blob: f181a7b22e5a8a87ee19883be5dd74ec41525b22 [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/timing_function.h"
#include "third_party/skia/include/core/SkMath.h"
// TODO(danakj) These methods come from SkInterpolator.cpp. When such a method
// is available in the public Skia API, we should switch to using that.
// http://crbug.com/159735
namespace {
// Dot14 has 14 bits for decimal places, and the remainder for whole numbers.
typedef int Dot14;
#define DOT14_ONE (1 << 14)
#define DOT14_HALF (1 << 13)
#define Dot14ToFloat(x) ((x) / 16384.f)
static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
return (a * b + DOT14_HALF) >> 14;
}
static inline Dot14 EvalCubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
}
static inline Dot14 PinAndConvert(SkScalar x) {
if (x <= 0)
return 0;
if (x >= SK_Scalar1)
return DOT14_ONE;
return SkScalarToFixed(x) >> 2;
}
SkScalar SkUnitCubicInterp(SkScalar bx, SkScalar by,
SkScalar cx, SkScalar cy,
SkScalar value) {
Dot14 x = PinAndConvert(value);
if (x == 0) return 0;
if (x == DOT14_ONE) return SK_Scalar1;
Dot14 b = PinAndConvert(bx);
Dot14 c = PinAndConvert(cx);
// Now compute our coefficients from the control points.
// t -> 3b
// t^2 -> 3c - 6b
// t^3 -> 3b - 3c + 1
Dot14 A = 3 * b;
Dot14 B = 3 * (c - 2 * b);
Dot14 C = 3 * (b - c) + DOT14_ONE;
// Now search for a t value given x.
Dot14 t = DOT14_HALF;
Dot14 dt = DOT14_HALF;
for (int i = 0; i < 13; i++) {
dt >>= 1;
Dot14 guess = EvalCubic(t, A, B, C);
if (x < guess)
t -= dt;
else
t += dt;
}
// Now we have t, so compute the coefficient for Y and evaluate.
b = PinAndConvert(by);
c = PinAndConvert(cy);
A = 3 * b;
B = 3 * (c - 2 * b);
C = 3 * (b - c) + DOT14_ONE;
return SkFixedToScalar(EvalCubic(t, A, B, C) << 2);
}
} // namespace
namespace cc {
TimingFunction::TimingFunction() {
}
TimingFunction::~TimingFunction() {
}
double TimingFunction::duration() const {
return 1.0;
}
scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::create(
double x1, double y1, double x2, double y2) {
return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2));
}
CubicBezierTimingFunction::CubicBezierTimingFunction(double x1, double y1,
double x2, double y2)
: x1_(SkDoubleToScalar(x1)),
y1_(SkDoubleToScalar(y1)),
x2_(SkDoubleToScalar(x2)),
y2_(SkDoubleToScalar(y2)) {
}
CubicBezierTimingFunction::~CubicBezierTimingFunction() {
}
float CubicBezierTimingFunction::getValue(double x) const {
SkScalar value = SkUnitCubicInterp(x1_, y1_, x2_, y2_, x);
return SkScalarToFloat(value);
}
scoped_ptr<AnimationCurve> CubicBezierTimingFunction::clone() const {
return make_scoped_ptr(
new CubicBezierTimingFunction(*this)).PassAs<AnimationCurve>();
}
// These numbers come from http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag.
scoped_ptr<TimingFunction> EaseTimingFunction::create() {
return CubicBezierTimingFunction::create(
0.25, 0.1, 0.25, 1).PassAs<TimingFunction>();
}
scoped_ptr<TimingFunction> EaseInTimingFunction::create() {
return CubicBezierTimingFunction::create(
0.42, 0, 1.0, 1).PassAs<TimingFunction>();
}
scoped_ptr<TimingFunction> EaseOutTimingFunction::create() {
return CubicBezierTimingFunction::create(
0, 0, 0.58, 1).PassAs<TimingFunction>();
}
scoped_ptr<TimingFunction> EaseInOutTimingFunction::create() {
return CubicBezierTimingFunction::create(
0.42, 0, 0.58, 1).PassAs<TimingFunction>();
}
} // namespace cc