blob: 918fac617c176b62a08d76a1783d56a3decbfd70 [file] [log] [blame]
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/video_layer_impl.h"
#include "base/logging.h"
#include "cc/io_surface_draw_quad.h"
#include "cc/layer_tree_host_impl.h"
#include "cc/math_util.h"
#include "cc/quad_sink.h"
#include "cc/resource_provider.h"
#include "cc/stream_video_draw_quad.h"
#include "cc/texture_draw_quad.h"
#include "cc/yuv_video_draw_quad.h"
#include "media/filters/skcanvas_video_renderer.h"
#include "third_party/khronos/GLES2/gl2.h"
#include "third_party/khronos/GLES2/gl2ext.h"
namespace cc {
VideoLayerImpl::VideoLayerImpl(int id, WebKit::WebVideoFrameProvider* provider,
const FrameUnwrapper& unwrapper)
: LayerImpl(id)
, m_provider(provider)
, m_unwrapper(unwrapper)
, m_webFrame(0)
, m_frame(0)
, m_format(GL_INVALID_VALUE)
, m_convertYUV(false)
, m_externalTextureResource(0)
{
// This matrix is the default transformation for stream textures, and flips on the Y axis.
m_streamTextureMatrix = MathUtil::createGfxTransform(
1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
0, 1, 0, 1);
// This only happens during a commit on the compositor thread while the main
// thread is blocked. That makes this a thread-safe call to set the video
// frame provider client that does not require a lock. The same is true of
// the call in the destructor.
m_provider->setVideoFrameProviderClient(this);
}
VideoLayerImpl::~VideoLayerImpl()
{
// See comment in constructor for why this doesn't need a lock.
if (m_provider) {
m_provider->setVideoFrameProviderClient(0);
m_provider = 0;
}
freePlaneData(layerTreeHostImpl()->resourceProvider());
#ifndef NDEBUG
for (size_t i = 0; i < media::VideoFrame::kMaxPlanes; ++i)
DCHECK(!m_framePlanes[i].resourceId);
DCHECK(!m_externalTextureResource);
#endif
}
void VideoLayerImpl::stopUsingProvider()
{
// Block the provider from shutting down until this client is done
// using the frame.
base::AutoLock locker(m_providerLock);
DCHECK(!m_frame);
m_provider = 0;
}
// Convert media::VideoFrame::Format to OpenGL enum values.
static GLenum convertVFCFormatToGLenum(const media::VideoFrame& frame)
{
switch (frame.format()) {
case media::VideoFrame::YV12:
case media::VideoFrame::YV16:
return GL_LUMINANCE;
case media::VideoFrame::NATIVE_TEXTURE:
return frame.texture_target();
case media::VideoFrame::INVALID:
case media::VideoFrame::RGB32:
case media::VideoFrame::EMPTY:
case media::VideoFrame::I420:
NOTREACHED();
break;
}
return GL_INVALID_VALUE;
}
size_t VideoLayerImpl::numPlanes() const
{
if (!m_frame)
return 0;
if (m_convertYUV)
return 1;
switch (m_frame->format()) {
case media::VideoFrame::RGB32:
return 1;
case media::VideoFrame::YV12:
case media::VideoFrame::YV16:
return 3;
case media::VideoFrame::INVALID:
case media::VideoFrame::EMPTY:
case media::VideoFrame::I420:
break;
case media::VideoFrame::NATIVE_TEXTURE:
return 0;
}
NOTREACHED();
return 0;
}
void VideoLayerImpl::willDraw(ResourceProvider* resourceProvider)
{
LayerImpl::willDraw(resourceProvider);
// Explicitly acquire and release the provider mutex so it can be held from
// willDraw to didDraw. Since the compositor thread is in the middle of
// drawing, the layer will not be destroyed before didDraw is called.
// Therefore, the only thing that will prevent this lock from being released
// is the GPU process locking it. As the GPU process can't cause the
// destruction of the provider (calling stopUsingProvider), holding this
// lock should not cause a deadlock.
m_providerLock.Acquire();
willDrawInternal(resourceProvider);
freeUnusedPlaneData(resourceProvider);
if (!m_frame)
m_providerLock.Release();
}
void VideoLayerImpl::willDrawInternal(ResourceProvider* resourceProvider)
{
DCHECK(!m_externalTextureResource);
if (!m_provider) {
m_frame = 0;
return;
}
m_webFrame = m_provider->getCurrentFrame();
m_frame = m_unwrapper.Run(m_webFrame);
if (!m_frame)
return;
m_format = convertVFCFormatToGLenum(*m_frame);
// If these fail, we'll have to add draw logic that handles offset bitmap/
// texture UVs. For now, just expect (0, 0) offset, since all our decoders
// so far don't offset.
DCHECK_EQ(m_frame->visible_rect().x(), 0);
DCHECK_EQ(m_frame->visible_rect().y(), 0);
if (m_format == GL_INVALID_VALUE) {
m_provider->putCurrentFrame(m_webFrame);
m_frame = 0;
return;
}
// FIXME: If we're in software compositing mode, we do the YUV -> RGB
// conversion here. That involves an extra copy of each frame to a bitmap.
// Obviously, this is suboptimal and should be addressed once ubercompositor
// starts shaping up.
m_convertYUV = resourceProvider->defaultResourceType() == ResourceProvider::Bitmap &&
(m_frame->format() == media::VideoFrame::YV12 ||
m_frame->format() == media::VideoFrame::YV16);
if (m_convertYUV)
m_format = GL_RGBA;
if (!allocatePlaneData(resourceProvider)) {
m_provider->putCurrentFrame(m_webFrame);
m_frame = 0;
return;
}
if (!copyPlaneData(resourceProvider)) {
m_provider->putCurrentFrame(m_webFrame);
m_frame = 0;
return;
}
if (m_format == GL_TEXTURE_2D)
m_externalTextureResource = resourceProvider->createResourceFromExternalTexture(m_frame->texture_id());
}
void VideoLayerImpl::appendQuads(QuadSink& quadSink, AppendQuadsData& appendQuadsData)
{
if (!m_frame)
return;
SharedQuadState* sharedQuadState = quadSink.useSharedQuadState(createSharedQuadState());
appendDebugBorderQuad(quadSink, sharedQuadState, appendQuadsData);
// FIXME: When we pass quads out of process, we need to double-buffer, or
// otherwise synchonize use of all textures in the quad.
gfx::Rect quadRect(gfx::Point(), contentBounds());
gfx::Rect opaqueRect(contentsOpaque() ? quadRect : gfx::Rect());
gfx::Rect visibleRect = m_frame->visible_rect();
gfx::Size codedSize = m_frame->coded_size();
// pixels for macroblocked formats.
const float texWidthScale =
static_cast<float>(visibleRect.width()) / codedSize.width();
const float texHeightScale =
static_cast<float>(visibleRect.height()) / codedSize.height();
switch (m_format) {
case GL_LUMINANCE: {
// YUV software decoder.
const FramePlane& yPlane = m_framePlanes[media::VideoFrame::kYPlane];
const FramePlane& uPlane = m_framePlanes[media::VideoFrame::kUPlane];
const FramePlane& vPlane = m_framePlanes[media::VideoFrame::kVPlane];
gfx::SizeF texScale(texWidthScale, texHeightScale);
scoped_ptr<YUVVideoDrawQuad> yuvVideoQuad = YUVVideoDrawQuad::Create();
yuvVideoQuad->SetNew(sharedQuadState, quadRect, opaqueRect, texScale, yPlane, uPlane, vPlane);
quadSink.append(yuvVideoQuad.PassAs<DrawQuad>(), appendQuadsData);
break;
}
case GL_RGBA: {
// RGBA software decoder.
const FramePlane& plane = m_framePlanes[media::VideoFrame::kRGBPlane];
bool premultipliedAlpha = true;
gfx::RectF uvRect(0, 0, texWidthScale, texHeightScale);
bool flipped = false;
scoped_ptr<TextureDrawQuad> textureQuad = TextureDrawQuad::Create();
textureQuad->SetNew(sharedQuadState, quadRect, opaqueRect, plane.resourceId, premultipliedAlpha, uvRect, flipped);
quadSink.append(textureQuad.PassAs<DrawQuad>(), appendQuadsData);
break;
}
case GL_TEXTURE_2D: {
// NativeTexture hardware decoder.
bool premultipliedAlpha = true;
gfx::RectF uvRect(0, 0, texWidthScale, texHeightScale);
bool flipped = false;
scoped_ptr<TextureDrawQuad> textureQuad = TextureDrawQuad::Create();
textureQuad->SetNew(sharedQuadState, quadRect, opaqueRect, m_externalTextureResource, premultipliedAlpha, uvRect, flipped);
quadSink.append(textureQuad.PassAs<DrawQuad>(), appendQuadsData);
break;
}
case GL_TEXTURE_RECTANGLE_ARB: {
gfx::Size visibleSize(visibleRect.width(), visibleRect.height());
scoped_ptr<IOSurfaceDrawQuad> ioSurfaceQuad = IOSurfaceDrawQuad::Create();
ioSurfaceQuad->SetNew(sharedQuadState, quadRect, opaqueRect, visibleSize, m_frame->texture_id(), IOSurfaceDrawQuad::UNFLIPPED);
quadSink.append(ioSurfaceQuad.PassAs<DrawQuad>(), appendQuadsData);
break;
}
case GL_TEXTURE_EXTERNAL_OES: {
// StreamTexture hardware decoder.
gfx::Transform transform(m_streamTextureMatrix);
transform.Scale(texWidthScale, texHeightScale);
scoped_ptr<StreamVideoDrawQuad> streamVideoQuad = StreamVideoDrawQuad::Create();
streamVideoQuad->SetNew(sharedQuadState, quadRect, opaqueRect, m_frame->texture_id(), transform);
quadSink.append(streamVideoQuad.PassAs<DrawQuad>(), appendQuadsData);
break;
}
default:
NOTREACHED(); // Someone updated convertVFCFormatToGLenum above but update this!
break;
}
}
void VideoLayerImpl::didDraw(ResourceProvider* resourceProvider)
{
LayerImpl::didDraw(resourceProvider);
if (!m_frame)
return;
if (m_format == GL_TEXTURE_2D) {
DCHECK(m_externalTextureResource);
// FIXME: the following assert will not be true when sending resources to a
// parent compositor. We will probably need to hold on to m_frame for
// longer, and have several "current frames" in the pipeline.
DCHECK(!resourceProvider->inUseByConsumer(m_externalTextureResource));
resourceProvider->deleteResource(m_externalTextureResource);
m_externalTextureResource = 0;
}
m_provider->putCurrentFrame(m_webFrame);
m_frame = 0;
m_providerLock.Release();
}
static gfx::Size videoFrameDimension(media::VideoFrame* frame, int plane) {
gfx::Size dimensions = frame->coded_size();
switch (frame->format()) {
case media::VideoFrame::YV12:
if (plane != media::VideoFrame::kYPlane) {
dimensions.set_width(dimensions.width() / 2);
dimensions.set_height(dimensions.height() / 2);
}
break;
case media::VideoFrame::YV16:
if (plane != media::VideoFrame::kYPlane) {
dimensions.set_width(dimensions.width() / 2);
}
break;
default:
break;
}
return dimensions;
}
bool VideoLayerImpl::FramePlane::allocateData(
ResourceProvider* resourceProvider)
{
if (resourceId)
return true;
resourceId = resourceProvider->createResource(Renderer::ImplPool, size, format, ResourceProvider::TextureUsageAny);
return resourceId;
}
void VideoLayerImpl::FramePlane::freeData(ResourceProvider* resourceProvider)
{
if (!resourceId)
return;
resourceProvider->deleteResource(resourceId);
resourceId = 0;
}
bool VideoLayerImpl::allocatePlaneData(ResourceProvider* resourceProvider)
{
const int maxTextureSize = resourceProvider->maxTextureSize();
const size_t planeCount = numPlanes();
for (unsigned planeIdx = 0; planeIdx < planeCount; ++planeIdx) {
VideoLayerImpl::FramePlane& plane = m_framePlanes[planeIdx];
gfx::Size requiredTextureSize = videoFrameDimension(m_frame, planeIdx);
// FIXME: Remove the test against maxTextureSize when tiled layers are
// implemented.
if (requiredTextureSize.IsEmpty() ||
requiredTextureSize.width() > maxTextureSize ||
requiredTextureSize.height() > maxTextureSize)
return false;
if (plane.size != requiredTextureSize || plane.format != m_format) {
plane.freeData(resourceProvider);
plane.size = requiredTextureSize;
plane.format = m_format;
}
if (!plane.allocateData(resourceProvider))
return false;
}
return true;
}
bool VideoLayerImpl::copyPlaneData(ResourceProvider* resourceProvider)
{
const size_t planeCount = numPlanes();
if (!planeCount)
return true;
if (m_convertYUV) {
if (!m_videoRenderer)
m_videoRenderer.reset(new media::SkCanvasVideoRenderer);
VideoLayerImpl::FramePlane& plane = m_framePlanes[media::VideoFrame::kRGBPlane];
ResourceProvider::ScopedWriteLockSoftware lock(resourceProvider, plane.resourceId);
m_videoRenderer->Paint(m_frame, lock.skCanvas(), m_frame->visible_rect(), 0xFF);
return true;
}
for (size_t planeIndex = 0; planeIndex < planeCount; ++planeIndex) {
VideoLayerImpl::FramePlane& plane = m_framePlanes[planeIndex];
// Only non-FormatNativeTexture planes should need upload.
DCHECK_EQ(plane.format, GL_LUMINANCE);
const uint8_t* softwarePlanePixels = m_frame->data(planeIndex);
gfx::Rect imageRect(0, 0, m_frame->stride(planeIndex), plane.size.height());
gfx::Rect sourceRect(gfx::Point(), plane.size);
resourceProvider->setPixels(plane.resourceId, softwarePlanePixels, imageRect, sourceRect, gfx::Vector2d());
}
return true;
}
void VideoLayerImpl::freePlaneData(ResourceProvider* resourceProvider)
{
for (size_t i = 0; i < media::VideoFrame::kMaxPlanes; ++i)
m_framePlanes[i].freeData(resourceProvider);
}
void VideoLayerImpl::freeUnusedPlaneData(ResourceProvider* resourceProvider)
{
size_t firstUnusedPlane = numPlanes();
for (size_t i = firstUnusedPlane; i < media::VideoFrame::kMaxPlanes; ++i)
m_framePlanes[i].freeData(resourceProvider);
}
void VideoLayerImpl::didReceiveFrame()
{
setNeedsRedraw();
}
void VideoLayerImpl::didUpdateMatrix(const float matrix[16])
{
m_streamTextureMatrix = MathUtil::createGfxTransform(
matrix[0], matrix[1], matrix[2], matrix[3],
matrix[4], matrix[5], matrix[6], matrix[7],
matrix[8], matrix[9], matrix[10], matrix[11],
matrix[12], matrix[13], matrix[14], matrix[15]);
setNeedsRedraw();
}
void VideoLayerImpl::didLoseContext()
{
freePlaneData(layerTreeHostImpl()->resourceProvider());
}
void VideoLayerImpl::setNeedsRedraw()
{
layerTreeHostImpl()->setNeedsRedraw();
}
const char* VideoLayerImpl::layerTypeAsString() const
{
return "VideoLayer";
}
} // namespace cc