blob: 0d6909cd9c0ae3b7ecd6734e1610ad3f08e23614 [file] [log] [blame]
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layer_tree_host_common.h"
#include <algorithm>
#include "cc/layer.h"
#include "cc/layer_impl.h"
#include "cc/layer_iterator.h"
#include "cc/layer_sorter.h"
#include "cc/math_util.h"
#include "cc/render_surface.h"
#include "cc/render_surface_impl.h"
#include "ui/gfx/point_conversions.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/transform.h"
namespace cc {
ScrollAndScaleSet::ScrollAndScaleSet()
{
}
ScrollAndScaleSet::~ScrollAndScaleSet()
{
}
gfx::Rect LayerTreeHostCommon::calculateVisibleRect(const gfx::Rect& targetSurfaceRect, const gfx::Rect& layerBoundRect, const gfx::Transform& transform)
{
// Is this layer fully contained within the target surface?
gfx::Rect layerInSurfaceSpace = MathUtil::mapClippedRect(transform, layerBoundRect);
if (targetSurfaceRect.Contains(layerInSurfaceSpace))
return layerBoundRect;
// If the layer doesn't fill up the entire surface, then find the part of
// the surface rect where the layer could be visible. This avoids trying to
// project surface rect points that are behind the projection point.
gfx::Rect minimalSurfaceRect = targetSurfaceRect;
minimalSurfaceRect.Intersect(layerInSurfaceSpace);
// Project the corners of the target surface rect into the layer space.
// This bounding rectangle may be larger than it needs to be (being
// axis-aligned), but is a reasonable filter on the space to consider.
// Non-invertible transforms will create an empty rect here.
const gfx::Transform surfaceToLayer = MathUtil::inverse(transform);
gfx::Rect layerRect = gfx::ToEnclosingRect(MathUtil::projectClippedRect(surfaceToLayer, gfx::RectF(minimalSurfaceRect)));
layerRect.Intersect(layerBoundRect);
return layerRect;
}
template <typename LayerType>
static inline bool isRootLayer(LayerType* layer)
{
return !layer->parent();
}
template<typename LayerType>
static inline bool layerIsInExisting3DRenderingContext(LayerType* layer)
{
// According to current W3C spec on CSS transforms, a layer is part of an established
// 3d rendering context if its parent has transform-style of preserves-3d.
return layer->parent() && layer->parent()->preserves3D();
}
template<typename LayerType>
static bool isRootLayerOfNewRenderingContext(LayerType* layer)
{
// According to current W3C spec on CSS transforms (Section 6.1), a layer is the
// beginning of 3d rendering context if its parent does not have transform-style:
// preserve-3d, but this layer itself does.
if (layer->parent())
return !layer->parent()->preserves3D() && layer->preserves3D();
return layer->preserves3D();
}
template<typename LayerType>
static bool isLayerBackFaceVisible(LayerType* layer)
{
// The current W3C spec on CSS transforms says that backface visibility should be
// determined differently depending on whether the layer is in a "3d rendering
// context" or not. For Chromium code, we can determine whether we are in a 3d
// rendering context by checking if the parent preserves 3d.
if (layerIsInExisting3DRenderingContext(layer))
return layer->drawTransform().IsBackFaceVisible();
// In this case, either the layer establishes a new 3d rendering context, or is not in
// a 3d rendering context at all.
return layer->transform().IsBackFaceVisible();
}
template<typename LayerType>
static bool isSurfaceBackFaceVisible(LayerType* layer, const gfx::Transform& drawTransform)
{
if (layerIsInExisting3DRenderingContext(layer))
return drawTransform.IsBackFaceVisible();
if (isRootLayerOfNewRenderingContext(layer))
return layer->transform().IsBackFaceVisible();
// If the renderSurface is not part of a new or existing rendering context, then the
// layers that contribute to this surface will decide back-face visibility for themselves.
return false;
}
template<typename LayerType>
static inline bool layerClipsSubtree(LayerType* layer)
{
return layer->masksToBounds() || layer->maskLayer();
}
template<typename LayerType>
static gfx::Rect calculateVisibleContentRect(LayerType* layer)
{
DCHECK(layer->renderTarget());
// Nothing is visible if the layer bounds are empty.
if (!layer->drawsContent() || layer->contentBounds().IsEmpty() || layer->drawableContentRect().IsEmpty())
return gfx::Rect();
gfx::Rect targetSurfaceClipRect;
// First, compute visible bounds in target surface space.
if (layer->renderTarget()->renderSurface()->clipRect().IsEmpty())
targetSurfaceClipRect = layer->drawableContentRect();
else {
// In this case the target surface does clip layers that contribute to it. So, we
// have convert the current surface's clipRect from its ancestor surface space to
// the current surface space.
targetSurfaceClipRect = gfx::ToEnclosingRect(MathUtil::projectClippedRect(MathUtil::inverse(layer->renderTarget()->renderSurface()->drawTransform()), layer->renderTarget()->renderSurface()->clipRect()));
targetSurfaceClipRect.Intersect(layer->drawableContentRect());
}
if (targetSurfaceClipRect.IsEmpty())
return gfx::Rect();
return LayerTreeHostCommon::calculateVisibleRect(targetSurfaceClipRect, gfx::Rect(gfx::Point(), layer->contentBounds()), layer->drawTransform());
}
static inline bool transformToParentIsKnown(LayerImpl*)
{
return true;
}
static inline bool transformToParentIsKnown(Layer* layer)
{
return !layer->transformIsAnimating();
}
static inline bool transformToScreenIsKnown(LayerImpl*)
{
return true;
}
static inline bool transformToScreenIsKnown(Layer* layer)
{
return !layer->screenSpaceTransformIsAnimating();
}
template<typename LayerType>
static bool layerShouldBeSkipped(LayerType* layer)
{
// Layers can be skipped if any of these conditions are met.
// - does not draw content.
// - is transparent
// - has empty bounds
// - the layer is not double-sided, but its back face is visible.
//
// Some additional conditions need to be computed at a later point after the recursion is finished.
// - the intersection of render surface content and layer clipRect is empty
// - the visibleContentRect is empty
//
// Note, if the layer should not have been drawn due to being fully transparent,
// we would have skipped the entire subtree and never made it into this function,
// so it is safe to omit this check here.
if (!layer->drawsContent() || layer->bounds().IsEmpty())
return true;
LayerType* backfaceTestLayer = layer;
if (layer->useParentBackfaceVisibility()) {
DCHECK(layer->parent());
DCHECK(!layer->parent()->useParentBackfaceVisibility());
backfaceTestLayer = layer->parent();
}
// The layer should not be drawn if (1) it is not double-sided and (2) the back of the layer is known to be facing the screen.
if (!backfaceTestLayer->doubleSided() && transformToScreenIsKnown(backfaceTestLayer) && isLayerBackFaceVisible(backfaceTestLayer))
return true;
return false;
}
static inline bool subtreeShouldBeSkipped(LayerImpl* layer)
{
// The opacity of a layer always applies to its children (either implicitly
// via a render surface or explicitly if the parent preserves 3D), so the
// entire subtree can be skipped if this layer is fully transparent.
return !layer->opacity();
}
static inline bool subtreeShouldBeSkipped(Layer* layer)
{
// If the opacity is being animated then the opacity on the main thread is unreliable
// (since the impl thread may be using a different opacity), so it should not be trusted.
// In particular, it should not cause the subtree to be skipped.
return !layer->opacity() && !layer->opacityIsAnimating();
}
// Called on each layer that could be drawn after all information from
// calcDrawTransforms has been updated on that layer. May have some false
// positives (e.g. layers get this called on them but don't actually get drawn).
static inline void markLayerAsUpdated(LayerImpl* layer)
{
layer->didUpdateTransforms();
}
static inline void markLayerAsUpdated(Layer* layer)
{
}
template<typename LayerType>
static bool subtreeShouldRenderToSeparateSurface(LayerType* layer, bool axisAlignedWithRespectToParent)
{
//
// A layer and its descendants should render onto a new RenderSurfaceImpl if any of these rules hold:
//
// The root layer should always have a renderSurface.
if (isRootLayer(layer))
return true;
// If we force it.
if (layer->forceRenderSurface())
return true;
// If the layer uses a mask.
if (layer->maskLayer())
return true;
// If the layer has a reflection.
if (layer->replicaLayer())
return true;
// If the layer uses a CSS filter.
if (!layer->filters().isEmpty() || !layer->backgroundFilters().isEmpty() || layer->filter())
return true;
// Cache this value, because otherwise it walks the entire subtree several times.
bool descendantDrawsContent = layer->descendantDrawsContent();
// If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), but it is
// treated as a 3D object by its parent (i.e. parent does preserve-3d).
if (layerIsInExisting3DRenderingContext(layer) && !layer->preserves3D() && descendantDrawsContent)
return true;
// If the layer clips its descendants but it is not axis-aligned with respect to its parent.
if (layerClipsSubtree(layer) && !axisAlignedWithRespectToParent && descendantDrawsContent)
return true;
// If the layer has opacity != 1 and does not have a preserves-3d transform style.
if (layer->opacity() != 1 && !layer->preserves3D() && descendantDrawsContent)
return true;
return false;
}
gfx::Transform computeScrollCompensationForThisLayer(LayerImpl* scrollingLayer, const gfx::Transform& parentMatrix)
{
// For every layer that has non-zero scrollDelta, we have to compute a transform that can undo the
// scrollDelta translation. In particular, we want this matrix to premultiply a fixed-position layer's
// parentMatrix, so we design this transform in three steps as follows. The steps described here apply
// from right-to-left, so Step 1 would be the right-most matrix:
//
// Step 1. transform from target surface space to the exact space where scrollDelta is actually applied.
// -- this is inverse of the matrix in step 3
// Step 2. undo the scrollDelta
// -- this is just a translation by scrollDelta.
// Step 3. transform back to target surface space.
// -- this transform is the "partialLayerOriginTransform" = (parentMatrix * scale(layer->pageScaleDelta()));
//
// These steps create a matrix that both start and end in targetSurfaceSpace. So this matrix can
// pre-multiply any fixed-position layer's drawTransform to undo the scrollDeltas -- as long as
// that fixed position layer is fixed onto the same renderTarget as this scrollingLayer.
//
gfx::Transform partialLayerOriginTransform = parentMatrix;
partialLayerOriginTransform.PreconcatTransform(scrollingLayer->implTransform());
gfx::Transform scrollCompensationForThisLayer = partialLayerOriginTransform; // Step 3
scrollCompensationForThisLayer.Translate(scrollingLayer->scrollDelta().x(), scrollingLayer->scrollDelta().y()); // Step 2
scrollCompensationForThisLayer.PreconcatTransform(MathUtil::inverse(partialLayerOriginTransform)); // Step 1
return scrollCompensationForThisLayer;
}
gfx::Transform computeScrollCompensationMatrixForChildren(Layer* currentLayer, const gfx::Transform& currentParentMatrix, const gfx::Transform& currentScrollCompensation)
{
// The main thread (i.e. Layer) does not need to worry about scroll compensation.
// So we can just return an identity matrix here.
return gfx::Transform();
}
gfx::Transform computeScrollCompensationMatrixForChildren(LayerImpl* layer, const gfx::Transform& parentMatrix, const gfx::Transform& currentScrollCompensationMatrix)
{
// "Total scroll compensation" is the transform needed to cancel out all scrollDelta translations that
// occurred since the nearest container layer, even if there are renderSurfaces in-between.
//
// There are some edge cases to be aware of, that are not explicit in the code:
// - A layer that is both a fixed-position and container should not be its own container, instead, that means
// it is fixed to an ancestor, and is a container for any fixed-position descendants.
// - A layer that is a fixed-position container and has a renderSurface should behave the same as a container
// without a renderSurface, the renderSurface is irrelevant in that case.
// - A layer that does not have an explicit container is simply fixed to the viewport.
// (i.e. the root renderSurface.)
// - If the fixed-position layer has its own renderSurface, then the renderSurface is
// the one who gets fixed.
//
// This function needs to be called AFTER layers create their own renderSurfaces.
//
// Avoid the overheads (including stack allocation and matrix initialization/copy) if we know that the scroll compensation doesn't need to be reset or adjusted.
if (!layer->isContainerForFixedPositionLayers() && layer->scrollDelta().IsZero() && !layer->renderSurface())
return currentScrollCompensationMatrix;
// Start as identity matrix.
gfx::Transform nextScrollCompensationMatrix;
// If this layer is not a container, then it inherits the existing scroll compensations.
if (!layer->isContainerForFixedPositionLayers())
nextScrollCompensationMatrix = currentScrollCompensationMatrix;
// If the current layer has a non-zero scrollDelta, then we should compute its local scrollCompensation
// and accumulate it to the nextScrollCompensationMatrix.
if (!layer->scrollDelta().IsZero()) {
gfx::Transform scrollCompensationForThisLayer = computeScrollCompensationForThisLayer(layer, parentMatrix);
nextScrollCompensationMatrix.PreconcatTransform(scrollCompensationForThisLayer);
}
// If the layer created its own renderSurface, we have to adjust nextScrollCompensationMatrix.
// The adjustment allows us to continue using the scrollCompensation on the next surface.
// Step 1 (right-most in the math): transform from the new surface to the original ancestor surface
// Step 2: apply the scroll compensation
// Step 3: transform back to the new surface.
if (layer->renderSurface() && !nextScrollCompensationMatrix.IsIdentity())
nextScrollCompensationMatrix = MathUtil::inverse(layer->renderSurface()->drawTransform()) * nextScrollCompensationMatrix * layer->renderSurface()->drawTransform();
return nextScrollCompensationMatrix;
}
// There is no contentsScale on impl thread.
static inline void updateLayerContentsScale(LayerImpl*, const gfx::Transform&, float, float, bool) { }
static inline void updateLayerContentsScale(Layer* layer, const gfx::Transform& combinedTransform, float deviceScaleFactor, float pageScaleFactor, bool animatingTransformToScreen)
{
float rasterScale = layer->rasterScale();
if (!rasterScale) {
rasterScale = 1;
if (!animatingTransformToScreen && layer->automaticallyComputeRasterScale()) {
gfx::Vector2dF transformScale = MathUtil::computeTransform2dScaleComponents(combinedTransform);
float combinedScale = std::max(transformScale.x(), transformScale.y());
rasterScale = combinedScale / deviceScaleFactor;
if (!layer->boundsContainPageScale())
rasterScale /= pageScaleFactor;
// Prevent scale factors below 1 from being used or saved.
if (rasterScale < 1)
rasterScale = 1;
else
layer->setRasterScale(rasterScale);
}
}
float contentsScale = rasterScale * deviceScaleFactor;
if (!layer->boundsContainPageScale())
contentsScale *= pageScaleFactor;
layer->setContentsScale(contentsScale);
Layer* maskLayer = layer->maskLayer();
if (maskLayer)
maskLayer->setContentsScale(contentsScale);
Layer* replicaMaskLayer = layer->replicaLayer() ? layer->replicaLayer()->maskLayer() : 0;
if (replicaMaskLayer)
replicaMaskLayer->setContentsScale(contentsScale);
}
// Recursively walks the layer tree starting at the given node and computes all the
// necessary transformations, clipRects, render surfaces, etc.
template<typename LayerType, typename LayerList, typename RenderSurfaceType, typename LayerSorter>
static void calculateDrawTransformsInternal(LayerType* layer, const gfx::Transform& parentMatrix,
const gfx::Transform& fullHierarchyMatrix, const gfx::Transform& currentScrollCompensationMatrix,
const gfx::Rect& clipRectFromAncestor, bool ancestorClipsSubtree,
RenderSurfaceType* nearestAncestorThatMovesPixels, LayerList& renderSurfaceLayerList, LayerList& layerList,
LayerSorter* layerSorter, int maxTextureSize, float deviceScaleFactor, float pageScaleFactor, gfx::Rect& drawableContentRectOfSubtree)
{
// This function computes the new matrix transformations recursively for this
// layer and all its descendants. It also computes the appropriate render surfaces.
// Some important points to remember:
//
// 0. Here, transforms are notated in Matrix x Vector order, and in words we describe what
// the transform does from left to right.
//
// 1. In our terminology, the "layer origin" refers to the top-left corner of a layer, and the
// positive Y-axis points downwards. This interpretation is valid because the orthographic
// projection applied at draw time flips the Y axis appropriately.
//
// 2. The anchor point, when given as a PointF object, is specified in "unit layer space",
// where the bounds of the layer map to [0, 1]. However, as a Transform object,
// the transform to the anchor point is specified in "layer space", where the bounds
// of the layer map to [bounds.width(), bounds.height()].
//
// 3. Definition of various transforms used:
// M[parent] is the parent matrix, with respect to the nearest render surface, passed down recursively.
// M[root] is the full hierarchy, with respect to the root, passed down recursively.
// Tr[origin] is the translation matrix from the parent's origin to this layer's origin.
// Tr[origin2anchor] is the translation from the layer's origin to its anchor point
// Tr[origin2center] is the translation from the layer's origin to its center
// M[layer] is the layer's matrix (applied at the anchor point)
// M[sublayer] is the layer's sublayer transform (applied at the layer's center)
// S[layer2content] is the ratio of a layer's contentBounds() to its bounds().
//
// Some composite transforms can help in understanding the sequence of transforms:
// compositeLayerTransform = Tr[origin2anchor] * M[layer] * Tr[origin2anchor].inverse()
// compositeSublayerTransform = Tr[origin2center] * M[sublayer] * Tr[origin2center].inverse()
//
// In words, the layer transform is applied about the anchor point, and the sublayer transform is
// applied about the center of the layer.
//
// 4. When a layer (or render surface) is drawn, it is drawn into a "target render surface". Therefore the draw
// transform does not necessarily transform from screen space to local layer space. Instead, the draw transform
// is the transform between the "target render surface space" and local layer space. Note that render surfaces,
// except for the root, also draw themselves into a different target render surface, and so their draw
// transform and origin transforms are also described with respect to the target.
//
// Using these definitions, then:
//
// The draw transform for the layer is:
// M[draw] = M[parent] * Tr[origin] * compositeLayerTransform * S[layer2content]
// = M[parent] * Tr[layer->position() + anchor] * M[layer] * Tr[anchor2origin] * S[layer2content]
//
// Interpreting the math left-to-right, this transforms from the layer's render surface to the origin of the layer in content space.
//
// The screen space transform is:
// M[screenspace] = M[root] * Tr[origin] * compositeLayerTransform * S[layer2content]
// = M[root] * Tr[layer->position() + anchor] * M[layer] * Tr[anchor2origin] * S[layer2content]
//
// Interpreting the math left-to-right, this transforms from the root render surface's content space to the origin of the layer in content space.
//
// The transform hierarchy that is passed on to children (i.e. the child's parentMatrix) is:
// M[parent]_for_child = M[parent] * Tr[origin] * compositeLayerTransform * compositeSublayerTransform
// = M[parent] * Tr[layer->position() + anchor] * M[layer] * Tr[anchor2origin] * compositeSublayerTransform
//
// and a similar matrix for the full hierarchy with respect to the root.
//
// Finally, note that the final matrix used by the shader for the layer is P * M[draw] * S . This final product
// is computed in drawTexturedQuad(), where:
// P is the projection matrix
// S is the scale adjustment (to scale up a canonical quad to the layer's size)
//
// When a render surface has a replica layer, that layer's transform is used to draw a second copy of the surface.
// gfx::Transforms named here are relative to the surface, unless they specify they are relative to the replica layer.
//
// We will denote a scale by device scale S[deviceScale]
//
// The render surface draw transform to its target surface origin is:
// M[surfaceDraw] = M[owningLayer->Draw]
//
// The render surface origin transform to its the root (screen space) origin is:
// M[surface2root] = M[owningLayer->screenspace] * S[deviceScale].inverse()
//
// The replica draw transform to its target surface origin is:
// M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * Tr[replica->position() + replica->anchor()] * Tr[replica] * Tr[origin2anchor].inverse() * S[contentsScale].inverse()
//
// The replica draw transform to the root (screen space) origin is:
// M[replica2root] = M[surface2root] * Tr[replica->position()] * Tr[replica] * Tr[origin2anchor].inverse()
//
// If we early-exit anywhere in this function, the drawableContentRect of this subtree should be considered empty.
drawableContentRectOfSubtree = gfx::Rect();
// The root layer cannot skip calcDrawTransforms.
if (!isRootLayer(layer) && subtreeShouldBeSkipped(layer))
return;
gfx::Rect clipRectForSubtree;
bool subtreeShouldBeClipped = false;
float drawOpacity = layer->opacity();
bool drawOpacityIsAnimating = layer->opacityIsAnimating();
if (layer->parent() && layer->parent()->preserves3D()) {
drawOpacity *= layer->parent()->drawOpacity();
drawOpacityIsAnimating |= layer->parent()->drawOpacityIsAnimating();
}
bool animatingTransformToTarget = layer->transformIsAnimating();
bool animatingTransformToScreen = animatingTransformToTarget;
if (layer->parent()) {
animatingTransformToTarget |= layer->parent()->drawTransformIsAnimating();
animatingTransformToScreen |= layer->parent()->screenSpaceTransformIsAnimating();
}
gfx::Size bounds = layer->bounds();
gfx::PointF anchorPoint = layer->anchorPoint();
gfx::PointF position = layer->position() - layer->scrollDelta();
gfx::Transform layerLocalTransform;
// LT = Tr[origin] * Tr[origin2anchor]
layerLocalTransform.Translate3d(position.x() + anchorPoint.x() * bounds.width(), position.y() + anchorPoint.y() * bounds.height(), layer->anchorPointZ());
// LT = Tr[origin] * Tr[origin2anchor] * M[layer]
layerLocalTransform.PreconcatTransform(layer->transform());
// LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin]
layerLocalTransform.Translate3d(-anchorPoint.x() * bounds.width(), -anchorPoint.y() * bounds.height(), -layer->anchorPointZ());
gfx::Transform combinedTransform = parentMatrix;
combinedTransform.PreconcatTransform(layerLocalTransform);
// The layer's contentsSize is determined from the combinedTransform, which then informs the
// layer's drawTransform.
updateLayerContentsScale(layer, combinedTransform, deviceScaleFactor, pageScaleFactor, animatingTransformToScreen);
// If there is a tranformation from the impl thread then it should be at the
// start of the combinedTransform, but we don't want it to affect the contentsScale.
combinedTransform = layer->implTransform() * combinedTransform;
if (layer->fixedToContainerLayer()) {
// Special case: this layer is a composited fixed-position layer; we need to
// explicitly compensate for all ancestors' nonzero scrollDeltas to keep this layer
// fixed correctly.
combinedTransform = currentScrollCompensationMatrix * combinedTransform;
}
// The drawTransform that gets computed below is effectively the layer's drawTransform, unless
// the layer itself creates a renderSurface. In that case, the renderSurface re-parents the transforms.
gfx::Transform drawTransform = combinedTransform;
// M[draw] = M[parent] * LT * S[layer2content]
drawTransform.Scale(1.0 / layer->contentsScaleX(), 1.0 / layer->contentsScaleY());
// layerScreenSpaceTransform represents the transform between root layer's "screen space" and local content space.
gfx::Transform layerScreenSpaceTransform = fullHierarchyMatrix;
if (!layer->preserves3D())
MathUtil::flattenTransformTo2d(layerScreenSpaceTransform);
layerScreenSpaceTransform.PreconcatTransform(drawTransform);
layer->setScreenSpaceTransform(layerScreenSpaceTransform);
gfx::RectF contentRect(gfx::PointF(), layer->contentBounds());
// fullHierarchyMatrix is the matrix that transforms objects between screen space (except projection matrix) and the most recent RenderSurfaceImpl's space.
// nextHierarchyMatrix will only change if this layer uses a new RenderSurfaceImpl, otherwise remains the same.
gfx::Transform nextHierarchyMatrix = fullHierarchyMatrix;
gfx::Transform sublayerMatrix;
gfx::Vector2dF renderSurfaceSublayerScale = MathUtil::computeTransform2dScaleComponents(combinedTransform);
if (subtreeShouldRenderToSeparateSurface(layer, combinedTransform.IsScaleOrTranslation())) {
// Check back-face visibility before continuing with this surface and its subtree
if (!layer->doubleSided() && transformToParentIsKnown(layer) && isSurfaceBackFaceVisible(layer, combinedTransform))
return;
if (!layer->renderSurface())
layer->createRenderSurface();
RenderSurfaceType* renderSurface = layer->renderSurface();
renderSurface->clearLayerLists();
// The owning layer's draw transform has a scale from content to layer space which we need to undo and
// replace with a scale from the surface's subtree into layer space.
drawTransform.Scale(layer->contentsScaleX(), layer->contentsScaleY());
drawTransform.Scale(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
renderSurface->setDrawTransform(drawTransform);
// The origin of the new surface is the upper left corner of the layer.
gfx::Transform layerDrawTransform;
layerDrawTransform.Scale(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
layerDrawTransform.Scale(1.0 / layer->contentsScaleX(), 1.0 / layer->contentsScaleY());
layer->setDrawTransform(layerDrawTransform);
// Inside the surface's subtree, we scale everything to the owning layer's scale.
// The sublayer matrix transforms centered layer rects into target
// surface content space.
sublayerMatrix.MakeIdentity();
sublayerMatrix.Scale(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
// The opacity value is moved from the layer to its surface, so that the entire subtree properly inherits opacity.
renderSurface->setDrawOpacity(drawOpacity);
renderSurface->setDrawOpacityIsAnimating(drawOpacityIsAnimating);
layer->setDrawOpacity(1);
layer->setDrawOpacityIsAnimating(false);
renderSurface->setTargetSurfaceTransformsAreAnimating(animatingTransformToTarget);
renderSurface->setScreenSpaceTransformsAreAnimating(animatingTransformToScreen);
animatingTransformToTarget = false;
layer->setDrawTransformIsAnimating(animatingTransformToTarget);
layer->setScreenSpaceTransformIsAnimating(animatingTransformToScreen);
// Update the aggregate hierarchy matrix to include the transform of the
// newly created RenderSurfaceImpl.
nextHierarchyMatrix.PreconcatTransform(renderSurface->drawTransform());
// The new renderSurface here will correctly clip the entire subtree. So, we do
// not need to continue propagating the clipping state further down the tree. This
// way, we can avoid transforming clipRects from ancestor target surface space to
// current target surface space that could cause more w < 0 headaches.
subtreeShouldBeClipped = false;
if (layer->maskLayer()) {
layer->maskLayer()->setRenderTarget(layer);
layer->maskLayer()->setVisibleContentRect(gfx::Rect(gfx::Point(), layer->contentBounds()));
}
if (layer->replicaLayer() && layer->replicaLayer()->maskLayer()) {
layer->replicaLayer()->maskLayer()->setRenderTarget(layer);
layer->replicaLayer()->maskLayer()->setVisibleContentRect(gfx::Rect(gfx::Point(), layer->contentBounds()));
}
// FIXME: make this smarter for the SkImageFilter case (check for
// pixel-moving filters)
if (layer->filters().hasFilterThatMovesPixels() || layer->filter())
nearestAncestorThatMovesPixels = renderSurface;
// The render surface clipRect is expressed in the space where this surface draws, i.e. the same space as clipRectFromAncestor.
renderSurface->setIsClipped(ancestorClipsSubtree);
if (ancestorClipsSubtree)
renderSurface->setClipRect(clipRectFromAncestor);
else
renderSurface->setClipRect(gfx::Rect());
renderSurface->setNearestAncestorThatMovesPixels(nearestAncestorThatMovesPixels);
renderSurfaceLayerList.push_back(layer);
} else {
DCHECK(layer->parent());
layer->setDrawTransform(drawTransform);
layer->setDrawTransformIsAnimating(animatingTransformToTarget);
layer->setScreenSpaceTransformIsAnimating(animatingTransformToScreen);
sublayerMatrix = combinedTransform;
layer->setDrawOpacity(drawOpacity);
layer->setDrawOpacityIsAnimating(drawOpacityIsAnimating);
layer->clearRenderSurface();
// Layers without renderSurfaces directly inherit the ancestor's clip status.
subtreeShouldBeClipped = ancestorClipsSubtree;
if (ancestorClipsSubtree)
clipRectForSubtree = clipRectFromAncestor;
// Layers that are not their own renderTarget will render into the target of their nearest ancestor.
layer->setRenderTarget(layer->parent()->renderTarget());
}
gfx::Rect rectInTargetSpace = ToEnclosingRect(MathUtil::mapClippedRect(layer->drawTransform(), contentRect));
if (layerClipsSubtree(layer)) {
subtreeShouldBeClipped = true;
if (ancestorClipsSubtree && !layer->renderSurface()) {
clipRectForSubtree = clipRectFromAncestor;
clipRectForSubtree.Intersect(rectInTargetSpace);
} else
clipRectForSubtree = rectInTargetSpace;
}
// Flatten to 2D if the layer doesn't preserve 3D.
if (!layer->preserves3D())
MathUtil::flattenTransformTo2d(sublayerMatrix);
// Apply the sublayer transform at the center of the layer.
sublayerMatrix.Translate(0.5 * bounds.width(), 0.5 * bounds.height());
sublayerMatrix.PreconcatTransform(layer->sublayerTransform());
sublayerMatrix.Translate(-0.5 * bounds.width(), -0.5 * bounds.height());
LayerList& descendants = (layer->renderSurface() ? layer->renderSurface()->layerList() : layerList);
// Any layers that are appended after this point are in the layer's subtree and should be included in the sorting process.
unsigned sortingStartIndex = descendants.size();
if (!layerShouldBeSkipped(layer))
descendants.push_back(layer);
gfx::Transform nextScrollCompensationMatrix = computeScrollCompensationMatrixForChildren(layer, parentMatrix, currentScrollCompensationMatrix);;
gfx::Rect accumulatedDrawableContentRectOfChildren;
for (size_t i = 0; i < layer->children().size(); ++i) {
LayerType* child = LayerTreeHostCommon::getChildAsRawPtr(layer->children(), i);
gfx::Rect drawableContentRectOfChildSubtree;
calculateDrawTransformsInternal<LayerType, LayerList, RenderSurfaceType, LayerSorter>(child, sublayerMatrix, nextHierarchyMatrix, nextScrollCompensationMatrix,
clipRectForSubtree, subtreeShouldBeClipped, nearestAncestorThatMovesPixels,
renderSurfaceLayerList, descendants, layerSorter, maxTextureSize, deviceScaleFactor, pageScaleFactor, drawableContentRectOfChildSubtree);
if (!drawableContentRectOfChildSubtree.IsEmpty()) {
accumulatedDrawableContentRectOfChildren.Union(drawableContentRectOfChildSubtree);
if (child->renderSurface())
descendants.push_back(child);
}
}
// Compute the total drawableContentRect for this subtree (the rect is in targetSurface space)
gfx::Rect localDrawableContentRectOfSubtree = accumulatedDrawableContentRectOfChildren;
if (layer->drawsContent())
localDrawableContentRectOfSubtree.Union(rectInTargetSpace);
if (subtreeShouldBeClipped)
localDrawableContentRectOfSubtree.Intersect(clipRectForSubtree);
// Compute the layer's drawable content rect (the rect is in targetSurface space)
gfx::Rect drawableContentRectOfLayer = rectInTargetSpace;
if (subtreeShouldBeClipped)
drawableContentRectOfLayer.Intersect(clipRectForSubtree);
layer->setDrawableContentRect(drawableContentRectOfLayer);
// Tell the layer the rect that is clipped by. In theory we could use a
// tighter clipRect here (drawableContentRect), but that actually does not
// reduce how much would be drawn, and instead it would create unnecessary
// changes to scissor state affecting GPU performance.
layer->setIsClipped(subtreeShouldBeClipped);
if (subtreeShouldBeClipped)
layer->setClipRect(clipRectForSubtree);
else {
// Initialize the clipRect to a safe value that will not clip the
// layer, just in case clipping is still accidentally used.
layer->setClipRect(rectInTargetSpace);
}
// Compute the layer's visible content rect (the rect is in content space)
gfx::Rect visibleContentRectOfLayer = calculateVisibleContentRect(layer);
layer->setVisibleContentRect(visibleContentRectOfLayer);
// Compute the remaining properties for the render surface, if the layer has one.
if (isRootLayer(layer)) {
// The root layer's surface's contentRect is always the entire viewport.
DCHECK(layer->renderSurface());
layer->renderSurface()->setContentRect(clipRectFromAncestor);
} else if (layer->renderSurface() && !isRootLayer(layer)) {
RenderSurfaceType* renderSurface = layer->renderSurface();
gfx::Rect clippedContentRect = localDrawableContentRectOfSubtree;
// Don't clip if the layer is reflected as the reflection shouldn't be
// clipped. If the layer is animating, then the surface's transform to
// its target is not known on the main thread, and we should not use it
// to clip.
if (!layer->replicaLayer() && transformToParentIsKnown(layer)) {
// Note, it is correct to use ancestorClipsSubtree here, because we are looking at this layer's renderSurface, not the layer itself.
if (ancestorClipsSubtree && !clippedContentRect.IsEmpty()) {
gfx::Rect surfaceClipRect = LayerTreeHostCommon::calculateVisibleRect(renderSurface->clipRect(), clippedContentRect, renderSurface->drawTransform());
clippedContentRect.Intersect(surfaceClipRect);
}
}
// The RenderSurfaceImpl backing texture cannot exceed the maximum supported
// texture size.
clippedContentRect.set_width(std::min(clippedContentRect.width(), maxTextureSize));
clippedContentRect.set_height(std::min(clippedContentRect.height(), maxTextureSize));
if (clippedContentRect.IsEmpty())
renderSurface->clearLayerLists();
renderSurface->setContentRect(clippedContentRect);
// The owning layer's screenSpaceTransform has a scale from content to layer space which we need to undo and
// replace with a scale from the surface's subtree into layer space.
gfx::Transform screenSpaceTransform = layer->screenSpaceTransform();
screenSpaceTransform.Scale(layer->contentsScaleX(), layer->contentsScaleY());
screenSpaceTransform.Scale(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
renderSurface->setScreenSpaceTransform(screenSpaceTransform);
if (layer->replicaLayer()) {
gfx::Transform surfaceOriginToReplicaOriginTransform;
surfaceOriginToReplicaOriginTransform.Scale(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
surfaceOriginToReplicaOriginTransform.Translate(layer->replicaLayer()->position().x() + layer->replicaLayer()->anchorPoint().x() * bounds.width(),
layer->replicaLayer()->position().y() + layer->replicaLayer()->anchorPoint().y() * bounds.height());
surfaceOriginToReplicaOriginTransform.PreconcatTransform(layer->replicaLayer()->transform());
surfaceOriginToReplicaOriginTransform.Translate(-layer->replicaLayer()->anchorPoint().x() * bounds.width(), -layer->replicaLayer()->anchorPoint().y() * bounds.height());
surfaceOriginToReplicaOriginTransform.Scale(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
// Compute the replica's "originTransform" that maps from the replica's origin space to the target surface origin space.
gfx::Transform replicaOriginTransform = layer->renderSurface()->drawTransform() * surfaceOriginToReplicaOriginTransform;
renderSurface->setReplicaDrawTransform(replicaOriginTransform);
// Compute the replica's "screenSpaceTransform" that maps from the replica's origin space to the screen's origin space.
gfx::Transform replicaScreenSpaceTransform = layer->renderSurface()->screenSpaceTransform() * surfaceOriginToReplicaOriginTransform;
renderSurface->setReplicaScreenSpaceTransform(replicaScreenSpaceTransform);
}
// If a render surface has no layer list, then it and none of its children needed to get drawn.
if (!layer->renderSurface()->layerList().size()) {
// FIXME: Originally we asserted that this layer was already at the end of the
// list, and only needed to remove that layer. For now, we remove the
// entire subtree of surfaces to fix a crash bug. The root cause is
// https://bugs.webkit.org/show_bug.cgi?id=74147 and we should be able
// to put the original assert after fixing that.
while (renderSurfaceLayerList.back() != layer) {
renderSurfaceLayerList.back()->clearRenderSurface();
renderSurfaceLayerList.pop_back();
}
DCHECK(renderSurfaceLayerList.back() == layer);
renderSurfaceLayerList.pop_back();
layer->clearRenderSurface();
return;
}
}
markLayerAsUpdated(layer);
// If neither this layer nor any of its children were added, early out.
if (sortingStartIndex == descendants.size())
return;
// If preserves-3d then sort all the descendants in 3D so that they can be
// drawn from back to front. If the preserves-3d property is also set on the parent then
// skip the sorting as the parent will sort all the descendants anyway.
if (descendants.size() && layer->preserves3D() && (!layer->parent() || !layer->parent()->preserves3D()))
sortLayers(descendants.begin() + sortingStartIndex, descendants.end(), layerSorter);
if (layer->renderSurface())
drawableContentRectOfSubtree = gfx::ToEnclosingRect(layer->renderSurface()->drawableContentRect());
else
drawableContentRectOfSubtree = localDrawableContentRectOfSubtree;
if (layer->hasContributingDelegatedRenderPasses())
layer->renderTarget()->renderSurface()->addContributingDelegatedRenderPassLayer(layer);
}
void LayerTreeHostCommon::calculateDrawTransforms(Layer* rootLayer, const gfx::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int maxTextureSize, std::vector<scoped_refptr<Layer> >& renderSurfaceLayerList)
{
gfx::Rect totalDrawableContentRect;
gfx::Transform identityMatrix;
gfx::Transform deviceScaleTransform;
deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor);
std::vector<scoped_refptr<Layer> > dummyLayerList;
// The root layer's renderSurface should receive the deviceViewport as the initial clipRect.
bool subtreeShouldBeClipped = true;
gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize);
// This function should have received a root layer.
DCHECK(isRootLayer(rootLayer));
cc::calculateDrawTransformsInternal<Layer, std::vector<scoped_refptr<Layer> >, RenderSurface, void>(
rootLayer, deviceScaleTransform, identityMatrix, identityMatrix,
deviceViewportRect, subtreeShouldBeClipped, 0, renderSurfaceLayerList,
dummyLayerList, 0, maxTextureSize,
deviceScaleFactor, pageScaleFactor, totalDrawableContentRect);
// The dummy layer list should not have been used.
DCHECK(dummyLayerList.size() == 0);
// A root layer renderSurface should always exist after calculateDrawTransforms.
DCHECK(rootLayer->renderSurface());
}
void LayerTreeHostCommon::calculateDrawTransforms(LayerImpl* rootLayer, const gfx::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, LayerSorter* layerSorter, int maxTextureSize, std::vector<LayerImpl*>& renderSurfaceLayerList)
{
gfx::Rect totalDrawableContentRect;
gfx::Transform identityMatrix;
gfx::Transform deviceScaleTransform;
deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor);
std::vector<LayerImpl*> dummyLayerList;
// The root layer's renderSurface should receive the deviceViewport as the initial clipRect.
bool subtreeShouldBeClipped = true;
gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize);
// This function should have received a root layer.
DCHECK(isRootLayer(rootLayer));
cc::calculateDrawTransformsInternal<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl, LayerSorter>(
rootLayer, deviceScaleTransform, identityMatrix, identityMatrix,
deviceViewportRect, subtreeShouldBeClipped, 0, renderSurfaceLayerList,
dummyLayerList, layerSorter, maxTextureSize,
deviceScaleFactor, pageScaleFactor, totalDrawableContentRect);
// The dummy layer list should not have been used.
DCHECK(dummyLayerList.size() == 0);
// A root layer renderSurface should always exist after calculateDrawTransforms.
DCHECK(rootLayer->renderSurface());
}
static bool pointHitsRect(const gfx::PointF& screenSpacePoint, const gfx::Transform& localSpaceToScreenSpaceTransform, gfx::RectF localSpaceRect)
{
// If the transform is not invertible, then assume that this point doesn't hit this rect.
if (!localSpaceToScreenSpaceTransform.IsInvertible())
return false;
// Transform the hit test point from screen space to the local space of the given rect.
bool clipped = false;
gfx::PointF hitTestPointInLocalSpace = MathUtil::projectPoint(MathUtil::inverse(localSpaceToScreenSpaceTransform), screenSpacePoint, clipped);
// If projectPoint could not project to a valid value, then we assume that this point doesn't hit this rect.
if (clipped)
return false;
return localSpaceRect.Contains(hitTestPointInLocalSpace);
}
static bool pointHitsRegion(gfx::PointF screenSpacePoint, const gfx::Transform& screenSpaceTransform, const Region& layerSpaceRegion, float layerContentScaleX, float layerContentScaleY)
{
// If the transform is not invertible, then assume that this point doesn't hit this region.
if (!screenSpaceTransform.IsInvertible())
return false;
// Transform the hit test point from screen space to the local space of the given region.
bool clipped = false;
gfx::PointF hitTestPointInContentSpace = MathUtil::projectPoint(MathUtil::inverse(screenSpaceTransform), screenSpacePoint, clipped);
gfx::PointF hitTestPointInLayerSpace = gfx::ScalePoint(hitTestPointInContentSpace, 1 / layerContentScaleX, 1 / layerContentScaleY);
// If projectPoint could not project to a valid value, then we assume that this point doesn't hit this region.
if (clipped)
return false;
return layerSpaceRegion.Contains(gfx::ToRoundedPoint(hitTestPointInLayerSpace));
}
static bool pointIsClippedBySurfaceOrClipRect(const gfx::PointF& screenSpacePoint, LayerImpl* layer)
{
LayerImpl* currentLayer = layer;
// Walk up the layer tree and hit-test any renderSurfaces and any layer clipRects that are active.
while (currentLayer) {
if (currentLayer->renderSurface() && !pointHitsRect(screenSpacePoint, currentLayer->renderSurface()->screenSpaceTransform(), currentLayer->renderSurface()->contentRect()))
return true;
// Note that drawableContentRects are actually in targetSurface space, so the transform we
// have to provide is the target surface's screenSpaceTransform.
LayerImpl* renderTarget = currentLayer->renderTarget();
if (layerClipsSubtree(currentLayer) && !pointHitsRect(screenSpacePoint, renderTarget->renderSurface()->screenSpaceTransform(), currentLayer->drawableContentRect()))
return true;
currentLayer = currentLayer->parent();
}
// If we have finished walking all ancestors without having already exited, then the point is not clipped by any ancestors.
return false;
}
LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPoint(const gfx::PointF& screenSpacePoint, std::vector<LayerImpl*>& renderSurfaceLayerList)
{
LayerImpl* foundLayer = 0;
typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl, LayerIteratorActions::FrontToBack> LayerIteratorType;
LayerIteratorType end = LayerIteratorType::end(&renderSurfaceLayerList);
for (LayerIteratorType it = LayerIteratorType::begin(&renderSurfaceLayerList); it != end; ++it) {
// We don't want to consider renderSurfaces for hit testing.
if (!it.representsItself())
continue;
LayerImpl* currentLayer = (*it);
gfx::RectF contentRect(gfx::PointF(), currentLayer->contentBounds());
if (!pointHitsRect(screenSpacePoint, currentLayer->screenSpaceTransform(), contentRect))
continue;
// At this point, we think the point does hit the layer, but we need to walk up
// the parents to ensure that the layer was not clipped in such a way that the
// hit point actually should not hit the layer.
if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, currentLayer))
continue;
foundLayer = currentLayer;
break;
}
// This can potentially return 0, which means the screenSpacePoint did not successfully hit test any layers, not even the root layer.
return foundLayer;
}
LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPointInTouchHandlerRegion(const gfx::PointF& screenSpacePoint, std::vector<LayerImpl*>& renderSurfaceLayerList)
{
LayerImpl* foundLayer = 0;
typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl, LayerIteratorActions::FrontToBack> LayerIteratorType;
LayerIteratorType end = LayerIteratorType::end(&renderSurfaceLayerList);
for (LayerIteratorType it = LayerIteratorType::begin(&renderSurfaceLayerList); it != end; ++it) {
// We don't want to consider renderSurfaces for hit testing.
if (!it.representsItself())
continue;
LayerImpl* currentLayer = (*it);
if (currentLayer->touchEventHandlerRegion().IsEmpty())
continue;
if (!pointHitsRegion(screenSpacePoint, currentLayer->screenSpaceTransform(), currentLayer->touchEventHandlerRegion(), currentLayer->contentsScaleX(), currentLayer->contentsScaleY()))
continue;
// At this point, we think the point does hit the touch event handler region on the layer, but we need to walk up
// the parents to ensure that the layer was not clipped in such a way that the
// hit point actually should not hit the layer.
if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, currentLayer))
continue;
foundLayer = currentLayer;
break;
}
// This can potentially return 0, which means the screenSpacePoint did not successfully hit test any layers, not even the root layer.
return foundLayer;
}
} // namespace cc