsl.h >= 0 && hsl.h <= 1) << hsl.h;
DCHECK(hsl.s >= 0 && hsl.s <= 1) << hsl.s;
DCHECK(hsl.l >= 0 && hsl.l <= 1) << hsl.l;
DCHECK(lower_bound.h < 0 || upper_bound.h < 0 ||
(lower_bound.h <= 1 && upper_bound.h <= lower_bound.h + 1))
<< "lower_bound.h: " << lower_bound.h
<< ", upper_bound.h: " << upper_bound.h;
DCHECK(lower_bound.s < 0 || upper_bound.s < 0 ||
(lower_bound.s <= upper_bound.s && upper_bound.s <= 1))
<< "lower_bound.s: " << lower_bound.s
<< ", upper_bound.s: " << upper_bound.s;
DCHECK(lower_bound.l < 0 || upper_bound.l < 0 ||
(lower_bound.l <= upper_bound.l && upper_bound.l <= 1))
<< "lower_bound.l: " << lower_bound.l
<< ", upper_bound.l: " << upper_bound.l;
// If the upper hue is >1, the given hue bounds wrap around at 1.
bool matches_hue = upper_bound.h > 1
? hsl.h >= lower_bound.h || hsl.h <= upper_bound.h - 1
: hsl.h >= lower_bound.h && hsl.h <= upper_bound.h;
return (upper_bound.h < 0 || lower_bound.h < 0 || matches_hue) &&
(upper_bound.s < 0 || lower_bound.s < 0 ||
(hsl.s >= lower_bound.s && hsl.s <= upper_bound.s)) &&
(upper_bound.l < 0 || lower_bound.l < 0 ||
(hsl.l >= lower_bound.l && hsl.l <= upper_bound.l));
}
void MakeHSLShiftValid(HSL* hsl) {
if (hsl->h < 0 || hsl->h > 1)
hsl->h = -1;
if (hsl->s < 0 || hsl->s > 1)
hsl->s = -1;
if (hsl->l < 0 || hsl->l > 1)
hsl->l = -1;
}
bool IsHSLShiftMeaningful(const HSL& hsl) {
// -1 in any channel has no effect, and 0.5 has no effect for S/L. A shift
// with an effective value in ANY channel is meaningful.
return hsl.h != -1 || (hsl.s != -1 && hsl.s != 0.5) ||
(hsl.l != -1 && hsl.l != 0.5);
}
SkColor HSLShift(SkColor color, const HSL& shift) {
SkAlpha alpha = SkColorGetA(color);
if (shift.h >= 0 || shift.s >= 0) {
HSL hsl;
SkColorToHSL(color, &hsl);
// Replace the hue with the tint's hue.
if (shift.h >= 0)
hsl.h = shift.h;
// Change the saturation.
if (shift.s >= 0) {
if (shift.s <= 0.5f)
hsl.s *= shift.s * 2.0f;
else
hsl.s += (1.0f - hsl.s) * ((shift.s - 0.5f) * 2.0f);
}
color = HSLToSkColor(hsl, alpha);
}
if (shift.l < 0)
return color;
// Lightness shifts in the style of popular image editors aren't actually
// represented in HSL - the L value does have some effect on saturation.
float r = static_cast<float>(SkColorGetR(color));
float g = static_cast<float>(SkColorGetG(color));
float b = static_cast<float>(SkColorGetB(color));
if (shift.l <= 0.5f) {
r *= (shift.l * 2.0f);
g *= (shift.l * 2.0f);
b *= (shift.l * 2.0f);
} else {
r += (255.0f - r) * ((shift.l - 0.5f) * 2.0f);
g += (255.0f - g) * ((shift.l - 0.5f) * 2.0f);
b += (255.0f - b) * ((shift.l - 0.5f) * 2.0f);
}
return SkColorSetARGB(alpha, base::ClampRound<U8CPU>(r),
base::ClampRound<U8CPU>(g), base::ClampRound<U8CPU>(b));
}
SkColor AlphaBlend(SkColor foreground, SkColor background, SkAlpha alpha) {
return AlphaBlend(foreground, background, alpha / 255.0f);
}
SkColor AlphaBlend(SkColor foreground, SkColor background, float alpha) {
DCHECK_GE(alpha, 0.0f);
DCHECK_LE(alpha, 1.0f);
if (alpha == 0.0f)
return background;
if (alpha == 1.0f)
return foreground;
int f_alpha = SkColorGetA(foreground);
int b_alpha = SkColorGetA(background);
float normalizer = f_alpha * alpha + b_alpha * (1.0f - alpha);
if (normalizer == 0.0f)
return SK_ColorTRANSPARENT;
float f_weight = f_alpha * alpha / normalizer;
float b_weight = b_alpha * (1.0f - alpha) / normalizer;
float r =
SkColorGetR(foreground) * f_weight + SkColorGetR(background) * b_weight;
float g =
SkColorGetG(foreground) * f_weight + SkColorGetG(background) * b_weight;
float b =
SkColorGetB(foreground) * f_weight + SkColorGetB(background) * b_weight;
return SkColorSetARGB(base::ClampRound<U8CPU>(normalizer),
base::ClampRound<U8CPU>(r), base::ClampRound<U8CPU>(g),
base::ClampRound<U8CPU>(b));
}
SkColor GetResultingPaintColor(SkColor foreground, SkColor background) {
return AlphaBlend(SkColorSetA(foreground, SK_AlphaOPAQUE), background,
static_cast<SkAlpha>(SkColorGetA(foreground)));
}
bool IsDark(SkColor color) {
return GetRelativeLuminance(color) < g_luminance_midpoint;
}
SkColor GetColorWithMaxContrast(SkColor color) {
return IsDark(color) ? SK_ColorWHITE : g_darkest_color;
}
SkColor GetEndpointColorWithMinContrast(SkColor color) {
return IsDark(color) ? g_darkest_color : SK_ColorWHITE;
}
SkColor BlendTowardMaxContrast(SkColor color, SkAlpha alpha) {
SkAlpha original_alpha = SkColorGetA(color);
SkColor blended_color = AlphaBlend(GetColorWithMaxContrast(color),
SkColorSetA(color, SK_AlphaOPAQUE), alpha);
return SkColorSetA(blended_color, original_alpha);
}
SkColor PickContrastingColor(SkColor foreground1,
SkColor foreground2,
SkColor background) {
const float background_luminance = GetRelativeLuminance(background);
return (GetContrastRatio(GetRelativeLuminance(foreground1),
background_luminance) >=
GetContrastRatio(GetRelativeLuminance(foreground2),
background_luminance)) ?
foreground1 : foreground2;
}
BlendResult BlendForMinContrast(
SkColor default_foreground,
SkColor background,
absl::optional<SkColor> high_contrast_foreground,
float contrast_ratio) {
DCHECK_EQ(SkColorGetA(background), SK_AlphaOPAQUE);
default_foreground = GetResultingPaintColor(default_foreground, background);
if (GetContrastRatio(default_foreground, background) >= contrast_ratio)
return {SK_AlphaTRANSPARENT, default_foreground};
const SkColor target_foreground = GetResultingPaintColor(
high_contrast_foreground.value_or(GetColorWithMaxContrast(background)),
background);
const float background_luminance = GetRelativeLuminance(background);
SkAlpha best_alpha = SK_AlphaOPAQUE;
SkColor best_color = target_foreground;
// Use int for inclusive lower bound and exclusive upper bound, reserving
// conversion to SkAlpha for the end (reduces casts).
for (int low = SK_AlphaTRANSPARENT, high = SK_AlphaOPAQUE + 1; low < high;) {
const SkAlpha alpha = (low + high) / 2;
const SkColor color =
AlphaBlend(target_foreground, default_foreground, alpha);
const float luminance = GetRelativeLuminance(color);
const float contrast = GetContrastRatio(luminance, background_luminance);
if (contrast >= contrast_ratio) {
best_alpha = alpha;
best_color = color;
high = alpha;
} else {
low = alpha + 1;
}
}
return {best_alpha, best_color};
}
SkColor InvertColor(SkColor color) {
return SkColorSetARGB(SkColorGetA(color), 255 - SkColorGetR(color),
255 - SkColorGetG(color), 255 - SkColorGetB(color));
}
SkColor GetSysSkColor(int which) {
#if BUILDFLAG(IS_WIN)
return skia::COLORREFToSkColor(GetSysColor(which));
#else
NOTIMPLEMENTED();
return SK_ColorLTGRAY;
#endif
}
SkColor DeriveDefaultIconColor(SkColor text_color) {
// Lighten dark colors and brighten light colors. The alpha value here (0x4c)
// is chosen to generate a value close to GoogleGrey700 from GoogleGrey900.
return BlendTowardMaxContrast(text_color, 0x4c);
}
std::string SkColorToRgbaString(SkColor color) {
// We convert the alpha using NumberToString because StringPrintf will use
// locale specific formatters (e.g., use , instead of . in German).
return base::StringPrintf(
"rgba(%s,%s)", SkColorToRgbString(color).c_str(),
base::NumberToString(SkColorGetA(color) / 255.0).c_str());
}
std::string SkColor4fToRgbaString(SkColor4f color) {
return base::StringPrintf("rgba(%f, %f, %f, %f", color.fR, color.fG, color.fB,
color.fA);
}
std::string SkColorToRgbString(SkColor color) {
return base::StringPrintf("%d,%d,%d", SkColorGetR(color), SkColorGetG(color),
SkColorGetB(color));
}
std::string SkColor4fToRgbString(SkColor4f color) {
return base::StringPrintf("rgba(%f, %f, %f", color.fR, color.fG, color.fB);
}
SkColor SetDarkestColorForTesting(SkColor color) {
const SkColor previous_darkest_color = g_darkest_color;
g_darkest_color = color;
const float dark_luminance = GetRelativeLuminance(color);
// We want to compute |g_luminance_midpoint| such that
// GetContrastRatio(dark_luminance, g_luminance_midpoint) ==
// GetContrastRatio(kWhiteLuminance, g_luminance_midpoint). The formula below
// can be verified by plugging it into how GetContrastRatio() operates.
g_luminance_midpoint =
std::sqrt((dark_luminance + 0.05f) * (kWhiteLuminance + 0.05f)) - 0.05f;
return previous_darkest_color;
}
std::tuple<float, float, float> GetLuminancesForTesting() {
return std::make_tuple(GetRelativeLuminance(g_darkest_color),
g_luminance_midpoint, kWhiteLuminance);
}
} // namespace color_utils