blob: 98117acf1c6a2a03d62b4f16ce3381222894eb18 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// TODO(rtenhove) clean up frame buffer size calculations so that we aren't
// constantly adding and subtracting header sizes; this is ugly and error-
// prone.
#include "net/spdy/spdy_framer.h"
#include "base/lazy_instance.h"
#include "base/memory/scoped_ptr.h"
#include "base/metrics/stats_counters.h"
#include "base/third_party/valgrind/memcheck.h"
#include "net/spdy/spdy_frame_builder.h"
#include "net/spdy/spdy_frame_reader.h"
#include "net/spdy/spdy_bitmasks.h"
#if defined(USE_SYSTEM_ZLIB)
#include <zlib.h>
#else
#include "third_party/zlib/zlib.h"
#endif
using std::vector;
namespace net {
// Compute the id of our dictionary so that we know we're using the
// right one when asked for it.
uLong CalculateDictionaryId(const char* dictionary,
const size_t dictionary_size) {
uLong initial_value = adler32(0L, Z_NULL, 0);
return adler32(initial_value,
reinterpret_cast<const Bytef*>(dictionary),
dictionary_size);
}
struct DictionaryIds {
DictionaryIds()
: v2_dictionary_id(CalculateDictionaryId(kV2Dictionary, kV2DictionarySize)),
v3_dictionary_id(CalculateDictionaryId(kV3Dictionary, kV3DictionarySize))
{}
const uLong v2_dictionary_id;
const uLong v3_dictionary_id;
};
// Adler ID for the SPDY header compressor dictionaries. Note that they are
// initialized lazily to avoid static initializers.
base::LazyInstance<DictionaryIds>::Leaky g_dictionary_ids;
// Creates a FlagsAndLength.
FlagsAndLength CreateFlagsAndLength(SpdyControlFlags flags, size_t length) {
DCHECK_EQ(0u, length & ~static_cast<size_t>(kLengthMask));
FlagsAndLength flags_length;
flags_length.length_ = htonl(static_cast<uint32>(length));
DCHECK_EQ(0, flags & ~kControlFlagsMask);
flags_length.flags_[0] = flags;
return flags_length;
}
// By default is compression on or off.
bool g_enable_compression_default = true;
// The initial size of the control frame buffer; this is used internally
// as we parse through control frames. (It is exposed here for unit test
// purposes.)
size_t SpdyFramer::kControlFrameBufferInitialSize = 32 * 1024;
// The maximum size of the control frame buffer that we support.
// TODO(mbelshe): We should make this stream-based so there are no limits.
size_t SpdyFramer::kControlFrameBufferMaxSize = 64 * 1024;
// The initial size of the control frame buffer when compression is disabled.
// This exists because we don't do stream (de)compressed control frame data to
// our visitor; we instead buffer the entirety of the control frame and then
// decompress in one fell swoop.
// Since this is only used for control frame headers, the maximum control
// frame header size (18B) is sufficient; all remaining control frame data is
// streamed to the visitor.
size_t SpdyFramer::kUncompressedControlFrameBufferInitialSize = 18;
const SpdyStreamId SpdyFramer::kInvalidStream = -1;
const size_t SpdyFramer::kHeaderDataChunkMaxSize = 1024;
#ifdef DEBUG_SPDY_STATE_CHANGES
#define CHANGE_STATE(newstate) \
{ \
do { \
LOG(INFO) << "Changing state from: " \
<< StateToString(state_) \
<< " to " << StateToString(newstate) << "\n"; \
state_ = newstate; \
} while (false); \
}
#else
#define CHANGE_STATE(newstate) (state_ = newstate)
#endif
SettingsFlagsAndId SettingsFlagsAndId::FromWireFormat(int version,
uint32 wire) {
if (version < 3) {
ConvertFlagsAndIdForSpdy2(&wire);
}
return SettingsFlagsAndId(ntohl(wire) >> 24, ntohl(wire) & 0x00ffffff);
}
SettingsFlagsAndId::SettingsFlagsAndId(uint8 flags, uint32 id)
: flags_(flags), id_(id & 0x00ffffff) {
DCHECK_GT(static_cast<uint32>(1 << 24), id);
}
uint32 SettingsFlagsAndId::GetWireFormat(int version) const {
uint32 wire = htonl(id_ & 0x00ffffff) | htonl(flags_ << 24);
if (version < 3) {
ConvertFlagsAndIdForSpdy2(&wire);
}
return wire;
}
// SPDY 2 had a bug in it with respect to byte ordering of id/flags field.
// This method is used to preserve buggy behavior and works on both
// little-endian and big-endian hosts.
// This method is also bidirectional (can be used to translate SPDY 2 to SPDY 3
// as well as vice versa).
void SettingsFlagsAndId::ConvertFlagsAndIdForSpdy2(uint32* val) {
uint8* wire_array = reinterpret_cast<uint8*>(val);
std::swap(wire_array[0], wire_array[3]);
std::swap(wire_array[1], wire_array[2]);
}
SpdyCredential::SpdyCredential() : slot(0) { }
SpdyCredential::~SpdyCredential() { }
SpdyFramer::SpdyFramer(int version)
: state_(SPDY_RESET),
error_code_(SPDY_NO_ERROR),
remaining_data_(0),
remaining_control_payload_(0),
remaining_control_header_(0),
current_frame_buffer_(NULL),
current_frame_len_(0),
current_frame_capacity_(0),
validate_control_frame_sizes_(true),
enable_compression_(g_enable_compression_default),
visitor_(NULL),
display_protocol_("SPDY"),
spdy_version_(version),
syn_frame_processed_(false),
probable_http_response_(false) {
DCHECK_GE(3, version);
DCHECK_LE(2, version);
}
SpdyFramer::~SpdyFramer() {
if (header_compressor_.get()) {
deflateEnd(header_compressor_.get());
}
if (header_decompressor_.get()) {
inflateEnd(header_decompressor_.get());
}
CleanupStreamCompressorsAndDecompressors();
delete [] current_frame_buffer_;
}
void SpdyFramer::Reset() {
state_ = SPDY_RESET;
error_code_ = SPDY_NO_ERROR;
remaining_data_ = 0;
remaining_control_payload_ = 0;
remaining_control_header_ = 0;
current_frame_len_ = 0;
settings_scratch_.Reset();
// TODO(hkhalil): Remove once initial_size == kControlFrameBufferInitialSize.
size_t initial_size = kControlFrameBufferInitialSize;
if (!enable_compression_) {
initial_size = kUncompressedControlFrameBufferInitialSize;
}
if (current_frame_capacity_ != initial_size) {
delete [] current_frame_buffer_;
current_frame_buffer_ = NULL;
current_frame_capacity_ = 0;
ExpandControlFrameBuffer(initial_size);
}
}
const char* SpdyFramer::StateToString(int state) {
switch (state) {
case SPDY_ERROR:
return "ERROR";
case SPDY_DONE:
return "DONE";
case SPDY_AUTO_RESET:
return "AUTO_RESET";
case SPDY_RESET:
return "RESET";
case SPDY_READING_COMMON_HEADER:
return "READING_COMMON_HEADER";
case SPDY_CONTROL_FRAME_PAYLOAD:
return "CONTROL_FRAME_PAYLOAD";
case SPDY_IGNORE_REMAINING_PAYLOAD:
return "IGNORE_REMAINING_PAYLOAD";
case SPDY_FORWARD_STREAM_FRAME:
return "FORWARD_STREAM_FRAME";
case SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK:
return "SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK";
case SPDY_CONTROL_FRAME_HEADER_BLOCK:
return "SPDY_CONTROL_FRAME_HEADER_BLOCK";
case SPDY_CREDENTIAL_FRAME_PAYLOAD:
return "SPDY_CREDENTIAL_FRAME_PAYLOAD";
case SPDY_SETTINGS_FRAME_PAYLOAD:
return "SPDY_SETTINGS_FRAME_PAYLOAD";
}
return "UNKNOWN_STATE";
}
void SpdyFramer::set_error(SpdyError error) {
DCHECK(visitor_);
error_code_ = error;
CHANGE_STATE(SPDY_ERROR);
visitor_->OnError(this);
}
const char* SpdyFramer::ErrorCodeToString(int error_code) {
switch (error_code) {
case SPDY_NO_ERROR:
return "NO_ERROR";
case SPDY_INVALID_CONTROL_FRAME:
return "INVALID_CONTROL_FRAME";
case SPDY_CONTROL_PAYLOAD_TOO_LARGE:
return "CONTROL_PAYLOAD_TOO_LARGE";
case SPDY_ZLIB_INIT_FAILURE:
return "ZLIB_INIT_FAILURE";
case SPDY_UNSUPPORTED_VERSION:
return "UNSUPPORTED_VERSION";
case SPDY_DECOMPRESS_FAILURE:
return "DECOMPRESS_FAILURE";
case SPDY_COMPRESS_FAILURE:
return "COMPRESS_FAILURE";
}
return "UNKNOWN_ERROR";
}
const char* SpdyFramer::StatusCodeToString(int status_code) {
switch (status_code) {
case INVALID:
return "INVALID";
case PROTOCOL_ERROR:
return "PROTOCOL_ERROR";
case INVALID_STREAM:
return "INVALID_STREAM";
case REFUSED_STREAM:
return "REFUSED_STREAM";
case UNSUPPORTED_VERSION:
return "UNSUPPORTED_VERSION";
case CANCEL:
return "CANCEL";
case INTERNAL_ERROR:
return "INTERNAL_ERROR";
case FLOW_CONTROL_ERROR:
return "FLOW_CONTROL_ERROR";
}
return "UNKNOWN_STATUS";
}
const char* SpdyFramer::ControlTypeToString(SpdyControlType type) {
switch (type) {
case SYN_STREAM:
return "SYN_STREAM";
case SYN_REPLY:
return "SYN_REPLY";
case RST_STREAM:
return "RST_STREAM";
case SETTINGS:
return "SETTINGS";
case NOOP:
return "NOOP";
case PING:
return "PING";
case GOAWAY:
return "GOAWAY";
case HEADERS:
return "HEADERS";
case WINDOW_UPDATE:
return "WINDOW_UPDATE";
case CREDENTIAL:
return "CREDENTIAL";
case NUM_CONTROL_FRAME_TYPES:
break;
}
return "UNKNOWN_CONTROL_TYPE";
}
size_t SpdyFramer::ProcessInput(const char* data, size_t len) {
DCHECK(visitor_);
DCHECK(data);
size_t original_len = len;
while (len != 0) {
switch (state_) {
case SPDY_ERROR:
case SPDY_DONE:
goto bottom;
case SPDY_AUTO_RESET:
case SPDY_RESET:
Reset();
CHANGE_STATE(SPDY_READING_COMMON_HEADER);
continue;
case SPDY_READING_COMMON_HEADER: {
size_t bytes_read = ProcessCommonHeader(data, len);
len -= bytes_read;
data += bytes_read;
continue;
}
case SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK: {
// Control frames that contain header blocks (SYN_STREAM, SYN_REPLY,
// HEADERS) take a different path through the state machine - they
// will go:
// 1. SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK
// 2. SPDY_CONTROL_FRAME_HEADER_BLOCK
//
// SETTINGS frames take a slightly modified route:
// 1. SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK
// 2. SPDY_SETTINGS_FRAME_PAYLOAD
//
// All other control frames will use the alternate route directly to
// SPDY_CONTROL_FRAME_PAYLOAD
int bytes_read = ProcessControlFrameBeforeHeaderBlock(data, len);
len -= bytes_read;
data += bytes_read;
continue;
}
case SPDY_SETTINGS_FRAME_PAYLOAD: {
int bytes_read = ProcessSettingsFramePayload(data, len);
len -= bytes_read;
data += bytes_read;
continue;
}
case SPDY_CONTROL_FRAME_HEADER_BLOCK: {
int bytes_read = ProcessControlFrameHeaderBlock(data, len);
len -= bytes_read;
data += bytes_read;
continue;
}
case SPDY_CREDENTIAL_FRAME_PAYLOAD: {
size_t bytes_read = ProcessCredentialFramePayload(data, len);
len -= bytes_read;
data += bytes_read;
continue;
}
case SPDY_CONTROL_FRAME_PAYLOAD: {
size_t bytes_read = ProcessControlFramePayload(data, len);
len -= bytes_read;
data += bytes_read;
}
// intentional fallthrough
case SPDY_IGNORE_REMAINING_PAYLOAD:
// control frame has too-large payload
// intentional fallthrough
case SPDY_FORWARD_STREAM_FRAME: {
size_t bytes_read = ProcessDataFramePayload(data, len);
len -= bytes_read;
data += bytes_read;
continue;
}
default:
LOG(ERROR) << "Invalid value for " << display_protocol_
<< " framer state: " << state_;
// This ensures that we don't infinite-loop if state_ gets an
// invalid value somehow, such as due to a SpdyFramer getting deleted
// from a callback it calls.
goto bottom;
}
}
bottom:
return original_len - len;
}
size_t SpdyFramer::ProcessCommonHeader(const char* data, size_t len) {
// This should only be called when we're in the SPDY_READING_COMMON_HEADER
// state.
DCHECK_EQ(state_, SPDY_READING_COMMON_HEADER);
size_t original_len = len;
SpdyFrame current_frame(current_frame_buffer_, false);
// Update current frame buffer as needed.
if (current_frame_len_ < SpdyFrame::kHeaderSize) {
size_t bytes_desired = SpdyFrame::kHeaderSize - current_frame_len_;
UpdateCurrentFrameBuffer(&data, &len, bytes_desired);
}
if (current_frame_len_ < SpdyFrame::kHeaderSize) {
// Do nothing.
} else if (current_frame_len_ == SpdyFrame::kHeaderSize &&
!current_frame.is_control_frame() &&
current_frame.length() == 0) {
// Empty data frame.
SpdyDataFrame data_frame(current_frame_buffer_, false);
visitor_->OnDataFrameHeader(&data_frame);
if (current_frame.flags() & DATA_FLAG_FIN) {
visitor_->OnStreamFrameData(data_frame.stream_id(), NULL, 0);
}
CHANGE_STATE(SPDY_AUTO_RESET);
} else {
remaining_data_ = current_frame.length();
// This is just a sanity check for help debugging early frame errors.
if (remaining_data_ > 1000000u) {
// The strncmp for 5 is safe because we only hit this point if we
// have SpdyFrame::kHeaderSize (8) bytes
if (!syn_frame_processed_ &&
strncmp(current_frame_buffer_, "HTTP/", 5) == 0) {
LOG(WARNING) << "Unexpected HTTP response to spdy request";
probable_http_response_ = true;
} else {
LOG(WARNING) << "Unexpectedly large frame. " << display_protocol_
<< " session is likely corrupt.";
}
}
// if we're here, then we have the common header all received.
if (!current_frame.is_control_frame()) {
SpdyDataFrame data_frame(current_frame_buffer_, false);
visitor_->OnDataFrameHeader(&data_frame);
CHANGE_STATE(SPDY_FORWARD_STREAM_FRAME);
} else {
ProcessControlFrameHeader();
}
}
return original_len - len;
}
void SpdyFramer::ProcessControlFrameHeader() {
DCHECK_EQ(SPDY_NO_ERROR, error_code_);
DCHECK_LE(static_cast<size_t>(SpdyFrame::kHeaderSize), current_frame_len_);
SpdyControlFrame current_control_frame(current_frame_buffer_, false);
// We check version before we check validity: version can never be 'invalid',
// it can only be unsupported.
if (current_control_frame.version() != spdy_version_) {
DLOG(INFO) << "Unsupported SPDY version " << current_control_frame.version()
<< " (expected " << spdy_version_ << ")";
set_error(SPDY_UNSUPPORTED_VERSION);
return;
}
// Next up, check to see if we have valid data. This should be after version
// checking (otherwise if the the type were out of bounds due to a version
// upgrade we would misclassify the error) and before checking the type
// (type can definitely be out of bounds)
if (!current_control_frame.AppearsToBeAValidControlFrame()) {
set_error(SPDY_INVALID_CONTROL_FRAME);
return;
}
if (current_control_frame.type() == NOOP) {
DLOG(INFO) << "NOOP control frame found. Ignoring.";
CHANGE_STATE(SPDY_AUTO_RESET);
return;
}
if (validate_control_frame_sizes_) {
// Do some sanity checking on the control frame sizes.
switch (current_control_frame.type()) {
case SYN_STREAM:
if (current_control_frame.length() <
SpdySynStreamControlFrame::size() - SpdyControlFrame::kHeaderSize)
set_error(SPDY_INVALID_CONTROL_FRAME);
break;
case SYN_REPLY:
if (current_control_frame.length() <
SpdySynReplyControlFrame::size() - SpdyControlFrame::kHeaderSize)
set_error(SPDY_INVALID_CONTROL_FRAME);
break;
case RST_STREAM:
if (current_control_frame.length() !=
SpdyRstStreamControlFrame::size() - SpdyFrame::kHeaderSize)
set_error(SPDY_INVALID_CONTROL_FRAME);
break;
case SETTINGS:
// Make sure that we have an integral number of 8-byte key/value pairs,
// plus a 4-byte length field.
if (current_control_frame.length() <
SpdySettingsControlFrame::size() - SpdyControlFrame::kHeaderSize ||
(current_control_frame.length() % 8 != 4)) {
DLOG(WARNING) << "Invalid length for SETTINGS frame: "
<< current_control_frame.length();
set_error(SPDY_INVALID_CONTROL_FRAME);
}
break;
case GOAWAY:
{
// SPDY 2 GOAWAY frames are 4 bytes smaller than in SPDY 3. We account
// for this difference via a separate offset variable, since
// SpdyGoAwayControlFrame::size() returns the SPDY 3 size.
const size_t goaway_offset = (protocol_version() < 3) ? 4 : 0;
if (current_control_frame.length() + goaway_offset !=
SpdyGoAwayControlFrame::size() - SpdyFrame::kHeaderSize)
set_error(SPDY_INVALID_CONTROL_FRAME);
break;
}
case HEADERS:
if (current_control_frame.length() <
SpdyHeadersControlFrame::size() - SpdyControlFrame::kHeaderSize)
set_error(SPDY_INVALID_CONTROL_FRAME);
break;
case WINDOW_UPDATE:
if (current_control_frame.length() !=
SpdyWindowUpdateControlFrame::size() -
SpdyControlFrame::kHeaderSize)
set_error(SPDY_INVALID_CONTROL_FRAME);
break;
case PING:
if (current_control_frame.length() !=
SpdyPingControlFrame::size() - SpdyControlFrame::kHeaderSize)
set_error(SPDY_INVALID_CONTROL_FRAME);
break;
case CREDENTIAL:
if (current_control_frame.length() <
SpdyCredentialControlFrame::size() - SpdyControlFrame::kHeaderSize)
set_error(SPDY_INVALID_CONTROL_FRAME);
break;
default:
LOG(WARNING) << "Valid " << display_protocol_
<< " control frame with unhandled type: "
<< current_control_frame.type();
DCHECK(false);
set_error(SPDY_INVALID_CONTROL_FRAME);
break;
}
}
remaining_control_payload_ = current_control_frame.length();
if (remaining_control_payload_ >
kControlFrameBufferMaxSize - SpdyFrame::kHeaderSize) {
set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE);
return;
}
if (current_control_frame.type() == CREDENTIAL) {
visitor_->OnControl(&current_control_frame);
CHANGE_STATE(SPDY_CREDENTIAL_FRAME_PAYLOAD);
return;
}
// Determine the frame size without variable-length data.
int32 frame_size_without_variable_data;
switch (current_control_frame.type()) {
case SYN_STREAM:
syn_frame_processed_ = true;
frame_size_without_variable_data = SpdySynStreamControlFrame::size();
break;
case SYN_REPLY:
syn_frame_processed_ = true;
frame_size_without_variable_data = SpdySynReplyControlFrame::size();
// SPDY 2 had two bytes of unused space preceeding payload.
if (spdy_version_ < 3) {
frame_size_without_variable_data += 2;
}
break;
case HEADERS:
frame_size_without_variable_data = SpdyHeadersControlFrame::size();
// SPDY 2 had two bytes of unused space preceeding payload.
if (spdy_version_ < 3) {
frame_size_without_variable_data += 2;
}
break;
case SETTINGS:
frame_size_without_variable_data = SpdySettingsControlFrame::size();
break;
default:
frame_size_without_variable_data = -1;
break;
}
if (frame_size_without_variable_data == -1) {
LOG_IF(ERROR, remaining_control_payload_ + SpdyFrame::kHeaderSize >
current_frame_capacity_)
<< display_protocol_
<< " control frame buffer too small for fixed-length frame.";
// TODO(hkhalil): Remove ExpandControlFrameBuffer().
ExpandControlFrameBuffer(remaining_control_payload_);
}
if (frame_size_without_variable_data > 0) {
// We have a control frame with a header block. We need to parse the
// remainder of the control frame's header before we can parse the header
// block. The start of the header block varies with the control type.
DCHECK_GE(frame_size_without_variable_data,
static_cast<int32>(current_frame_len_));
remaining_control_header_ = frame_size_without_variable_data -
current_frame_len_;
remaining_control_payload_ += SpdyFrame::kHeaderSize -
frame_size_without_variable_data;
CHANGE_STATE(SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK);
return;
}
CHANGE_STATE(SPDY_CONTROL_FRAME_PAYLOAD);
}
size_t SpdyFramer::UpdateCurrentFrameBuffer(const char** data, size_t* len,
size_t max_bytes) {
size_t bytes_to_read = std::min(*len, max_bytes);
DCHECK_GE(current_frame_capacity_, current_frame_len_ + bytes_to_read);
memcpy(&current_frame_buffer_[current_frame_len_], *data, bytes_to_read);
current_frame_len_ += bytes_to_read;
*data += bytes_to_read;
*len -= bytes_to_read;
return bytes_to_read;
}
size_t SpdyFramer::GetSerializedLength(const SpdyHeaderBlock* headers) const {
const size_t num_name_value_pairs_size
= (spdy_version_ < 3) ? sizeof(uint16) : sizeof(uint32);
const size_t length_of_name_size = num_name_value_pairs_size;
const size_t length_of_value_size = num_name_value_pairs_size;
size_t total_length = num_name_value_pairs_size;
for (SpdyHeaderBlock::const_iterator it = headers->begin();
it != headers->end();
++it) {
// We add space for the length of the name and the length of the value as
// well as the length of the name and the length of the value.
total_length += length_of_name_size + it->first.size() +
length_of_value_size + it->second.size();
}
return total_length;
}
void SpdyFramer::WriteHeaderBlock(SpdyFrameBuilder* frame,
const SpdyHeaderBlock* headers) const {
if (spdy_version_ < 3) {
frame->WriteUInt16(headers->size()); // Number of headers.
} else {
frame->WriteUInt32(headers->size()); // Number of headers.
}
SpdyHeaderBlock::const_iterator it;
for (it = headers->begin(); it != headers->end(); ++it) {
bool wrote_header;
if (spdy_version_ < 3) {
wrote_header = frame->WriteString(it->first);
wrote_header &= frame->WriteString(it->second);
} else {
wrote_header = frame->WriteStringPiece32(it->first);
wrote_header &= frame->WriteStringPiece32(it->second);
}
DCHECK(wrote_header);
}
}
size_t SpdyFramer::ProcessControlFrameBeforeHeaderBlock(const char* data,
size_t len) {
DCHECK_EQ(SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK, state_);
DCHECK_GT(remaining_control_header_, 0u);
size_t original_len = len;
if (remaining_control_header_) {
size_t bytes_read = UpdateCurrentFrameBuffer(&data, &len,
remaining_control_header_);
remaining_control_header_ -= bytes_read;
if (remaining_control_header_ == 0) {
SpdyControlFrame control_frame(current_frame_buffer_, false);
DCHECK(control_frame.type() == SYN_STREAM ||
control_frame.type() == SYN_REPLY ||
control_frame.type() == HEADERS ||
control_frame.type() == SETTINGS);
visitor_->OnControl(&control_frame);
if (control_frame.type() == SETTINGS) {
CHANGE_STATE(SPDY_SETTINGS_FRAME_PAYLOAD);
} else {
CHANGE_STATE(SPDY_CONTROL_FRAME_HEADER_BLOCK);
}
}
}
return original_len - len;
}
// Does not buffer the control payload. Instead, either passes directly to the
// visitor or decompresses and then passes directly to the visitor, via
// IncrementallyDeliverControlFrameHeaderData() or
// IncrementallyDecompressControlFrameHeaderData() respectively.
size_t SpdyFramer::ProcessControlFrameHeaderBlock(const char* data,
size_t data_len) {
DCHECK_EQ(SPDY_CONTROL_FRAME_HEADER_BLOCK, state_);
SpdyControlFrame control_frame(current_frame_buffer_, false);
bool processed_successfully = true;
DCHECK(control_frame.type() == SYN_STREAM ||
control_frame.type() == SYN_REPLY ||
control_frame.type() == HEADERS);
size_t process_bytes = std::min(data_len, remaining_control_payload_);
DCHECK_GT(process_bytes, 0u);
if (enable_compression_) {
processed_successfully = IncrementallyDecompressControlFrameHeaderData(
&control_frame, data, process_bytes);
} else {
processed_successfully = IncrementallyDeliverControlFrameHeaderData(
&control_frame, data, process_bytes);
}
remaining_control_payload_ -= process_bytes;
// Handle the case that there is no futher data in this frame.
if (remaining_control_payload_ == 0 && processed_successfully) {
// The complete header block has been delivered. We send a zero-length
// OnControlFrameHeaderData() to indicate this.
visitor_->OnControlFrameHeaderData(
GetControlFrameStreamId(&control_frame), NULL, 0);
// If this is a FIN, tell the caller.
if (control_frame.flags() & CONTROL_FLAG_FIN) {
visitor_->OnStreamFrameData(GetControlFrameStreamId(&control_frame),
NULL, 0);
}
CHANGE_STATE(SPDY_RESET);
}
// Handle error.
if (!processed_successfully) {
return data_len;
}
// Return amount processed.
return process_bytes;
}
size_t SpdyFramer::ProcessSettingsFramePayload(const char* data,
size_t data_len) {
DCHECK_EQ(SPDY_SETTINGS_FRAME_PAYLOAD, state_);
SpdyControlFrame control_frame(current_frame_buffer_, false);
DCHECK_EQ(control_frame.type(), SETTINGS);
size_t unprocessed_bytes = std::min(data_len, remaining_control_payload_);
size_t processed_bytes = 0;
DCHECK_GT(unprocessed_bytes, 0u);
// Loop over our incoming data.
while (unprocessed_bytes > 0) {
// Process up to one setting at a time.
size_t processing = std::min(
unprocessed_bytes,
static_cast<size_t>(8 - settings_scratch_.setting_buf_len));
// Check if we have a complete setting in our input.
if (processing == 8) {
// Parse the setting directly out of the input without buffering.
if (!ProcessSetting(data + processed_bytes)) {
set_error(SPDY_INVALID_CONTROL_FRAME);
return processed_bytes;
}
} else {
// Continue updating settings_scratch_.setting_buf.
memcpy(settings_scratch_.setting_buf + settings_scratch_.setting_buf_len,
data + processed_bytes,
processing);
settings_scratch_.setting_buf_len += processing;
// Check if we have a complete setting buffered.
if (settings_scratch_.setting_buf_len == 8) {
if (!ProcessSetting(settings_scratch_.setting_buf)) {
set_error(SPDY_INVALID_CONTROL_FRAME);
return processed_bytes;
}
// Reset settings_scratch_.setting_buf for our next setting.
settings_scratch_.setting_buf_len = 0;
}
}
// Iterate.
unprocessed_bytes -= processing;
processed_bytes += processing;
}
// Check if we're done handling this SETTINGS frame.
remaining_control_payload_ -= processed_bytes;
if (remaining_control_payload_ == 0) {
CHANGE_STATE(SPDY_AUTO_RESET);
}
return processed_bytes;
}
bool SpdyFramer::ProcessSetting(const char* data) {
// Extract fields.
// Maintain behavior of old SPDY 2 bug with byte ordering of flags/id.
const uint32 id_and_flags_wire = *(reinterpret_cast<const uint32*>(data));
SettingsFlagsAndId id_and_flags =
SettingsFlagsAndId::FromWireFormat(spdy_version_, id_and_flags_wire);
uint8 flags = id_and_flags.flags();
uint32 value = ntohl(*(reinterpret_cast<const uint32*>(data + 4)));
// Validate id.
switch (id_and_flags.id()) {
case SETTINGS_UPLOAD_BANDWIDTH:
case SETTINGS_DOWNLOAD_BANDWIDTH:
case SETTINGS_ROUND_TRIP_TIME:
case SETTINGS_MAX_CONCURRENT_STREAMS:
case SETTINGS_CURRENT_CWND:
case SETTINGS_DOWNLOAD_RETRANS_RATE:
case SETTINGS_INITIAL_WINDOW_SIZE:
// Valid values.
break;
default:
DLOG(WARNING) << "Unknown SETTINGS ID: " << id_and_flags.id();
return false;
}
SpdySettingsIds id = static_cast<SpdySettingsIds>(id_and_flags.id());
// Detect duplciates.
if (static_cast<uint32>(id) <= settings_scratch_.last_setting_id) {
DLOG(WARNING) << "Duplicate entry or invalid ordering for id " << id
<< " in " << display_protocol_ << " SETTINGS frame "
<< "(last settikng id was "
<< settings_scratch_.last_setting_id << ").";
return false;
}
settings_scratch_.last_setting_id = id;
// Validate flags.
uint8 kFlagsMask = SETTINGS_FLAG_PLEASE_PERSIST | SETTINGS_FLAG_PERSISTED;
if ((flags & ~(kFlagsMask)) != 0) {
DLOG(WARNING) << "Unknown SETTINGS flags provided for id " << id << ": "
<< flags;
return false;
}
// Validation succeeded. Pass on to visitor.
visitor_->OnSetting(id, flags, value);
return true;
}
size_t SpdyFramer::ProcessControlFramePayload(const char* data, size_t len) {
size_t original_len = len;
if (remaining_control_payload_) {
size_t bytes_read = UpdateCurrentFrameBuffer(&data, &len,
remaining_control_payload_);
remaining_control_payload_ -= bytes_read;
remaining_data_ -= bytes_read;
if (remaining_control_payload_ == 0) {
SpdyControlFrame control_frame(current_frame_buffer_, false);
DCHECK(!control_frame.has_header_block());
visitor_->OnControl(&control_frame);
CHANGE_STATE(SPDY_IGNORE_REMAINING_PAYLOAD);
}
}
return original_len - len;
}
size_t SpdyFramer::ProcessCredentialFramePayload(const char* data, size_t len) {
// Process only up to the end of this CREDENTIAL frame.
len = std::min(len, remaining_control_payload_);
bool processed_succesfully = visitor_->OnCredentialFrameData(data, len);
remaining_control_payload_ -= len;
remaining_data_ -= len;
if (!processed_succesfully) {
set_error(SPDY_CREDENTIAL_FRAME_CORRUPT);
} else if (remaining_control_payload_ == 0) {
visitor_->OnCredentialFrameData(NULL, 0);
CHANGE_STATE(SPDY_AUTO_RESET);
}
return len;
}
size_t SpdyFramer::ProcessDataFramePayload(const char* data, size_t len) {
size_t original_len = len;
SpdyDataFrame current_data_frame(current_frame_buffer_, false);
if (remaining_data_) {
size_t amount_to_forward = std::min(remaining_data_, len);
if (amount_to_forward && state_ != SPDY_IGNORE_REMAINING_PAYLOAD) {
if (current_data_frame.flags() & DATA_FLAG_COMPRESSED) {
z_stream* decompressor =
GetStreamDecompressor(current_data_frame.stream_id());
if (!decompressor)
return 0;
size_t decompressed_max_size = amount_to_forward * 100;
scoped_array<char> decompressed(new char[decompressed_max_size]);
decompressor->next_in = reinterpret_cast<Bytef*>(
const_cast<char*>(data));
decompressor->avail_in = amount_to_forward;
decompressor->next_out =
reinterpret_cast<Bytef*>(decompressed.get());
decompressor->avail_out = decompressed_max_size;
int rv = inflate(decompressor, Z_SYNC_FLUSH);
if (rv != Z_OK) {
LOG(WARNING) << "inflate failure: " << rv;
set_error(SPDY_DECOMPRESS_FAILURE);
return 0;
}
size_t decompressed_size = decompressed_max_size -
decompressor->avail_out;
// Only inform the visitor if there is data.
if (decompressed_size)
visitor_->OnStreamFrameData(current_data_frame.stream_id(),
decompressed.get(),
decompressed_size);
amount_to_forward -= decompressor->avail_in;
} else {
// The data frame was not compressed.
// Only inform the visitor if there is data.
if (amount_to_forward)
visitor_->OnStreamFrameData(current_data_frame.stream_id(),
data, amount_to_forward);
}
}
data += amount_to_forward;
len -= amount_to_forward;
remaining_data_ -= amount_to_forward;
// If the FIN flag is set, and there is no more data in this data
// frame, inform the visitor of EOF via a 0-length data frame.
if (!remaining_data_ &&
current_data_frame.flags() & DATA_FLAG_FIN) {
visitor_->OnStreamFrameData(current_data_frame.stream_id(), NULL, 0);
CleanupDecompressorForStream(current_data_frame.stream_id());
}
} else {
CHANGE_STATE(SPDY_AUTO_RESET);
}
return original_len - len;
}
void SpdyFramer::ExpandControlFrameBuffer(size_t size) {
size_t alloc_size = size + SpdyFrame::kHeaderSize;
DCHECK_LE(alloc_size, kControlFrameBufferMaxSize);
if (alloc_size <= current_frame_capacity_)
return;
char* new_buffer = new char[alloc_size];
if (current_frame_buffer_ != NULL) {
memcpy(new_buffer, current_frame_buffer_, current_frame_len_);
delete [] current_frame_buffer_;
}
current_frame_capacity_ = alloc_size;
current_frame_buffer_ = new_buffer;
}
bool SpdyFramer::ParseHeaderBlockInBuffer(const char* header_data,
size_t header_length,
SpdyHeaderBlock* block) {
SpdyFrameReader reader(header_data, header_length);
// Read number of headers.
uint32 num_headers;
if (spdy_version_ < 3) {
uint16 temp;
if (!reader.ReadUInt16(&temp)) {
DLOG(INFO) << "Unable to read number of headers.";
return false;
}
num_headers = temp;
} else {
if (!reader.ReadUInt32(&num_headers)) {
DLOG(INFO) << "Unable to read number of headers.";
return false;
}
}
// Read each header.
for (uint32 index = 0; index < num_headers; ++index) {
base::StringPiece temp;
// Read header name.
if ((spdy_version_ < 3) ? !reader.ReadStringPiece16(&temp)
: !reader.ReadStringPiece32(&temp)) {
DLOG(INFO) << "Unable to read header name (" << index + 1 << " of "
<< num_headers << ").";
return false;
}
std::string name;
temp.CopyToString(&name);
// Read header value.
if ((spdy_version_ < 3) ? !reader.ReadStringPiece16(&temp)
: !reader.ReadStringPiece32(&temp)) {
DLOG(INFO) << "Unable to read header value (" << index + 1 << " of "
<< num_headers << ").";
return false;
}
std::string value;
temp.CopyToString(&value);
// Ensure no duplicates.
if (block->find(name) != block->end()) {
DLOG(INFO) << "Duplicate header '" << name << "' (" << index + 1 << " of "
<< num_headers << ").";
return false;
}
// Store header.
(*block)[name] = value;
}
return true;
}
/* static */
bool SpdyFramer::ParseSettings(const SpdySettingsControlFrame* frame,
SpdySettings* settings) {
DCHECK_EQ(frame->type(), SETTINGS);
DCHECK(settings);
SpdyFrameReader parser(frame->header_block(), frame->header_block_len());
for (size_t index = 0; index < frame->num_entries(); ++index) {
uint32 id_and_flags_wire;
uint32 value;
// SettingsFlagsAndId accepts off-the-wire (network byte order) data, so we
// use ReadBytes() instead of ReadUInt32() as the latter calls ntohl().
if (!parser.ReadBytes(&id_and_flags_wire, 4)) {
return false;
}
if (!parser.ReadUInt32(&value))
return false;
SettingsFlagsAndId id_and_flags =
SettingsFlagsAndId::FromWireFormat(frame->version(), id_and_flags_wire);
settings->insert(settings->end(), std::make_pair(id_and_flags, value));
}
return true;
}
/* static */
bool SpdyFramer::ParseCredentialData(const char* data, size_t len,
SpdyCredential* credential) {
DCHECK(credential);
SpdyFrameReader parser(data, len);
base::StringPiece temp;
if (!parser.ReadUInt16(&credential->slot)) {
return false;
}
if (!parser.ReadStringPiece32(&temp)) {
return false;
}
temp.CopyToString(&credential->proof);
while (!parser.IsDoneReading()) {
if (!parser.ReadStringPiece32(&temp)) {
return false;
}
std::string cert;
temp.CopyToString(&cert);
credential->certs.push_back(cert);
}
return true;
}
SpdySynStreamControlFrame* SpdyFramer::CreateSynStream(
SpdyStreamId stream_id,
SpdyStreamId associated_stream_id,
SpdyPriority priority,
uint8 credential_slot,
SpdyControlFlags flags,
bool compressed,
const SpdyHeaderBlock* headers) {
DCHECK_EQ(0u, stream_id & ~kStreamIdMask);
DCHECK_EQ(0u, associated_stream_id & ~kStreamIdMask);
// Find our length.
size_t expected_frame_size = SpdySynStreamControlFrame::size() +
GetSerializedLength(headers);
// Create our FlagsAndLength.
FlagsAndLength flags_length = CreateFlagsAndLength(
flags,
expected_frame_size - SpdyFrame::kHeaderSize);
SpdyFrameBuilder frame(expected_frame_size);
frame.WriteUInt16(kControlFlagMask | spdy_version_);
frame.WriteUInt16(SYN_STREAM);
frame.WriteBytes(&flags_length, sizeof(flags_length));
frame.WriteUInt32(stream_id);
frame.WriteUInt32(associated_stream_id);
// Cap as appropriate.
if (priority > GetLowestPriority()) {
DLOG(ERROR) << "Priority out-of-bounds.";
priority = GetLowestPriority();
}
// Priority is 2 bits for <spdy3, 3 bits otherwise.
frame.WriteUInt8(priority << ((spdy_version_ < 3) ? 6 : 5));
frame.WriteUInt8((spdy_version_ < 3) ? 0 : credential_slot);
WriteHeaderBlock(&frame, headers);
scoped_ptr<SpdySynStreamControlFrame> syn_frame(
reinterpret_cast<SpdySynStreamControlFrame*>(frame.take()));
if (compressed) {
return reinterpret_cast<SpdySynStreamControlFrame*>(
CompressControlFrame(*syn_frame.get()));
}
return syn_frame.release();
}
SpdySynReplyControlFrame* SpdyFramer::CreateSynReply(
SpdyStreamId stream_id,
SpdyControlFlags flags,
bool compressed,
const SpdyHeaderBlock* headers) {
DCHECK_GT(stream_id, 0u);
DCHECK_EQ(0u, stream_id & ~kStreamIdMask);
// Find our length.
size_t expected_frame_size = SpdySynReplyControlFrame::size() +
GetSerializedLength(headers);
// In SPDY 2, there were 2 unused bytes before payload.
if (spdy_version_ < 3) {
expected_frame_size += 2;
}
// Create our FlagsAndLength.
FlagsAndLength flags_length = CreateFlagsAndLength(
flags,
expected_frame_size - SpdyFrame::kHeaderSize);
SpdyFrameBuilder frame(expected_frame_size);
frame.WriteUInt16(kControlFlagMask | spdy_version_);
frame.WriteUInt16(SYN_REPLY);
frame.WriteBytes(&flags_length, sizeof(flags_length));
frame.WriteUInt32(stream_id);
if (spdy_version_ < 3) {
frame.WriteUInt16(0); // Unused
}
WriteHeaderBlock(&frame, headers);
scoped_ptr<SpdySynReplyControlFrame> reply_frame(
reinterpret_cast<SpdySynReplyControlFrame*>(frame.take()));
if (compressed) {
return reinterpret_cast<SpdySynReplyControlFrame*>(
CompressControlFrame(*reply_frame.get()));
}
return reply_frame.release();
}
SpdyRstStreamControlFrame* SpdyFramer::CreateRstStream(
SpdyStreamId stream_id,
SpdyStatusCodes status) const {
DCHECK_GT(stream_id, 0u);
DCHECK_EQ(0u, stream_id & ~kStreamIdMask);
DCHECK_NE(status, INVALID);
DCHECK_LT(status, NUM_STATUS_CODES);
SpdyFrameBuilder frame(SpdyRstStreamControlFrame::size());
frame.WriteUInt16(kControlFlagMask | spdy_version_);
frame.WriteUInt16(RST_STREAM);
frame.WriteUInt32(8);
frame.WriteUInt32(stream_id);
frame.WriteUInt32(status);
return reinterpret_cast<SpdyRstStreamControlFrame*>(frame.take());
}
SpdySettingsControlFrame* SpdyFramer::CreateSettings(
const SpdySettings& values) const {
SpdyFrameBuilder frame(SpdySettingsControlFrame::size() + 8 * values.size());
frame.WriteUInt16(kControlFlagMask | spdy_version_);
frame.WriteUInt16(SETTINGS);
size_t settings_size =
SpdySettingsControlFrame::size() - SpdyFrame::kHeaderSize +
8 * values.size();
frame.WriteUInt32(settings_size);
frame.WriteUInt32(values.size());
SpdySettings::const_iterator it = values.begin();
while (it != values.end()) {
uint32 id_and_flags_wire = it->first.GetWireFormat(spdy_version_);
frame.WriteBytes(&id_and_flags_wire, 4);
frame.WriteUInt32(it->second);
++it;
}
return reinterpret_cast<SpdySettingsControlFrame*>(frame.take());
}
SpdyPingControlFrame* SpdyFramer::CreatePingFrame(uint32 unique_id) const {
SpdyFrameBuilder frame(SpdyPingControlFrame::size());
frame.WriteUInt16(kControlFlagMask | spdy_version_);
frame.WriteUInt16(PING);
size_t ping_size = SpdyPingControlFrame::size() - SpdyFrame::kHeaderSize;
frame.WriteUInt32(ping_size);
frame.WriteUInt32(unique_id);
return reinterpret_cast<SpdyPingControlFrame*>(frame.take());
}
SpdyGoAwayControlFrame* SpdyFramer::CreateGoAway(
SpdyStreamId last_accepted_stream_id,
SpdyGoAwayStatus status) const {
DCHECK_EQ(0u, last_accepted_stream_id & ~kStreamIdMask);
// SPDY 2 GOAWAY frames are 4 bytes smaller than in SPDY 3. We account for
// this difference via a separate offset variable, since
// SpdyGoAwayControlFrame::size() returns the SPDY 3 size.
const size_t goaway_offset = (protocol_version() < 3) ? 4 : 0;
SpdyFrameBuilder frame(SpdyGoAwayControlFrame::size() - goaway_offset);
frame.WriteUInt16(kControlFlagMask | spdy_version_);
frame.WriteUInt16(GOAWAY);
size_t go_away_size =
SpdyGoAwayControlFrame::size() - SpdyFrame::kHeaderSize - goaway_offset;
frame.WriteUInt32(go_away_size);
frame.WriteUInt32(last_accepted_stream_id);
if (protocol_version() >= 3) {
frame.WriteUInt32(status);
}
return reinterpret_cast<SpdyGoAwayControlFrame*>(frame.take());
}
SpdyHeadersControlFrame* SpdyFramer::CreateHeaders(
SpdyStreamId stream_id,
SpdyControlFlags flags,
bool compressed,
const SpdyHeaderBlock* headers) {
// Basically the same as CreateSynReply().
DCHECK_GT(stream_id, 0u);
DCHECK_EQ(0u, stream_id & ~kStreamIdMask);
// Find our length.
size_t expected_frame_size = SpdyHeadersControlFrame::size() +
GetSerializedLength(headers);
// In SPDY 2, there were 2 unused bytes before payload.
if (spdy_version_ < 3) {
expected_frame_size += 2;
}
// Create our FlagsAndLength.
FlagsAndLength flags_length = CreateFlagsAndLength(
flags,
expected_frame_size - SpdyFrame::kHeaderSize);
SpdyFrameBuilder frame(expected_frame_size);
frame.WriteUInt16(kControlFlagMask | spdy_version_);
frame.WriteUInt16(HEADERS);
frame.WriteBytes(&flags_length, sizeof(flags_length));
frame.WriteUInt32(stream_id);
if (spdy_version_ < 3) {
frame.WriteUInt16(0); // Unused
}
WriteHeaderBlock(&frame, headers);
DCHECK_EQ(static_cast<size_t>(frame.length()), expected_frame_size);
scoped_ptr<SpdyHeadersControlFrame> headers_frame(
reinterpret_cast<SpdyHeadersControlFrame*>(frame.take()));
if (compressed) {
return reinterpret_cast<SpdyHeadersControlFrame*>(
CompressControlFrame(*headers_frame.get()));
}
return headers_frame.release();
}
SpdyWindowUpdateControlFrame* SpdyFramer::CreateWindowUpdate(
SpdyStreamId stream_id,
uint32 delta_window_size) const {
DCHECK_GT(stream_id, 0u);
DCHECK_EQ(0u, stream_id & ~kStreamIdMask);
DCHECK_GT(delta_window_size, 0u);
DCHECK_LE(delta_window_size,
static_cast<uint32>(kSpdyStreamMaximumWindowSize));
SpdyFrameBuilder frame(SpdyWindowUpdateControlFrame::size());
frame.WriteUInt16(kControlFlagMask | spdy_version_);
frame.WriteUInt16(WINDOW_UPDATE);
size_t window_update_size = SpdyWindowUpdateControlFrame::size() -
SpdyFrame::kHeaderSize;
frame.WriteUInt32(window_update_size);
frame.WriteUInt32(stream_id);
frame.WriteUInt32(delta_window_size);
return reinterpret_cast<SpdyWindowUpdateControlFrame*>(frame.take());
}
SpdyCredentialControlFrame* SpdyFramer::CreateCredentialFrame(
const SpdyCredential& credential) const {
// Calculate the size of the frame by adding the size of the
// variable length data to the size of the fixed length data.
size_t frame_size = SpdyCredentialControlFrame::size() +
credential.proof.length();
DCHECK_EQ(SpdyCredentialControlFrame::size(), 14u);
for (std::vector<std::string>::const_iterator cert = credential.certs.begin();
cert != credential.certs.end();
++cert) {
frame_size += sizeof(uint32); // size of the cert_length field
frame_size += cert->length(); // size of the cert_data field
}
size_t payload_size = frame_size - SpdyFrame::kHeaderSize;
SpdyFrameBuilder frame(frame_size);
// Create our FlagsAndLength.
SpdyControlFlags flags = CONTROL_FLAG_NONE;
FlagsAndLength flags_length = CreateFlagsAndLength(flags, payload_size);
frame.WriteUInt16(kControlFlagMask | spdy_version_);
frame.WriteUInt16(CREDENTIAL);
frame.WriteBytes(&flags_length, sizeof(flags_length));
frame.WriteUInt16(credential.slot);
frame.WriteUInt32(credential.proof.size());
frame.WriteBytes(credential.proof.c_str(), credential.proof.size());
for (std::vector<std::string>::const_iterator cert = credential.certs.begin();
cert != credential.certs.end();
++cert) {
frame.WriteUInt32(cert->length());
frame.WriteBytes(cert->c_str(), cert->length());
}
return reinterpret_cast<SpdyCredentialControlFrame*>(frame.take());
}
SpdyDataFrame* SpdyFramer::CreateDataFrame(SpdyStreamId stream_id,
const char* data,
uint32 len, SpdyDataFlags flags) {
DCHECK_EQ(0u, stream_id & ~kStreamIdMask);
SpdyFrameBuilder frame(SpdyDataFrame::size() + len);
frame.WriteUInt32(stream_id);
DCHECK_EQ(0u, len & ~static_cast<size_t>(kLengthMask));
FlagsAndLength flags_length;
flags_length.length_ = htonl(len);
DCHECK_EQ(0, flags & ~kDataFlagsMask);
flags_length.flags_[0] = flags;
frame.WriteBytes(&flags_length, sizeof(flags_length));
frame.WriteBytes(data, len);
scoped_ptr<SpdyFrame> data_frame(frame.take());
SpdyDataFrame* rv;
if (flags & DATA_FLAG_COMPRESSED) {
LOG(DFATAL) << "DATA_FLAG_COMPRESSED invalid for " << display_protocol_
<< ".";
}
rv = reinterpret_cast<SpdyDataFrame*>(data_frame.release());
if (flags & DATA_FLAG_FIN) {
CleanupCompressorForStream(stream_id);
}
return rv;
}
// The following compression setting are based on Brian Olson's analysis. See
// https://groups.google.com/group/spdy-dev/browse_thread/thread/dfaf498542fac792
// for more details.
static const int kCompressorLevel = 9;
static const int kCompressorWindowSizeInBits = 11;
static const int kCompressorMemLevel = 1;
SpdyFrame* SpdyFramer::CompressFrame(const SpdyFrame& frame) {
if (frame.is_control_frame()) {
return CompressControlFrame(
reinterpret_cast<const SpdyControlFrame&>(frame));
}
return NULL;
}
bool SpdyFramer::IsCompressible(const SpdyFrame& frame) const {
// The important frames to compress are those which contain large
// amounts of compressible data - namely the headers in the SYN_STREAM
// and SYN_REPLY.
if (frame.is_control_frame()) {
const SpdyControlFrame& control_frame =
reinterpret_cast<const SpdyControlFrame&>(frame);
return control_frame.type() == SYN_STREAM ||
control_frame.type() == SYN_REPLY;
}
// We don't compress Data frames.
return false;
}
z_stream* SpdyFramer::GetHeaderCompressor() {
if (header_compressor_.get())
return header_compressor_.get(); // Already initialized.
header_compressor_.reset(new z_stream);
memset(header_compressor_.get(), 0, sizeof(z_stream));
int success = deflateInit2(header_compressor_.get(),
kCompressorLevel,
Z_DEFLATED,
kCompressorWindowSizeInBits,
kCompressorMemLevel,
Z_DEFAULT_STRATEGY);
if (success == Z_OK) {
const char* dictionary = (spdy_version_ < 3) ? kV2Dictionary
: kV3Dictionary;
const int dictionary_size = (spdy_version_ < 3) ? kV2DictionarySize
: kV3DictionarySize;
success = deflateSetDictionary(header_compressor_.get(),
reinterpret_cast<const Bytef*>(dictionary),
dictionary_size);
}
if (success != Z_OK) {
LOG(WARNING) << "deflateSetDictionary failure: " << success;
header_compressor_.reset(NULL);
return NULL;
}
return header_compressor_.get();
}
z_stream* SpdyFramer::GetHeaderDecompressor() {
if (header_decompressor_.get())
return header_decompressor_.get(); // Already initialized.
header_decompressor_.reset(new z_stream);
memset(header_decompressor_.get(), 0, sizeof(z_stream));
int success = inflateInit(header_decompressor_.get());
if (success != Z_OK) {
LOG(WARNING) << "inflateInit failure: " << success;
header_decompressor_.reset(NULL);
return NULL;
}
return header_decompressor_.get();
}
z_stream* SpdyFramer::GetStreamDecompressor(SpdyStreamId stream_id) {
CompressorMap::iterator it = stream_decompressors_.find(stream_id);
if (it != stream_decompressors_.end())
return it->second; // Already initialized.
scoped_ptr<z_stream> decompressor(new z_stream);
memset(decompressor.get(), 0, sizeof(z_stream));
int success = inflateInit(decompressor.get());
if (success != Z_OK) {
LOG(WARNING) << "inflateInit failure: " << success;
return NULL;
}
return stream_decompressors_[stream_id] = decompressor.release();
}
bool SpdyFramer::GetFrameBoundaries(const SpdyFrame& frame,
int* payload_length,
int* header_length,
const char** payload) const {
size_t frame_size;
if (frame.is_control_frame()) {
const SpdyControlFrame& control_frame =
reinterpret_cast<const SpdyControlFrame&>(frame);
switch (control_frame.type()) {
case SYN_STREAM:
{
const SpdySynStreamControlFrame& syn_frame =
reinterpret_cast<const SpdySynStreamControlFrame&>(frame);
frame_size = SpdySynStreamControlFrame::size();
*payload_length = syn_frame.header_block_len();
*header_length = frame_size;
*payload = frame.data() + *header_length;
}
break;
case SYN_REPLY:
{
const SpdySynReplyControlFrame& syn_frame =
reinterpret_cast<const SpdySynReplyControlFrame&>(frame);
frame_size = SpdySynReplyControlFrame::size();
*payload_length = syn_frame.header_block_len();
*header_length = frame_size;
*payload = frame.data() + *header_length;
// SPDY 2 had two bytes of unused space preceeding payload.
if (spdy_version_ < 3) {
*header_length += 2;
*payload += 2;
}
}
break;
case HEADERS:
{
const SpdyHeadersControlFrame& headers_frame =
reinterpret_cast<const SpdyHeadersControlFrame&>(frame);
frame_size = SpdyHeadersControlFrame::size();
*payload_length = headers_frame.header_block_len();
*header_length = frame_size;
*payload = frame.data() + *header_length;
// SPDY 2 had two bytes of unused space preceeding payload.
if (spdy_version_ < 3) {
*header_length += 2;
*payload += 2;
}
}
break;
default:
// TODO(mbelshe): set an error?
return false; // We can't compress this frame!
}
} else {
frame_size = SpdyFrame::kHeaderSize;
*header_length = frame_size;
*payload_length = frame.length();
*payload = frame.data() + SpdyFrame::kHeaderSize;
}
return true;
}
SpdyControlFrame* SpdyFramer::CompressControlFrame(
const SpdyControlFrame& frame) {
z_stream* compressor = GetHeaderCompressor();
if (!compressor)
return NULL;
int payload_length;
int header_length;
const char* payload;
base::StatsCounter compressed_frames("spdy.CompressedFrames");
base::StatsCounter pre_compress_bytes("spdy.PreCompressSize");
base::StatsCounter post_compress_bytes("spdy.PostCompressSize");
if (!enable_compression_)
return reinterpret_cast<SpdyControlFrame*>(DuplicateFrame(frame));
if (!GetFrameBoundaries(frame, &payload_length, &header_length, &payload))
return NULL;
// Create an output frame.
int compressed_max_size = deflateBound(compressor, payload_length);
int new_frame_size = header_length + compressed_max_size;
if ((frame.type() == SYN_REPLY || frame.type() == HEADERS) &&
spdy_version_ < 3) {
new_frame_size += 2;
}
DCHECK_GE(new_frame_size,
static_cast<int>(frame.length() + SpdyFrame::kHeaderSize));
scoped_ptr<SpdyControlFrame> new_frame(new SpdyControlFrame(new_frame_size));
memcpy(new_frame->data(), frame.data(),
frame.length() + SpdyFrame::kHeaderSize);
compressor->next_in = reinterpret_cast<Bytef*>(const_cast<char*>(payload));
compressor->avail_in = payload_length;
compressor->next_out = reinterpret_cast<Bytef*>(new_frame->data()) +
header_length;
compressor->avail_out = compressed_max_size;
// Data packets have a 'compressed' flag.
// TODO(hkhalil): Remove post code-yellow. It's impossible to execute this
// branch given that SpdyControlFrame::is_control_frame always returns true.
DCHECK(new_frame->is_control_frame());
if (!new_frame->is_control_frame()) {
SpdyDataFrame* data_frame =
reinterpret_cast<SpdyDataFrame*>(new_frame.get());
data_frame->set_flags(data_frame->flags() | DATA_FLAG_COMPRESSED);
}
// Make sure that all the data we pass to zlib is defined.
// This way, all Valgrind reports on the compressed data are zlib's fault.
(void)VALGRIND_CHECK_MEM_IS_DEFINED(compressor->next_in,
compressor->avail_in);
int rv = deflate(compressor, Z_SYNC_FLUSH);
if (rv != Z_OK) { // How can we know that it compressed everything?
// This shouldn't happen, right?
LOG(WARNING) << "deflate failure: " << rv;
return NULL;
}
int compressed_size = compressed_max_size - compressor->avail_out;
// We trust zlib. Also, we can't do anything about it.
// See http://www.zlib.net/zlib_faq.html#faq36
(void)VALGRIND_MAKE_MEM_DEFINED(new_frame->data() + header_length,
compressed_size);
new_frame->set_length(
header_length + compressed_size - SpdyFrame::kHeaderSize);
pre_compress_bytes.Add(payload_length);
post_compress_bytes.Add(new_frame->length());
compressed_frames.Increment();
return new_frame.release();
}
// Incrementally decompress the control frame's header block, feeding the
// result to the visitor in chunks. Continue this until the visitor
// indicates that it cannot process any more data, or (more commonly) we
// run out of data to deliver.
bool SpdyFramer::IncrementallyDecompressControlFrameHeaderData(
const SpdyControlFrame* control_frame,
const char* data,
size_t len) {
// Get a decompressor or set error.
z_stream* decomp = GetHeaderDecompressor();
if (decomp == NULL) {
LOG(DFATAL) << "Couldn't get decompressor for handling compressed headers.";
set_error(SPDY_DECOMPRESS_FAILURE);
return false;
}
bool processed_successfully = true;
char buffer[kHeaderDataChunkMaxSize];
decomp->next_in = reinterpret_cast<Bytef*>(const_cast<char*>(data));
decomp->avail_in = len;
const SpdyStreamId stream_id = GetControlFrameStreamId(control_frame);
DCHECK_LT(0u, stream_id);
while (decomp->avail_in > 0 && processed_successfully) {
decomp->next_out = reinterpret_cast<Bytef*>(buffer);
decomp->avail_out = arraysize(buffer);
int rv = inflate(decomp, Z_SYNC_FLUSH);
if (rv == Z_NEED_DICT) {
const char* dictionary = (spdy_version_ < 3) ? kV2Dictionary
: kV3Dictionary;
const int dictionary_size = (spdy_version_ < 3) ? kV2DictionarySize
: kV3DictionarySize;
const DictionaryIds& ids = g_dictionary_ids.Get();
const uLong dictionary_id = (spdy_version_ < 3) ? ids.v2_dictionary_id
: ids.v3_dictionary_id;
// Need to try again with the right dictionary.
if (decomp->adler == dictionary_id) {
rv = inflateSetDictionary(decomp,
reinterpret_cast<const Bytef*>(dictionary),
dictionary_size);
if (rv == Z_OK)
rv = inflate(decomp, Z_SYNC_FLUSH);
}
}
// Inflate will generate a Z_BUF_ERROR if it runs out of input
// without producing any output. The input is consumed and
// buffered internally by zlib so we can detect this condition by
// checking if avail_in is 0 after the call to inflate.
bool input_exhausted = ((rv == Z_BUF_ERROR) && (decomp->avail_in == 0));
if ((rv == Z_OK) || input_exhausted) {
size_t decompressed_len = arraysize(buffer) - decomp->avail_out;
if (decompressed_len > 0) {
processed_successfully = visitor_->OnControlFrameHeaderData(
stream_id, buffer, decompressed_len);
}
if (!processed_successfully) {
// Assume that the problem was the header block was too large for the
// visitor.
set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE);
}
} else {
DLOG(WARNING) << "inflate failure: " << rv << " " << len;
set_error(SPDY_DECOMPRESS_FAILURE);
processed_successfully = false;
}
}
return processed_successfully;
}
bool SpdyFramer::IncrementallyDeliverControlFrameHeaderData(
const SpdyControlFrame* control_frame, const char* data, size_t len) {
bool read_successfully = true;
const SpdyStreamId stream_id = GetControlFrameStreamId(control_frame);
while (read_successfully && len > 0) {
size_t bytes_to_deliver = std::min(len, kHeaderDataChunkMaxSize);
read_successfully = visitor_->OnControlFrameHeaderData(stream_id, data,
bytes_to_deliver);
data += bytes_to_deliver;
len -= bytes_to_deliver;
if (!read_successfully) {
// Assume that the problem was the header block was too large for the
// visitor.
set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE);
}
}
return read_successfully;
}
void SpdyFramer::CleanupCompressorForStream(SpdyStreamId id) {
CompressorMap::iterator it = stream_compressors_.find(id);
if (it != stream_compressors_.end()) {
z_stream* compressor = it->second;
deflateEnd(compressor);
delete compressor;
stream_compressors_.erase(it);
}
}
void SpdyFramer::CleanupDecompressorForStream(SpdyStreamId id) {
CompressorMap::iterator it = stream_decompressors_.find(id);
if (it != stream_decompressors_.end()) {
z_stream* decompressor = it->second;
inflateEnd(decompressor);
delete decompressor;
stream_decompressors_.erase(it);
}
}
void SpdyFramer::CleanupStreamCompressorsAndDecompressors() {
CompressorMap::iterator it;
it = stream_compressors_.begin();
while (it != stream_compressors_.end()) {
z_stream* compressor = it->second;
deflateEnd(compressor);
delete compressor;
++it;
}
stream_compressors_.clear();
it = stream_decompressors_.begin();
while (it != stream_decompressors_.end()) {
z_stream* decompressor = it->second;
inflateEnd(decompressor);
delete decompressor;
++it;
}
stream_decompressors_.clear();
}
SpdyFrame* SpdyFramer::DuplicateFrame(const SpdyFrame& frame) {
int size = SpdyFrame::kHeaderSize + frame.length();
SpdyFrame* new_frame = new SpdyFrame(size);
memcpy(new_frame->data(), frame.data(), size);
return new_frame;
}
size_t SpdyFramer::GetMinimumControlFrameSize(int version,
SpdyControlType type) {
switch (type) {
case SYN_STREAM:
return SpdySynStreamControlFrame::size();
case SYN_REPLY:
return SpdySynReplyControlFrame::size();
case RST_STREAM:
return SpdyRstStreamControlFrame::size();
case SETTINGS:
return SpdySettingsControlFrame::size();
case NOOP:
// Even though NOOP is no longer supported, we still correctly report its
// size so that it can be handled correctly as incoming data if
// implementations so desire.
return SpdyFrame::kHeaderSize;
case PING:
return SpdyPingControlFrame::size();
case GOAWAY:
if (version < 3) {
// SPDY 2 GOAWAY is smaller by 32 bits. Since
// SpdyGoAwayControlFrame::size() returns the size for SPDY 3, we adjust
// before returning here.
return SpdyGoAwayControlFrame::size() - 4;
} else {
return SpdyGoAwayControlFrame::size();
}
case HEADERS:
return SpdyHeadersControlFrame::size();
case WINDOW_UPDATE:
return SpdyWindowUpdateControlFrame::size();
case CREDENTIAL:
return SpdyCredentialControlFrame::size();
case NUM_CONTROL_FRAME_TYPES:
break;
}
LOG(ERROR) << "Unknown control frame type " << type;
return 0x7FFFFFFF; // Max signed 32bit int
}
/* static */
SpdyStreamId SpdyFramer::GetControlFrameStreamId(
const SpdyControlFrame* control_frame) {
SpdyStreamId stream_id = kInvalidStream;
if (control_frame != NULL) {
switch (control_frame->type()) {
case SYN_STREAM:
stream_id = reinterpret_cast<const SpdySynStreamControlFrame*>(
control_frame)->stream_id();
break;
case SYN_REPLY:
stream_id = reinterpret_cast<const SpdySynReplyControlFrame*>(
control_frame)->stream_id();
break;
case HEADERS:
stream_id = reinterpret_cast<const SpdyHeadersControlFrame*>(
control_frame)->stream_id();
break;
case RST_STREAM:
stream_id = reinterpret_cast<const SpdyRstStreamControlFrame*>(
control_frame)->stream_id();
break;
case WINDOW_UPDATE:
stream_id = reinterpret_cast<const SpdyWindowUpdateControlFrame*>(
control_frame)->stream_id();
break;
// All of the following types are not part of a particular stream.
// They all fall through to the invalid control frame type case.
// (The default case isn't used so that the compile will break if a new
// control frame type is added but not included here.)
case SETTINGS:
case NOOP:
case PING:
case GOAWAY:
case CREDENTIAL:
case NUM_CONTROL_FRAME_TYPES: // makes compiler happy
break;
}
}
return stream_id;
}
void SpdyFramer::set_enable_compression(bool value) {
enable_compression_ = value;
}
void SpdyFramer::set_validate_control_frame_sizes(bool value) {
validate_control_frame_sizes_ = value;
}
void SpdyFramer::set_enable_compression_default(bool value) {
g_enable_compression_default = value;
}
} // namespace net