blob: 25d3d2730df1cb0cbbc4cb3441053dc75405acdf [file] [log] [blame]
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layer_tree_host.h"
#include "base/command_line.h"
#include "base/debug/trace_event.h"
#include "base/message_loop.h"
#include "cc/font_atlas.h"
#include "cc/graphics_context.h"
#include "cc/heads_up_display_layer.h"
#include "cc/heads_up_display_layer_impl.h"
#include "cc/layer.h"
#include "cc/layer_animation_controller.h"
#include "cc/layer_iterator.h"
#include "cc/layer_tree_host_client.h"
#include "cc/layer_tree_host_common.h"
#include "cc/layer_tree_host_impl.h"
#include "cc/math_util.h"
#include "cc/occlusion_tracker.h"
#include "cc/overdraw_metrics.h"
#include "cc/single_thread_proxy.h"
#include "cc/switches.h"
#include "cc/thread.h"
#include "cc/thread_proxy.h"
#include "cc/tree_synchronizer.h"
using namespace std;
namespace {
static int numLayerTreeInstances;
}
namespace cc {
bool LayerTreeHost::s_needsFilterContext = false;
LayerTreeSettings::LayerTreeSettings()
: acceleratePainting(false)
, implSidePainting(false)
, showDebugBorders(false)
, showPlatformLayerTree(false)
, showPaintRects(false)
, showPropertyChangedRects(false)
, showSurfaceDamageRects(false)
, showScreenSpaceRects(false)
, showReplicaScreenSpaceRects(false)
, showOccludingRects(false)
, showNonOccludingRects(false)
, renderVSyncEnabled(true)
, perTilePaintingEnabled(false)
, partialSwapEnabled(false)
, acceleratedAnimationEnabled(true)
, pageScalePinchZoomEnabled(false)
, backgroundColorInsteadOfCheckerboard(false)
, showOverdrawInTracing(false)
, refreshRate(0)
, maxPartialTextureUpdates(std::numeric_limits<size_t>::max())
, defaultTileSize(gfx::Size(256, 256))
, maxUntiledLayerSize(gfx::Size(512, 512))
, minimumOcclusionTrackingSize(gfx::Size(160, 160))
{
// TODO(danakj): Move this to chromium when we don't go through the WebKit API anymore.
showPropertyChangedRects = CommandLine::ForCurrentProcess()->HasSwitch(cc::switches::kShowPropertyChangedRects);
showSurfaceDamageRects = CommandLine::ForCurrentProcess()->HasSwitch(cc::switches::kShowSurfaceDamageRects);
showScreenSpaceRects = CommandLine::ForCurrentProcess()->HasSwitch(cc::switches::kShowScreenSpaceRects);
showReplicaScreenSpaceRects = CommandLine::ForCurrentProcess()->HasSwitch(cc::switches::kShowReplicaScreenSpaceRects);
showOccludingRects = CommandLine::ForCurrentProcess()->HasSwitch(cc::switches::kShowOccludingRects);
showNonOccludingRects = CommandLine::ForCurrentProcess()->HasSwitch(cc::switches::kShowNonOccludingRects);
partialSwapEnabled = CommandLine::ForCurrentProcess()->HasSwitch(switches::kEnablePartialSwap);
backgroundColorInsteadOfCheckerboard = CommandLine::ForCurrentProcess()->HasSwitch(switches::kBackgroundColorInsteadOfCheckerboard);
showOverdrawInTracing = CommandLine::ForCurrentProcess()->HasSwitch(switches::kTraceOverdraw);
}
LayerTreeSettings::~LayerTreeSettings()
{
}
RendererCapabilities::RendererCapabilities()
: bestTextureFormat(0)
, contextHasCachedFrontBuffer(false)
, usingPartialSwap(false)
, usingAcceleratedPainting(false)
, usingSetVisibility(false)
, usingSwapCompleteCallback(false)
, usingGpuMemoryManager(false)
, usingDiscardFramebuffer(false)
, usingEglImage(false)
, maxTextureSize(0)
{
}
RendererCapabilities::~RendererCapabilities()
{
}
bool LayerTreeHost::anyLayerTreeHostInstanceExists()
{
return numLayerTreeInstances > 0;
}
scoped_ptr<LayerTreeHost> LayerTreeHost::create(LayerTreeHostClient* client, const LayerTreeSettings& settings, scoped_ptr<Thread> implThread)
{
scoped_ptr<LayerTreeHost> layerTreeHost(new LayerTreeHost(client, settings));
if (!layerTreeHost->initialize(implThread.Pass()))
return scoped_ptr<LayerTreeHost>();
return layerTreeHost.Pass();
}
LayerTreeHost::LayerTreeHost(LayerTreeHostClient* client, const LayerTreeSettings& settings)
: m_animating(false)
, m_needsAnimateLayers(false)
, m_client(client)
, m_commitNumber(0)
, m_renderingStats()
, m_rendererInitialized(false)
, m_contextLost(false)
, m_numTimesRecreateShouldFail(0)
, m_numFailedRecreateAttempts(0)
, m_settings(settings)
, m_deviceScaleFactor(1)
, m_visible(true)
, m_pageScaleFactor(1)
, m_minPageScaleFactor(1)
, m_maxPageScaleFactor(1)
, m_triggerIdleUpdates(true)
, m_backgroundColor(SK_ColorWHITE)
, m_hasTransparentBackground(false)
, m_partialTextureUpdateRequests(0)
{
numLayerTreeInstances++;
}
bool LayerTreeHost::initialize(scoped_ptr<Thread> implThread)
{
TRACE_EVENT0("cc", "LayerTreeHost::initialize");
if (implThread)
m_proxy = ThreadProxy::create(this, implThread.Pass());
else
m_proxy = SingleThreadProxy::create(this);
m_proxy->start();
return m_proxy->initializeContext();
}
LayerTreeHost::~LayerTreeHost()
{
if (m_rootLayer)
m_rootLayer->setLayerTreeHost(0);
DCHECK(m_proxy);
DCHECK(m_proxy->isMainThread());
TRACE_EVENT0("cc", "LayerTreeHost::~LayerTreeHost");
m_proxy->stop();
numLayerTreeInstances--;
RateLimiterMap::iterator it = m_rateLimiters.begin();
if (it != m_rateLimiters.end())
it->second->stop();
}
void LayerTreeHost::setSurfaceReady()
{
m_proxy->setSurfaceReady();
}
void LayerTreeHost::initializeRenderer()
{
TRACE_EVENT0("cc", "LayerTreeHost::initializeRenderer");
if (!m_proxy->initializeRenderer()) {
// Uh oh, better tell the client that we can't do anything with this context.
m_client->didRecreateOutputSurface(false);
return;
}
// Update m_settings based on capabilities that we got back from the renderer.
m_settings.acceleratePainting = m_proxy->rendererCapabilities().usingAcceleratedPainting;
// Update m_settings based on partial update capability.
m_settings.maxPartialTextureUpdates = min(m_settings.maxPartialTextureUpdates, m_proxy->maxPartialTextureUpdates());
m_contentsTextureManager = PrioritizedResourceManager::create(Renderer::ContentPool, m_proxy.get());
m_surfaceMemoryPlaceholder = m_contentsTextureManager->createTexture(gfx::Size(), GL_RGBA);
m_rendererInitialized = true;
m_settings.defaultTileSize = gfx::Size(min(m_settings.defaultTileSize.width(), m_proxy->rendererCapabilities().maxTextureSize),
min(m_settings.defaultTileSize.height(), m_proxy->rendererCapabilities().maxTextureSize));
m_settings.maxUntiledLayerSize = gfx::Size(min(m_settings.maxUntiledLayerSize.width(), m_proxy->rendererCapabilities().maxTextureSize),
min(m_settings.maxUntiledLayerSize.height(), m_proxy->rendererCapabilities().maxTextureSize));
}
LayerTreeHost::RecreateResult LayerTreeHost::recreateContext()
{
TRACE_EVENT0("cc", "LayerTreeHost::recreateContext");
DCHECK(m_contextLost);
bool recreated = false;
if (!m_numTimesRecreateShouldFail)
recreated = m_proxy->recreateContext();
else
m_numTimesRecreateShouldFail--;
if (recreated) {
m_client->didRecreateOutputSurface(true);
m_contextLost = false;
return RecreateSucceeded;
}
// Tolerate a certain number of recreation failures to work around races
// in the context-lost machinery.
m_numFailedRecreateAttempts++;
if (m_numFailedRecreateAttempts < 5) {
// FIXME: The single thread does not self-schedule context
// recreation. So force another recreation attempt to happen by requesting
// another commit.
if (!m_proxy->hasImplThread())
setNeedsCommit();
return RecreateFailedButTryAgain;
}
// We have tried too many times to recreate the context. Tell the host to fall
// back to software rendering.
m_client->didRecreateOutputSurface(false);
return RecreateFailedAndGaveUp;
}
void LayerTreeHost::deleteContentsTexturesOnImplThread(ResourceProvider* resourceProvider)
{
DCHECK(m_proxy->isImplThread());
if (m_rendererInitialized)
m_contentsTextureManager->clearAllMemory(resourceProvider);
}
void LayerTreeHost::acquireLayerTextures()
{
DCHECK(m_proxy->isMainThread());
m_proxy->acquireLayerTextures();
}
void LayerTreeHost::updateAnimations(base::TimeTicks frameBeginTime)
{
m_animating = true;
m_client->animate((frameBeginTime - base::TimeTicks()).InSecondsF());
animateLayers(frameBeginTime);
m_animating = false;
m_renderingStats.numAnimationFrames++;
}
void LayerTreeHost::layout()
{
m_client->layout();
}
void LayerTreeHost::beginCommitOnImplThread(LayerTreeHostImpl* hostImpl)
{
DCHECK(m_proxy->isImplThread());
TRACE_EVENT0("cc", "LayerTreeHost::commitTo");
}
// This function commits the LayerTreeHost to an impl tree. When modifying
// this function, keep in mind that the function *runs* on the impl thread! Any
// code that is logically a main thread operation, e.g. deletion of a Layer,
// should be delayed until the LayerTreeHost::commitComplete, which will run
// after the commit, but on the main thread.
void LayerTreeHost::finishCommitOnImplThread(LayerTreeHostImpl* hostImpl)
{
DCHECK(m_proxy->isImplThread());
m_contentsTextureManager->updateBackingsInDrawingImplTree();
m_contentsTextureManager->reduceMemory(hostImpl->resourceProvider());
hostImpl->setRootLayer(TreeSynchronizer::synchronizeTrees(rootLayer(), hostImpl->detachLayerTree(), hostImpl));
if (m_rootLayer && m_hudLayer)
hostImpl->setHudLayer(static_cast<HeadsUpDisplayLayerImpl*>(LayerTreeHostCommon::findLayerInSubtree(hostImpl->rootLayer(), m_hudLayer->id())));
else
hostImpl->setHudLayer(0);
// We may have added an animation during the tree sync. This will cause both layer tree hosts
// to visit their controllers.
if (rootLayer() && m_needsAnimateLayers)
hostImpl->setNeedsAnimateLayers();
hostImpl->setSourceFrameNumber(commitNumber());
hostImpl->setViewportSize(layoutViewportSize(), deviceViewportSize());
hostImpl->setDeviceScaleFactor(deviceScaleFactor());
hostImpl->setPageScaleFactorAndLimits(m_pageScaleFactor, m_minPageScaleFactor, m_maxPageScaleFactor);
hostImpl->setBackgroundColor(m_backgroundColor);
hostImpl->setHasTransparentBackground(m_hasTransparentBackground);
m_commitNumber++;
}
void LayerTreeHost::createHUDLayerIfNeeded()
{
if (!m_hudLayer)
m_hudLayer = HeadsUpDisplayLayer::create();
}
void LayerTreeHost::setShowFPSCounter(bool show)
{
createHUDLayerIfNeeded();
m_hudLayer->setShowFPSCounter(show);
}
void LayerTreeHost::setFontAtlas(scoped_ptr<FontAtlas> fontAtlas)
{
createHUDLayerIfNeeded();
m_hudLayer->setFontAtlas(fontAtlas.Pass());
}
void LayerTreeHost::willCommit()
{
m_client->willCommit();
if (m_settings.showDebugInfo())
createHUDLayerIfNeeded();
if (m_rootLayer && m_hudLayer && !m_hudLayer->parent())
m_rootLayer->addChild(m_hudLayer);
}
void LayerTreeHost::commitComplete()
{
m_client->didCommit();
}
scoped_ptr<GraphicsContext> LayerTreeHost::createContext()
{
return m_client->createOutputSurface();
}
scoped_ptr<InputHandler> LayerTreeHost::createInputHandler()
{
return m_client->createInputHandler();
}
scoped_ptr<LayerTreeHostImpl> LayerTreeHost::createLayerTreeHostImpl(LayerTreeHostImplClient* client)
{
return LayerTreeHostImpl::create(m_settings, client, m_proxy.get());
}
void LayerTreeHost::didLoseContext()
{
TRACE_EVENT0("cc", "LayerTreeHost::didLoseContext");
DCHECK(m_proxy->isMainThread());
m_contextLost = true;
m_numFailedRecreateAttempts = 0;
setNeedsCommit();
}
bool LayerTreeHost::compositeAndReadback(void *pixels, const gfx::Rect& rect)
{
m_triggerIdleUpdates = false;
bool ret = m_proxy->compositeAndReadback(pixels, rect);
m_triggerIdleUpdates = true;
return ret;
}
void LayerTreeHost::finishAllRendering()
{
if (!m_rendererInitialized)
return;
m_proxy->finishAllRendering();
}
void LayerTreeHost::setDeferCommits(bool deferCommits)
{
m_proxy->setDeferCommits(deferCommits);
}
void LayerTreeHost::didDeferCommit()
{
}
void LayerTreeHost::renderingStats(RenderingStats* stats) const
{
*stats = m_renderingStats;
m_proxy->renderingStats(stats);
}
const RendererCapabilities& LayerTreeHost::rendererCapabilities() const
{
return m_proxy->rendererCapabilities();
}
void LayerTreeHost::setNeedsAnimate()
{
DCHECK(m_proxy->hasImplThread());
m_proxy->setNeedsAnimate();
}
void LayerTreeHost::setNeedsCommit()
{
if (!m_prepaintCallback.IsCancelled()) {
TRACE_EVENT_INSTANT0("cc", "LayerTreeHost::setNeedsCommit::cancel prepaint");
m_prepaintCallback.Cancel();
}
m_proxy->setNeedsCommit();
}
void LayerTreeHost::setNeedsRedraw()
{
m_proxy->setNeedsRedraw();
if (!m_proxy->implThread())
m_client->scheduleComposite();
}
bool LayerTreeHost::commitRequested() const
{
return m_proxy->commitRequested();
}
void LayerTreeHost::setAnimationEvents(scoped_ptr<AnimationEventsVector> events, base::Time wallClockTime)
{
DCHECK(m_proxy->isMainThread());
setAnimationEventsRecursive(*events.get(), m_rootLayer.get(), wallClockTime);
}
void LayerTreeHost::didAddAnimation()
{
m_needsAnimateLayers = true;
m_proxy->didAddAnimation();
}
void LayerTreeHost::setRootLayer(scoped_refptr<Layer> rootLayer)
{
if (m_rootLayer == rootLayer)
return;
if (m_rootLayer)
m_rootLayer->setLayerTreeHost(0);
m_rootLayer = rootLayer;
if (m_rootLayer)
m_rootLayer->setLayerTreeHost(this);
if (m_hudLayer)
m_hudLayer->removeFromParent();
setNeedsCommit();
}
void LayerTreeHost::setViewportSize(const gfx::Size& layoutViewportSize, const gfx::Size& deviceViewportSize)
{
if (layoutViewportSize == m_layoutViewportSize && deviceViewportSize == m_deviceViewportSize)
return;
m_layoutViewportSize = layoutViewportSize;
m_deviceViewportSize = deviceViewportSize;
setNeedsCommit();
}
void LayerTreeHost::setPageScaleFactorAndLimits(float pageScaleFactor, float minPageScaleFactor, float maxPageScaleFactor)
{
if (pageScaleFactor == m_pageScaleFactor && minPageScaleFactor == m_minPageScaleFactor && maxPageScaleFactor == m_maxPageScaleFactor)
return;
m_pageScaleFactor = pageScaleFactor;
m_minPageScaleFactor = minPageScaleFactor;
m_maxPageScaleFactor = maxPageScaleFactor;
setNeedsCommit();
}
void LayerTreeHost::setVisible(bool visible)
{
if (m_visible == visible)
return;
m_visible = visible;
m_proxy->setVisible(visible);
}
void LayerTreeHost::startPageScaleAnimation(gfx::Vector2d targetOffset, bool useAnchor, float scale, base::TimeDelta duration)
{
m_proxy->startPageScaleAnimation(targetOffset, useAnchor, scale, duration);
}
void LayerTreeHost::loseContext(int numTimes)
{
TRACE_EVENT1("cc", "LayerTreeHost::loseCompositorContext", "numTimes", numTimes);
m_numTimesRecreateShouldFail = numTimes - 1;
m_proxy->loseContext();
}
PrioritizedResourceManager* LayerTreeHost::contentsTextureManager() const
{
return m_contentsTextureManager.get();
}
void LayerTreeHost::composite()
{
if (!m_proxy->hasImplThread())
static_cast<SingleThreadProxy*>(m_proxy.get())->compositeImmediately();
else
setNeedsCommit();
}
void LayerTreeHost::scheduleComposite()
{
m_client->scheduleComposite();
}
bool LayerTreeHost::initializeRendererIfNeeded()
{
if (!m_rendererInitialized) {
initializeRenderer();
// If we couldn't initialize, then bail since we're returning to software mode.
if (!m_rendererInitialized)
return false;
}
if (m_contextLost) {
if (recreateContext() != RecreateSucceeded)
return false;
}
return true;
}
void LayerTreeHost::updateLayers(ResourceUpdateQueue& queue, size_t memoryAllocationLimitBytes)
{
DCHECK(m_rendererInitialized);
if (!rootLayer())
return;
if (layoutViewportSize().IsEmpty())
return;
if (memoryAllocationLimitBytes)
m_contentsTextureManager->setMaxMemoryLimitBytes(memoryAllocationLimitBytes);
updateLayers(rootLayer(), queue);
}
static Layer* findFirstScrollableLayer(Layer* layer)
{
if (!layer)
return 0;
if (layer->scrollable())
return layer;
for (size_t i = 0; i < layer->children().size(); ++i) {
Layer* found = findFirstScrollableLayer(layer->children()[i].get());
if (found)
return found;
}
return 0;
}
void LayerTreeHost::updateLayers(Layer* rootLayer, ResourceUpdateQueue& queue)
{
TRACE_EVENT0("cc", "LayerTreeHost::updateLayers");
LayerList updateList;
{
if (m_settings.pageScalePinchZoomEnabled) {
Layer* rootScroll = findFirstScrollableLayer(rootLayer);
if (rootScroll)
rootScroll->setImplTransform(m_implTransform);
}
TRACE_EVENT0("cc", "LayerTreeHost::updateLayers::calcDrawEtc");
LayerTreeHostCommon::calculateDrawTransforms(rootLayer, deviceViewportSize(), m_deviceScaleFactor, m_pageScaleFactor, rendererCapabilities().maxTextureSize, updateList);
}
// Reset partial texture update requests.
m_partialTextureUpdateRequests = 0;
bool needMoreUpdates = paintLayerContents(updateList, queue);
if (m_triggerIdleUpdates && needMoreUpdates) {
TRACE_EVENT0("cc", "LayerTreeHost::updateLayers::posting prepaint task");
m_prepaintCallback.Reset(base::Bind(&LayerTreeHost::triggerPrepaint, base::Unretained(this)));
static base::TimeDelta prepaintDelay = base::TimeDelta::FromMilliseconds(100);
MessageLoop::current()->PostDelayedTask(FROM_HERE, m_prepaintCallback.callback(), prepaintDelay);
}
for (size_t i = 0; i < updateList.size(); ++i)
updateList[i]->clearRenderSurface();
}
void LayerTreeHost::triggerPrepaint()
{
m_prepaintCallback.Cancel();
TRACE_EVENT0("cc", "LayerTreeHost::triggerPrepaint");
setNeedsCommit();
}
void LayerTreeHost::setPrioritiesForSurfaces(size_t surfaceMemoryBytes)
{
// Surfaces have a place holder for their memory since they are managed
// independantly but should still be tracked and reduce other memory usage.
m_surfaceMemoryPlaceholder->setTextureManager(m_contentsTextureManager.get());
m_surfaceMemoryPlaceholder->setRequestPriority(PriorityCalculator::renderSurfacePriority());
m_surfaceMemoryPlaceholder->setToSelfManagedMemoryPlaceholder(surfaceMemoryBytes);
}
void LayerTreeHost::setPrioritiesForLayers(const LayerList& updateList)
{
// Use BackToFront since it's cheap and this isn't order-dependent.
typedef LayerIterator<Layer, LayerList, RenderSurface, LayerIteratorActions::BackToFront> LayerIteratorType;
PriorityCalculator calculator;
LayerIteratorType end = LayerIteratorType::end(&updateList);
for (LayerIteratorType it = LayerIteratorType::begin(&updateList); it != end; ++it) {
if (it.representsItself())
it->setTexturePriorities(calculator);
else if (it.representsTargetRenderSurface()) {
if (it->maskLayer())
it->maskLayer()->setTexturePriorities(calculator);
if (it->replicaLayer() && it->replicaLayer()->maskLayer())
it->replicaLayer()->maskLayer()->setTexturePriorities(calculator);
}
}
}
void LayerTreeHost::prioritizeTextures(const LayerList& renderSurfaceLayerList, OverdrawMetrics& metrics)
{
m_contentsTextureManager->clearPriorities();
size_t memoryForRenderSurfacesMetric = calculateMemoryForRenderSurfaces(renderSurfaceLayerList);
setPrioritiesForLayers(renderSurfaceLayerList);
setPrioritiesForSurfaces(memoryForRenderSurfacesMetric);
metrics.didUseContentsTextureMemoryBytes(m_contentsTextureManager->memoryAboveCutoffBytes());
metrics.didUseRenderSurfaceTextureMemoryBytes(memoryForRenderSurfacesMetric);
m_contentsTextureManager->prioritizeTextures();
}
size_t LayerTreeHost::calculateMemoryForRenderSurfaces(const LayerList& updateList)
{
size_t readbackBytes = 0;
size_t maxBackgroundTextureBytes = 0;
size_t contentsTextureBytes = 0;
// Start iteration at 1 to skip the root surface as it does not have a texture cost.
for (size_t i = 1; i < updateList.size(); ++i) {
Layer* renderSurfaceLayer = updateList[i].get();
RenderSurface* renderSurface = renderSurfaceLayer->renderSurface();
size_t bytes = Resource::MemorySizeBytes(renderSurface->contentRect().size(), GL_RGBA);
contentsTextureBytes += bytes;
if (renderSurfaceLayer->backgroundFilters().isEmpty())
continue;
if (bytes > maxBackgroundTextureBytes)
maxBackgroundTextureBytes = bytes;
if (!readbackBytes)
readbackBytes = Resource::MemorySizeBytes(m_deviceViewportSize, GL_RGBA);
}
return readbackBytes + maxBackgroundTextureBytes + contentsTextureBytes;
}
bool LayerTreeHost::paintMasksForRenderSurface(Layer* renderSurfaceLayer, ResourceUpdateQueue& queue)
{
// Note: Masks and replicas only exist for layers that own render surfaces. If we reach this point
// in code, we already know that at least something will be drawn into this render surface, so the
// mask and replica should be painted.
bool needMoreUpdates = false;
Layer* maskLayer = renderSurfaceLayer->maskLayer();
if (maskLayer) {
maskLayer->update(queue, 0, m_renderingStats);
needMoreUpdates |= maskLayer->needMoreUpdates();
}
Layer* replicaMaskLayer = renderSurfaceLayer->replicaLayer() ? renderSurfaceLayer->replicaLayer()->maskLayer() : 0;
if (replicaMaskLayer) {
replicaMaskLayer->update(queue, 0, m_renderingStats);
needMoreUpdates |= replicaMaskLayer->needMoreUpdates();
}
return needMoreUpdates;
}
bool LayerTreeHost::paintLayerContents(const LayerList& renderSurfaceLayerList, ResourceUpdateQueue& queue)
{
// Use FrontToBack to allow for testing occlusion and performing culling during the tree walk.
typedef LayerIterator<Layer, LayerList, RenderSurface, LayerIteratorActions::FrontToBack> LayerIteratorType;
bool needMoreUpdates = false;
bool recordMetricsForFrame = m_settings.showOverdrawInTracing && base::debug::TraceLog::GetInstance() && base::debug::TraceLog::GetInstance()->IsEnabled();
OcclusionTracker occlusionTracker(m_rootLayer->renderSurface()->contentRect(), recordMetricsForFrame);
occlusionTracker.setMinimumTrackingSize(m_settings.minimumOcclusionTrackingSize);
prioritizeTextures(renderSurfaceLayerList, occlusionTracker.overdrawMetrics());
LayerIteratorType end = LayerIteratorType::end(&renderSurfaceLayerList);
for (LayerIteratorType it = LayerIteratorType::begin(&renderSurfaceLayerList); it != end; ++it) {
occlusionTracker.enterLayer(it);
if (it.representsTargetRenderSurface()) {
DCHECK(it->renderSurface()->drawOpacity() || it->renderSurface()->drawOpacityIsAnimating());
needMoreUpdates |= paintMasksForRenderSurface(*it, queue);
} else if (it.representsItself()) {
DCHECK(!it->bounds().IsEmpty());
it->update(queue, &occlusionTracker, m_renderingStats);
needMoreUpdates |= it->needMoreUpdates();
}
occlusionTracker.leaveLayer(it);
}
occlusionTracker.overdrawMetrics().recordMetrics(this);
return needMoreUpdates;
}
void LayerTreeHost::applyScrollAndScale(const ScrollAndScaleSet& info)
{
if (!m_rootLayer)
return;
Layer* rootScrollLayer = findFirstScrollableLayer(m_rootLayer.get());
gfx::Vector2d rootScrollDelta;
for (size_t i = 0; i < info.scrolls.size(); ++i) {
Layer* layer = LayerTreeHostCommon::findLayerInSubtree(m_rootLayer.get(), info.scrolls[i].layerId);
if (!layer)
continue;
if (layer == rootScrollLayer)
rootScrollDelta += info.scrolls[i].scrollDelta;
else
layer->setScrollOffset(layer->scrollOffset() + info.scrolls[i].scrollDelta);
}
if (!rootScrollDelta.IsZero() || info.pageScaleDelta != 1)
m_client->applyScrollAndScale(rootScrollDelta, info.pageScaleDelta);
}
gfx::PointF LayerTreeHost::adjustEventPointForPinchZoom(const gfx::PointF& zoomedViewportPoint)
const
{
if (m_implTransform.IsIdentity())
return zoomedViewportPoint;
DCHECK(m_implTransform.IsInvertible());
// Scale to screen space before applying implTransform inverse.
gfx::PointF zoomedScreenspacePoint = gfx::ScalePoint(zoomedViewportPoint, deviceScaleFactor());
gfx::Transform inverseImplTransform = MathUtil::inverse(m_implTransform);
bool wasClipped = false;
gfx::PointF unzoomedScreenspacePoint = MathUtil::projectPoint(inverseImplTransform, zoomedScreenspacePoint, wasClipped);
DCHECK(!wasClipped);
// Convert back to logical pixels for hit testing.
gfx::PointF unzoomedViewportPoint = gfx::ScalePoint(unzoomedScreenspacePoint, 1 / deviceScaleFactor());
return unzoomedViewportPoint;
}
void LayerTreeHost::setImplTransform(const gfx::Transform& transform)
{
m_implTransform = transform;
}
void LayerTreeHost::startRateLimiter(WebKit::WebGraphicsContext3D* context)
{
if (m_animating)
return;
DCHECK(context);
RateLimiterMap::iterator it = m_rateLimiters.find(context);
if (it != m_rateLimiters.end())
it->second->start();
else {
scoped_refptr<RateLimiter> rateLimiter = RateLimiter::create(context, this, m_proxy->mainThread());
m_rateLimiters[context] = rateLimiter;
rateLimiter->start();
}
}
void LayerTreeHost::stopRateLimiter(WebKit::WebGraphicsContext3D* context)
{
RateLimiterMap::iterator it = m_rateLimiters.find(context);
if (it != m_rateLimiters.end()) {
it->second->stop();
m_rateLimiters.erase(it);
}
}
void LayerTreeHost::rateLimit()
{
// Force a no-op command on the compositor context, so that any ratelimiting commands will wait for the compositing
// context, and therefore for the SwapBuffers.
m_proxy->forceSerializeOnSwapBuffers();
}
bool LayerTreeHost::bufferedUpdates()
{
return m_settings.maxPartialTextureUpdates != numeric_limits<size_t>::max();
}
bool LayerTreeHost::requestPartialTextureUpdate()
{
if (m_partialTextureUpdateRequests >= m_settings.maxPartialTextureUpdates)
return false;
m_partialTextureUpdateRequests++;
return true;
}
void LayerTreeHost::setDeviceScaleFactor(float deviceScaleFactor)
{
if (deviceScaleFactor == m_deviceScaleFactor)
return;
m_deviceScaleFactor = deviceScaleFactor;
setNeedsCommit();
}
void LayerTreeHost::animateLayers(base::TimeTicks time)
{
if (!m_settings.acceleratedAnimationEnabled || !m_needsAnimateLayers)
return;
TRACE_EVENT0("cc", "LayerTreeHostImpl::animateLayers");
m_needsAnimateLayers = animateLayersRecursive(m_rootLayer.get(), time);
}
bool LayerTreeHost::animateLayersRecursive(Layer* current, base::TimeTicks time)
{
if (!current)
return false;
bool subtreeNeedsAnimateLayers = false;
LayerAnimationController* currentController = current->layerAnimationController();
double monotonicTime = (time - base::TimeTicks()).InSecondsF();
currentController->animate(monotonicTime, 0);
// If the current controller still has an active animation, we must continue animating layers.
if (currentController->hasActiveAnimation())
subtreeNeedsAnimateLayers = true;
for (size_t i = 0; i < current->children().size(); ++i) {
if (animateLayersRecursive(current->children()[i].get(), time))
subtreeNeedsAnimateLayers = true;
}
return subtreeNeedsAnimateLayers;
}
void LayerTreeHost::setAnimationEventsRecursive(const AnimationEventsVector& events, Layer* layer, base::Time wallClockTime)
{
if (!layer)
return;
for (size_t eventIndex = 0; eventIndex < events.size(); ++eventIndex) {
if (layer->id() == events[eventIndex].layerId) {
if (events[eventIndex].type == AnimationEvent::Started)
layer->notifyAnimationStarted(events[eventIndex], wallClockTime.ToDoubleT());
else
layer->notifyAnimationFinished(wallClockTime.ToDoubleT());
}
}
for (size_t childIndex = 0; childIndex < layer->children().size(); ++childIndex)
setAnimationEventsRecursive(events, layer->children()[childIndex].get(), wallClockTime);
}
} // namespace cc