blob: 83233dc33410852fee31177cb24990653ea1a53a [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_stream_sequencer.h"
#include <utility>
#include <vector>
#include "base/logging.h"
#include "base/rand_util.h"
#include "net/base/ip_endpoint.h"
#include "net/quic/quic_flags.h"
#include "net/quic/quic_frame_list.h"
#include "net/quic/quic_utils.h"
#include "net/quic/reliable_quic_stream.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/quic_stream_sequencer_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gmock_mutant.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::StringPiece;
using std::map;
using std::min;
using std::pair;
using std::string;
using std::vector;
using testing::_;
using testing::AnyNumber;
using testing::CreateFunctor;
using testing::InSequence;
using testing::Return;
using testing::StrEq;
namespace net {
namespace test {
class MockStream : public ReliableQuicStream {
public:
MockStream(QuicSession* session, QuicStreamId id)
: ReliableQuicStream(id, session) {}
MOCK_METHOD0(OnFinRead, void());
MOCK_METHOD0(OnDataAvailable, void());
MOCK_METHOD2(CloseConnectionWithDetails,
void(QuicErrorCode error, const string& details));
MOCK_METHOD1(Reset, void(QuicRstStreamErrorCode error));
MOCK_METHOD0(OnCanWrite, void());
SpdyPriority Priority() const override { return kV3HighestPriority; }
virtual bool IsFlowControlEnabled() const { return true; }
};
namespace {
static const char kPayload[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
class QuicStreamSequencerTest : public ::testing::TestWithParam<bool> {
public:
void SetUp() override {
FLAGS_quic_use_stream_sequencer_buffer = GetParam();
sequencer_.reset(new QuicStreamSequencer(&stream_, &clock_));
}
void ConsumeData(size_t num_bytes) {
char buffer[1024];
ASSERT_GT(arraysize(buffer), num_bytes);
struct iovec iov;
iov.iov_base = buffer;
iov.iov_len = num_bytes;
ASSERT_EQ(static_cast<int>(num_bytes), sequencer_->Readv(&iov, 1));
}
protected:
QuicStreamSequencerTest()
: connection_(new MockConnection(&helper_, Perspective::IS_CLIENT)),
session_(connection_),
stream_(&session_, 1) {}
// Verify that the data in first region match with the expected[0].
bool VerifyReadableRegion(const vector<string>& expected) {
iovec iovecs[1];
if (sequencer_->GetReadableRegions(iovecs, 1)) {
return (VerifyIovecs(iovecs, 1, vector<string>{expected[0]}));
}
return false;
}
// Verify that the data in each of currently readable regions match with each
// item given in |expected|.
bool VerifyReadableRegions(const vector<string>& expected) {
iovec iovecs[5];
size_t num_iovecs =
sequencer_->GetReadableRegions(iovecs, arraysize(iovecs));
return VerifyReadableRegion(expected) &&
VerifyIovecs(iovecs, num_iovecs, expected);
}
bool VerifyIovecs(iovec* iovecs,
size_t num_iovecs,
const vector<string>& expected) {
if (!FLAGS_quic_use_stream_sequencer_buffer) {
if (expected.size() != num_iovecs) {
LOG(ERROR) << "Incorrect number of iovecs. Expected: "
<< expected.size() << " Actual: " << num_iovecs;
return false;
}
for (size_t i = 0; i < num_iovecs; ++i) {
if (!VerifyIovec(iovecs[i], expected[i])) {
return false;
}
}
} else {
int start_position = 0;
for (size_t i = 0; i < num_iovecs; ++i) {
if (!VerifyIovec(iovecs[i], expected[0].substr(start_position,
iovecs[i].iov_len))) {
return false;
}
start_position += iovecs[i].iov_len;
}
}
return true;
}
bool VerifyIovec(const iovec& iovec, StringPiece expected) {
if (iovec.iov_len != expected.length()) {
LOG(ERROR) << "Invalid length: " << iovec.iov_len << " vs "
<< expected.length();
return false;
}
if (memcmp(iovec.iov_base, expected.data(), expected.length()) != 0) {
LOG(ERROR) << "Invalid data: " << static_cast<char*>(iovec.iov_base)
<< " vs " << expected;
return false;
}
return true;
}
void OnFinFrame(QuicStreamOffset byte_offset, const char* data) {
QuicStreamFrame frame;
frame.stream_id = 1;
frame.offset = byte_offset;
frame.data = StringPiece(data);
frame.fin = true;
sequencer_->OnStreamFrame(frame);
}
void OnFrame(QuicStreamOffset byte_offset, const char* data) {
QuicStreamFrame frame;
frame.stream_id = 1;
frame.offset = byte_offset;
frame.data = StringPiece(data);
frame.fin = false;
sequencer_->OnStreamFrame(frame);
}
size_t NumBufferedBytes() {
return QuicStreamSequencerPeer::GetNumBufferedBytes(sequencer_.get());
}
MockConnectionHelper helper_;
MockConnection* connection_;
MockClock clock_;
MockQuicSpdySession session_;
testing::StrictMock<MockStream> stream_;
scoped_ptr<QuicStreamSequencer> sequencer_;
};
INSTANTIATE_TEST_CASE_P(QuicStreamSequencerTests,
QuicStreamSequencerTest,
::testing::Values(false, true));
// TODO(rch): reorder these tests so they build on each other.
TEST_P(QuicStreamSequencerTest, RejectOldFrame) {
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 3)));
OnFrame(0, "abc");
EXPECT_EQ(0u, NumBufferedBytes());
EXPECT_EQ(3u, sequencer_->NumBytesConsumed());
EXPECT_EQ(3u, stream_.flow_controller()->bytes_consumed());
// Ignore this - it matches a past packet number and we should not see it
// again.
OnFrame(0, "def");
EXPECT_EQ(0u, NumBufferedBytes());
}
TEST_P(QuicStreamSequencerTest, RejectBufferedFrame) {
EXPECT_CALL(stream_, OnDataAvailable());
OnFrame(0, "abc");
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
// Ignore this - it matches a buffered frame.
// Right now there's no checking that the payload is consistent.
OnFrame(0, "def");
EXPECT_EQ(3u, NumBufferedBytes());
}
TEST_P(QuicStreamSequencerTest, FullFrameConsumed) {
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 3)));
OnFrame(0, "abc");
EXPECT_EQ(0u, NumBufferedBytes());
EXPECT_EQ(3u, sequencer_->NumBytesConsumed());
}
TEST_P(QuicStreamSequencerTest, BlockedThenFullFrameConsumed) {
sequencer_->SetBlockedUntilFlush();
OnFrame(0, "abc");
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 3)));
sequencer_->SetUnblocked();
EXPECT_EQ(0u, NumBufferedBytes());
EXPECT_EQ(3u, sequencer_->NumBytesConsumed());
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 3)));
EXPECT_FALSE(sequencer_->IsClosed());
OnFinFrame(3, "def");
EXPECT_TRUE(sequencer_->IsClosed());
}
TEST_P(QuicStreamSequencerTest, BlockedThenFullFrameAndFinConsumed) {
sequencer_->SetBlockedUntilFlush();
OnFinFrame(0, "abc");
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 3)));
EXPECT_FALSE(sequencer_->IsClosed());
sequencer_->SetUnblocked();
EXPECT_TRUE(sequencer_->IsClosed());
EXPECT_EQ(0u, NumBufferedBytes());
EXPECT_EQ(3u, sequencer_->NumBytesConsumed());
}
TEST_P(QuicStreamSequencerTest, EmptyFrame) {
EXPECT_CALL(stream_,
CloseConnectionWithDetails(QUIC_INVALID_STREAM_FRAME, _));
OnFrame(0, "");
EXPECT_EQ(0u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
}
TEST_P(QuicStreamSequencerTest, EmptyFinFrame) {
EXPECT_CALL(stream_, OnDataAvailable());
OnFinFrame(0, "");
EXPECT_EQ(0u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
}
TEST_P(QuicStreamSequencerTest, PartialFrameConsumed) {
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 2)));
OnFrame(0, "abc");
EXPECT_EQ(1u, NumBufferedBytes());
EXPECT_EQ(2u, sequencer_->NumBytesConsumed());
}
TEST_P(QuicStreamSequencerTest, NextxFrameNotConsumed) {
EXPECT_CALL(stream_, OnDataAvailable());
OnFrame(0, "abc");
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_EQ(0, sequencer_->num_early_frames_received());
}
TEST_P(QuicStreamSequencerTest, FutureFrameNotProcessed) {
OnFrame(3, "abc");
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_EQ(1, sequencer_->num_early_frames_received());
}
TEST_P(QuicStreamSequencerTest, OutOfOrderFrameProcessed) {
// Buffer the first
OnFrame(6, "ghi");
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_EQ(3u, sequencer_->NumBytesBuffered());
// Buffer the second
OnFrame(3, "def");
EXPECT_EQ(6u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_EQ(6u, sequencer_->NumBytesBuffered());
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 9)));
// Now process all of them at once.
OnFrame(0, "abc");
EXPECT_EQ(9u, sequencer_->NumBytesConsumed());
EXPECT_EQ(0u, sequencer_->NumBytesBuffered());
EXPECT_EQ(0u, NumBufferedBytes());
}
TEST_P(QuicStreamSequencerTest, BasicHalfCloseOrdered) {
InSequence s;
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 3)));
OnFinFrame(0, "abc");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
}
TEST_P(QuicStreamSequencerTest, BasicHalfCloseUnorderedWithFlush) {
OnFinFrame(6, "");
EXPECT_EQ(6u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
OnFrame(3, "def");
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 6)));
EXPECT_FALSE(sequencer_->IsClosed());
OnFrame(0, "abc");
EXPECT_TRUE(sequencer_->IsClosed());
}
TEST_P(QuicStreamSequencerTest, BasicHalfUnordered) {
OnFinFrame(3, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
EXPECT_CALL(stream_, OnDataAvailable())
.WillOnce(testing::Invoke(
CreateFunctor(this, &QuicStreamSequencerTest::ConsumeData, 3)));
EXPECT_FALSE(sequencer_->IsClosed());
OnFrame(0, "abc");
EXPECT_TRUE(sequencer_->IsClosed());
}
TEST_P(QuicStreamSequencerTest, TerminateWithReadv) {
char buffer[3];
OnFinFrame(3, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
EXPECT_FALSE(sequencer_->IsClosed());
EXPECT_CALL(stream_, OnDataAvailable());
OnFrame(0, "abc");
iovec iov = {&buffer[0], 3};
int bytes_read = sequencer_->Readv(&iov, 1);
EXPECT_EQ(3, bytes_read);
EXPECT_TRUE(sequencer_->IsClosed());
}
TEST_P(QuicStreamSequencerTest, MutipleOffsets) {
OnFinFrame(3, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
EXPECT_CALL(stream_, Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS));
OnFinFrame(5, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
EXPECT_CALL(stream_, Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS));
OnFinFrame(1, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
OnFinFrame(3, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
}
class QuicSequencerRandomTest : public QuicStreamSequencerTest {
public:
typedef pair<int, string> Frame;
typedef vector<Frame> FrameList;
void CreateFrames() {
int payload_size = arraysize(kPayload) - 1;
int remaining_payload = payload_size;
while (remaining_payload != 0) {
int size = min(OneToN(6), remaining_payload);
int index = payload_size - remaining_payload;
list_.push_back(std::make_pair(index, string(kPayload + index, size)));
remaining_payload -= size;
}
}
QuicSequencerRandomTest() {
CreateFrames();
}
int OneToN(int n) { return base::RandInt(1, n); }
void ReadAvailableData() {
// Read all available data
char output[arraysize(kPayload) + 1];
iovec iov;
iov.iov_base = output;
iov.iov_len = arraysize(output);
int bytes_read = sequencer_->Readv(&iov, 1);
EXPECT_NE(0, bytes_read);
output_.append(output, bytes_read);
}
string output_;
// Data which peek at using GetReadableRegion if we back up.
string peeked_;
FrameList list_;
};
// All frames are processed as soon as we have sequential data.
// Infinite buffering, so all frames are acked right away.
TEST_P(QuicSequencerRandomTest, RandomFramesNoDroppingNoBackup) {
InSequence s;
EXPECT_CALL(stream_, OnDataAvailable())
.Times(AnyNumber())
.WillRepeatedly(
Invoke(this, &QuicSequencerRandomTest::ReadAvailableData));
while (!list_.empty()) {
int index = OneToN(list_.size()) - 1;
LOG(ERROR) << "Sending index " << index << " " << list_[index].second;
OnFrame(list_[index].first, list_[index].second.data());
list_.erase(list_.begin() + index);
}
ASSERT_EQ(arraysize(kPayload) - 1, output_.size());
EXPECT_EQ(kPayload, output_);
}
TEST_P(QuicSequencerRandomTest, RandomFramesNoDroppingBackup) {
char buffer[10];
iovec iov[2];
iov[0].iov_base = &buffer[0];
iov[0].iov_len = 5;
iov[1].iov_base = &buffer[5];
iov[1].iov_len = 5;
EXPECT_CALL(stream_, OnDataAvailable()).Times(AnyNumber());
while (output_.size() != arraysize(kPayload) - 1) {
if (!list_.empty() && (base::RandUint64() % 2 == 0)) { // Send data
int index = OneToN(list_.size()) - 1;
OnFrame(list_[index].first, list_[index].second.data());
list_.erase(list_.begin() + index);
} else { // Read data
bool has_bytes = sequencer_->HasBytesToRead();
iovec peek_iov[20];
int iovs_peeked = sequencer_->GetReadableRegions(peek_iov, 20);
QuicTime timestamp = clock_.ApproximateNow();
if (has_bytes) {
ASSERT_LT(0, iovs_peeked);
ASSERT_TRUE(sequencer_->GetReadableRegion(peek_iov, &timestamp));
} else {
ASSERT_EQ(0, iovs_peeked);
ASSERT_FALSE(sequencer_->GetReadableRegion(peek_iov, &timestamp));
}
int total_bytes_to_peek = arraysize(buffer);
for (int i = 0; i < iovs_peeked; ++i) {
int bytes_to_peek = min<int>(peek_iov[i].iov_len, total_bytes_to_peek);
peeked_.append(static_cast<char*>(peek_iov[i].iov_base), bytes_to_peek);
total_bytes_to_peek -= bytes_to_peek;
if (total_bytes_to_peek == 0) {
break;
}
}
int bytes_read = sequencer_->Readv(iov, 2);
output_.append(buffer, bytes_read);
ASSERT_EQ(output_.size(), peeked_.size());
}
}
EXPECT_EQ(string(kPayload), output_);
EXPECT_EQ(string(kPayload), peeked_);
}
// Same as above, just using a different method for reading.
TEST_P(QuicStreamSequencerTest, MarkConsumed) {
InSequence s;
EXPECT_CALL(stream_, OnDataAvailable());
OnFrame(0, "abc");
OnFrame(3, "def");
OnFrame(6, "ghi");
// abcdefghi buffered.
EXPECT_EQ(9u, sequencer_->NumBytesBuffered());
// Peek into the data.
vector<string> expected;
if (FLAGS_quic_use_stream_sequencer_buffer) {
expected = vector<string>{"abcdefghi"};
} else {
expected = vector<string>{"abc", "def", "ghi"};
}
ASSERT_TRUE(VerifyReadableRegions(expected));
// Consume 1 byte.
sequencer_->MarkConsumed(1);
EXPECT_EQ(1u, stream_.flow_controller()->bytes_consumed());
// Verify data.
vector<string> expected2;
if (FLAGS_quic_use_stream_sequencer_buffer) {
expected2 = vector<string>{"bcdefghi"};
} else {
expected2 = vector<string>{"bc", "def", "ghi"};
}
ASSERT_TRUE(VerifyReadableRegions(expected2));
EXPECT_EQ(8u, sequencer_->NumBytesBuffered());
// Consume 2 bytes.
sequencer_->MarkConsumed(2);
EXPECT_EQ(3u, stream_.flow_controller()->bytes_consumed());
// Verify data.
vector<string> expected3;
if (FLAGS_quic_use_stream_sequencer_buffer) {
expected3 = vector<string>{"defghi"};
} else {
expected3 = vector<string>{"def", "ghi"};
}
ASSERT_TRUE(VerifyReadableRegions(expected3));
EXPECT_EQ(6u, sequencer_->NumBytesBuffered());
// Consume 5 bytes.
sequencer_->MarkConsumed(5);
EXPECT_EQ(8u, stream_.flow_controller()->bytes_consumed());
// Verify data.
vector<string> expected4{"i"};
ASSERT_TRUE(VerifyReadableRegions(expected4));
EXPECT_EQ(1u, sequencer_->NumBytesBuffered());
}
TEST_P(QuicStreamSequencerTest, MarkConsumedError) {
EXPECT_CALL(stream_, OnDataAvailable());
OnFrame(0, "abc");
OnFrame(9, "jklmnopqrstuvwxyz");
// Peek into the data. Only the first chunk should be readable because of the
// missing data.
vector<string> expected{"abc"};
ASSERT_TRUE(VerifyReadableRegions(expected));
// Now, attempt to mark consumed more data than was readable and expect the
// stream to be closed.
EXPECT_CALL(stream_, Reset(QUIC_ERROR_PROCESSING_STREAM));
EXPECT_DFATAL(sequencer_->MarkConsumed(4),
"Invalid argument to MarkConsumed."
" expect to consume: 4, but not enough bytes available.");
}
TEST_P(QuicStreamSequencerTest, MarkConsumedWithMissingPacket) {
InSequence s;
EXPECT_CALL(stream_, OnDataAvailable());
OnFrame(0, "abc");
OnFrame(3, "def");
// Missing packet: 6, ghi.
OnFrame(9, "jkl");
vector<string> expected;
if (FLAGS_quic_use_stream_sequencer_buffer) {
expected = vector<string>{"abcdef"};
} else {
expected = vector<string>{"abc", "def"};
}
ASSERT_TRUE(VerifyReadableRegions(expected));
sequencer_->MarkConsumed(6);
}
TEST(QuicFrameListTest, FrameOverlapsBufferedData) {
QuicFrameList buffer;
// Ensure that FrameOverlapsBufferedData returns appropriate responses when
// there is existing data buffered.
const int kBufferedOffset = 10;
const int kBufferedDataLength = 3;
const int kNewDataLength = 3;
string data(kNewDataLength, '.');
// No overlap if no buffered frames.
EXPECT_EQ(0u, buffer.BytesBuffered());
size_t bytes_written;
// Add a buffered frame.
buffer.OnStreamData(
kBufferedOffset,
StringPiece(string(kBufferedDataLength, '.').data(), kBufferedDataLength),
QuicTime::Zero(), &bytes_written);
// New byte range partially overlaps with buffered frame, start offset
// preceding buffered frame.
EXPECT_TRUE(QuicStreamSequencerPeer::FrameOverlapsBufferedData(
&buffer, QuicStreamFrame(1, false, kBufferedOffset - 1, data)));
EXPECT_TRUE(QuicStreamSequencerPeer::FrameOverlapsBufferedData(
&buffer,
QuicStreamFrame(1, false, kBufferedOffset - kNewDataLength + 1, data)));
// New byte range partially overlaps with buffered frame, start offset inside
// existing buffered frame.
EXPECT_TRUE(QuicStreamSequencerPeer::FrameOverlapsBufferedData(
&buffer, QuicStreamFrame(1, false, kBufferedOffset + 1, data)));
EXPECT_TRUE(QuicStreamSequencerPeer::FrameOverlapsBufferedData(
&buffer, QuicStreamFrame(
1, false, kBufferedOffset + kBufferedDataLength - 1, data)));
// New byte range entirely outside of buffered frames, start offset
// preceeding buffered frame.
EXPECT_FALSE(QuicStreamSequencerPeer::FrameOverlapsBufferedData(
&buffer,
QuicStreamFrame(1, false, kBufferedOffset - kNewDataLength, data)));
// New byte range entirely outside of buffered frames, start offset later than
// buffered frame.
EXPECT_FALSE(QuicStreamSequencerPeer::FrameOverlapsBufferedData(
&buffer,
QuicStreamFrame(1, false, kBufferedOffset + kBufferedDataLength, data)));
}
TEST_P(QuicStreamSequencerTest, DontAcceptOverlappingFrames) {
// The peer should never send us non-identical stream frames which contain
// overlapping byte ranges - if they do, we close the connection.
QuicStreamFrame frame1(kClientDataStreamId1, false, 1, StringPiece("hello"));
sequencer_->OnStreamFrame(frame1);
QuicStreamFrame frame2(kClientDataStreamId1, false, 2, StringPiece("hello"));
EXPECT_CALL(stream_, CloseConnectionWithDetails(QUIC_INVALID_STREAM_FRAME, _))
.Times(1);
sequencer_->OnStreamFrame(frame2);
}
TEST_P(QuicStreamSequencerTest, InOrderTimestamps) {
// This test verifies that timestamps returned by
// GetReadableRegion() are in the correct sequence when frames
// arrive at the sequencer in order.
EXPECT_CALL(stream_, OnDataAvailable());
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
// Buffer the first frame.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t1 = clock_.ApproximateNow();
OnFrame(0, "abc");
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_EQ(3u, sequencer_->NumBytesBuffered());
// Buffer the second frame.
QuicTime t2 = clock_.ApproximateNow();
OnFrame(3, "def");
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
EXPECT_EQ(6u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_EQ(6u, sequencer_->NumBytesBuffered());
iovec iovecs[1];
QuicTime timestamp(QuicTime::Zero());
EXPECT_TRUE(sequencer_->GetReadableRegion(iovecs, &timestamp));
EXPECT_EQ(timestamp, t1);
QuicStreamSequencerTest::ConsumeData(3);
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(3u, sequencer_->NumBytesConsumed());
EXPECT_EQ(3u, sequencer_->NumBytesBuffered());
EXPECT_TRUE(sequencer_->GetReadableRegion(iovecs, &timestamp));
EXPECT_EQ(timestamp, t2);
QuicStreamSequencerTest::ConsumeData(3);
EXPECT_EQ(0u, NumBufferedBytes());
EXPECT_EQ(6u, sequencer_->NumBytesConsumed());
EXPECT_EQ(0u, sequencer_->NumBytesBuffered());
}
TEST_P(QuicStreamSequencerTest, OutOfOrderTimestamps) {
// This test verifies that timestamps returned by
// GetReadableRegion() are in the correct sequence when frames
// arrive at the sequencer out of order.
EXPECT_CALL(stream_, OnDataAvailable());
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
// Buffer the first frame
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t1 = clock_.ApproximateNow();
OnFrame(3, "def");
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_EQ(3u, sequencer_->NumBytesBuffered());
// Buffer the second frame
QuicTime t2 = clock_.ApproximateNow();
OnFrame(0, "abc");
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
EXPECT_EQ(6u, NumBufferedBytes());
EXPECT_EQ(0u, sequencer_->NumBytesConsumed());
EXPECT_EQ(6u, sequencer_->NumBytesBuffered());
iovec iovecs[1];
QuicTime timestamp(QuicTime::Zero());
EXPECT_TRUE(sequencer_->GetReadableRegion(iovecs, &timestamp));
EXPECT_EQ(timestamp, t2);
QuicStreamSequencerTest::ConsumeData(3);
EXPECT_EQ(3u, NumBufferedBytes());
EXPECT_EQ(3u, sequencer_->NumBytesConsumed());
EXPECT_EQ(3u, sequencer_->NumBytesBuffered());
EXPECT_TRUE(sequencer_->GetReadableRegion(iovecs, &timestamp));
EXPECT_EQ(timestamp, t1);
QuicStreamSequencerTest::ConsumeData(3);
EXPECT_EQ(0u, NumBufferedBytes());
EXPECT_EQ(6u, sequencer_->NumBytesConsumed());
EXPECT_EQ(0u, sequencer_->NumBytesBuffered());
}
} // namespace
} // namespace test
} // namespace net