| // Copyright (c) 2009 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #ifndef BASE_CONTAINERS_LINKED_LIST_H_ | 
 | #define BASE_CONTAINERS_LINKED_LIST_H_ | 
 |  | 
 | #include "base/macros.h" | 
 |  | 
 | // Simple LinkedList type. (See the Q&A section to understand how this | 
 | // differs from std::list). | 
 | // | 
 | // To use, start by declaring the class which will be contained in the linked | 
 | // list, as extending LinkNode (this gives it next/previous pointers). | 
 | // | 
 | //   class MyNodeType : public LinkNode<MyNodeType> { | 
 | //     ... | 
 | //   }; | 
 | // | 
 | // Next, to keep track of the list's head/tail, use a LinkedList instance: | 
 | // | 
 | //   LinkedList<MyNodeType> list; | 
 | // | 
 | // To add elements to the list, use any of LinkedList::Append, | 
 | // LinkNode::InsertBefore, or LinkNode::InsertAfter: | 
 | // | 
 | //   LinkNode<MyNodeType>* n1 = ...; | 
 | //   LinkNode<MyNodeType>* n2 = ...; | 
 | //   LinkNode<MyNodeType>* n3 = ...; | 
 | // | 
 | //   list.Append(n1); | 
 | //   list.Append(n3); | 
 | //   n3->InsertBefore(n3); | 
 | // | 
 | // Lastly, to iterate through the linked list forwards: | 
 | // | 
 | //   for (LinkNode<MyNodeType>* node = list.head(); | 
 | //        node != list.end(); | 
 | //        node = node->next()) { | 
 | //     MyNodeType* value = node->value(); | 
 | //     ... | 
 | //   } | 
 | // | 
 | // Or to iterate the linked list backwards: | 
 | // | 
 | //   for (LinkNode<MyNodeType>* node = list.tail(); | 
 | //        node != list.end(); | 
 | //        node = node->previous()) { | 
 | //     MyNodeType* value = node->value(); | 
 | //     ... | 
 | //   } | 
 | // | 
 | // Questions and Answers: | 
 | // | 
 | // Q. Should I use std::list or base::LinkedList? | 
 | // | 
 | // A. The main reason to use base::LinkedList over std::list is | 
 | //    performance. If you don't care about the performance differences | 
 | //    then use an STL container, as it makes for better code readability. | 
 | // | 
 | //    Comparing the performance of base::LinkedList<T> to std::list<T*>: | 
 | // | 
 | //    * Erasing an element of type T* from base::LinkedList<T> is | 
 | //      an O(1) operation. Whereas for std::list<T*> it is O(n). | 
 | //      That is because with std::list<T*> you must obtain an | 
 | //      iterator to the T* element before you can call erase(iterator). | 
 | // | 
 | //    * Insertion operations with base::LinkedList<T> never require | 
 | //      heap allocations. | 
 | // | 
 | // Q. How does base::LinkedList implementation differ from std::list? | 
 | // | 
 | // A. Doubly-linked lists are made up of nodes that contain "next" and | 
 | //    "previous" pointers that reference other nodes in the list. | 
 | // | 
 | //    With base::LinkedList<T>, the type being inserted already reserves | 
 | //    space for the "next" and "previous" pointers (base::LinkNode<T>*). | 
 | //    Whereas with std::list<T> the type can be anything, so the implementation | 
 | //    needs to glue on the "next" and "previous" pointers using | 
 | //    some internal node type. | 
 |  | 
 | namespace base { | 
 |  | 
 | template <typename T> | 
 | class LinkNode { | 
 |  public: | 
 |   LinkNode() : previous_(NULL), next_(NULL) {} | 
 |   LinkNode(LinkNode<T>* previous, LinkNode<T>* next) | 
 |       : previous_(previous), next_(next) {} | 
 |  | 
 |   // Insert |this| into the linked list, before |e|. | 
 |   void InsertBefore(LinkNode<T>* e) { | 
 |     this->next_ = e; | 
 |     this->previous_ = e->previous_; | 
 |     e->previous_->next_ = this; | 
 |     e->previous_ = this; | 
 |   } | 
 |  | 
 |   // Insert |this| into the linked list, after |e|. | 
 |   void InsertAfter(LinkNode<T>* e) { | 
 |     this->next_ = e->next_; | 
 |     this->previous_ = e; | 
 |     e->next_->previous_ = this; | 
 |     e->next_ = this; | 
 |   } | 
 |  | 
 |   // Remove |this| from the linked list. | 
 |   void RemoveFromList() { | 
 |     this->previous_->next_ = this->next_; | 
 |     this->next_->previous_ = this->previous_; | 
 |     // next() and previous() return non-NULL if and only this node is not in any | 
 |     // list. | 
 |     this->next_ = NULL; | 
 |     this->previous_ = NULL; | 
 |   } | 
 |  | 
 |   LinkNode<T>* previous() const { | 
 |     return previous_; | 
 |   } | 
 |  | 
 |   LinkNode<T>* next() const { | 
 |     return next_; | 
 |   } | 
 |  | 
 |   // Cast from the node-type to the value type. | 
 |   const T* value() const { | 
 |     return static_cast<const T*>(this); | 
 |   } | 
 |  | 
 |   T* value() { | 
 |     return static_cast<T*>(this); | 
 |   } | 
 |  | 
 |  private: | 
 |   LinkNode<T>* previous_; | 
 |   LinkNode<T>* next_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(LinkNode); | 
 | }; | 
 |  | 
 | template <typename T> | 
 | class LinkedList { | 
 |  public: | 
 |   // The "root" node is self-referential, and forms the basis of a circular | 
 |   // list (root_.next() will point back to the start of the list, | 
 |   // and root_->previous() wraps around to the end of the list). | 
 |   LinkedList() : root_(&root_, &root_) {} | 
 |  | 
 |   // Appends |e| to the end of the linked list. | 
 |   void Append(LinkNode<T>* e) { | 
 |     e->InsertBefore(&root_); | 
 |   } | 
 |  | 
 |   LinkNode<T>* head() const { | 
 |     return root_.next(); | 
 |   } | 
 |  | 
 |   LinkNode<T>* tail() const { | 
 |     return root_.previous(); | 
 |   } | 
 |  | 
 |   const LinkNode<T>* end() const { | 
 |     return &root_; | 
 |   } | 
 |  | 
 |   bool empty() const { return head() == end(); } | 
 |  | 
 |  private: | 
 |   LinkNode<T> root_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(LinkedList); | 
 | }; | 
 |  | 
 | }  // namespace base | 
 |  | 
 | #endif  // BASE_CONTAINERS_LINKED_LIST_H_ |