blob: 61b6b388709f30eef4116d14a3bccb515b12fc34 [file] [log] [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/gwp_asan/client/guarded_page_allocator.h"
#include <algorithm>
#include <bit>
#include <memory>
#include <random>
#include <utility>
#include "base/allocator/buildflags.h"
#include "base/bits.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/memory/page_size.h"
#include "base/rand_util.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "build/build_config.h"
#include "components/crash/core/common/crash_key.h"
#include "components/gwp_asan/client/gwp_asan.h"
#include "components/gwp_asan/client/thread_local_random_bit_generator.h"
#include "components/gwp_asan/common/allocation_info.h"
#include "components/gwp_asan/common/allocator_state.h"
#include "components/gwp_asan/common/crash_key_name.h"
#include "components/gwp_asan/common/pack_stack_trace.h"
#include "partition_alloc/buildflags.h"
#include "partition_alloc/gwp_asan_support.h"
#include "third_party/boringssl/src/include/openssl/rand.h"
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_IOS)
#include "components/crash/core/app/crashpad.h" // nogncheck
#endif
namespace gwp_asan {
namespace internal {
namespace {
template <typename T>
T RandomEviction(std::vector<T>* list) {
DCHECK(!list->empty());
std::uniform_int_distribution<uint64_t> distribution(0, list->size() - 1);
ThreadLocalRandomBitGenerator generator;
size_t rand = distribution(generator);
T out = (*list)[rand];
(*list)[rand] = list->back();
list->pop_back();
return out;
}
} // namespace
template <typename T>
void GuardedPageAllocator::SimpleFreeList<T>::Initialize(T max_entries) {
max_entries_ = max_entries;
free_list_.reserve(max_entries);
}
template <typename T>
void GuardedPageAllocator::SimpleFreeList<T>::Initialize(
T max_entries,
std::vector<T>&& free_list) {
max_entries_ = max_entries;
num_used_entries_ = max_entries;
free_list_ = std::move(free_list);
}
template <typename T>
bool GuardedPageAllocator::SimpleFreeList<T>::Allocate(T* out,
const char* type) {
if (num_used_entries_ < max_entries_) {
*out = num_used_entries_++;
return true;
}
DCHECK_LE(free_list_.size(), max_entries_);
*out = RandomEviction(&free_list_);
return true;
}
template <typename T>
void GuardedPageAllocator::SimpleFreeList<T>::Free(T entry) {
DCHECK_LT(free_list_.size(), max_entries_);
free_list_.push_back(entry);
}
GuardedPageAllocator::PartitionAllocSlotFreeList::PartitionAllocSlotFreeList() =
default;
GuardedPageAllocator::PartitionAllocSlotFreeList::
~PartitionAllocSlotFreeList() = default;
void GuardedPageAllocator::PartitionAllocSlotFreeList::Initialize(
AllocatorState::SlotIdx max_entries) {
max_entries_ = max_entries;
type_mapping_.reserve(max_entries);
}
void GuardedPageAllocator::PartitionAllocSlotFreeList::Initialize(
AllocatorState::SlotIdx max_entries,
std::vector<AllocatorState::SlotIdx>&& free_list) {
max_entries_ = max_entries;
num_used_entries_ = max_entries;
type_mapping_.resize(max_entries);
initial_free_list_ = std::move(free_list);
}
bool GuardedPageAllocator::PartitionAllocSlotFreeList::Allocate(
AllocatorState::SlotIdx* out,
const char* type) {
if (num_used_entries_ < max_entries_) {
type_mapping_.push_back(type);
*out = num_used_entries_++;
return true;
}
if (!initial_free_list_.empty()) {
*out = initial_free_list_.back();
type_mapping_[*out] = type;
initial_free_list_.pop_back();
return true;
}
if (!free_list_.count(type) || free_list_[type].empty())
return false;
DCHECK_LE(free_list_[type].size(), max_entries_);
*out = RandomEviction(&free_list_[type]);
return true;
}
void GuardedPageAllocator::PartitionAllocSlotFreeList::Free(
AllocatorState::SlotIdx entry) {
DCHECK_LT(entry, num_used_entries_);
free_list_[type_mapping_[entry]].push_back(entry);
}
GuardedPageAllocator::GuardedPageAllocator() = default;
bool GuardedPageAllocator::Init(const AllocatorSettings& settings,
OutOfMemoryCallback oom_callback,
bool is_partition_alloc) {
CHECK_GT(settings.max_allocated_pages, 0U);
CHECK_LE(settings.max_allocated_pages, settings.num_metadata);
CHECK_LE(settings.num_metadata, AllocatorState::kMaxMetadata);
CHECK_LE(settings.num_metadata, settings.total_pages);
CHECK_LE(settings.total_pages, AllocatorState::kMaxRequestedSlots);
ThreadLocalRandomBitGenerator::InitIfNeeded();
max_alloced_pages_ = settings.max_allocated_pages;
state_.num_metadata = settings.num_metadata;
state_.total_requested_pages = settings.total_pages;
oom_callback_ = std::move(oom_callback);
is_partition_alloc_ = is_partition_alloc;
state_.page_size = base::GetPageSize();
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
std::vector<AllocatorState::SlotIdx> free_list_indices;
void* region = partition_alloc::GwpAsanSupport::MapRegion(
settings.total_pages, free_list_indices);
CHECK(!free_list_indices.empty());
AllocatorState::SlotIdx highest_idx = free_list_indices.back();
DCHECK_EQ(highest_idx, *std::max_element(free_list_indices.begin(),
free_list_indices.end()));
state_.total_reserved_pages = highest_idx + 1;
CHECK_LE(state_.total_reserved_pages, AllocatorState::kMaxReservedSlots);
#else // BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
state_.total_reserved_pages = settings.total_pages;
void* region = MapRegion();
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
if (!region)
return false;
state_.pages_base_addr = reinterpret_cast<uintptr_t>(region);
state_.first_page_addr = state_.pages_base_addr + state_.page_size;
state_.pages_end_addr = state_.pages_base_addr + RegionSize();
{
// Obtain this lock exclusively to satisfy the thread-safety annotations,
// there should be no risk of a race here.
base::AutoLock lock(lock_);
free_metadata_.Initialize(state_.num_metadata);
if (is_partition_alloc_)
free_slots_ = std::make_unique<PartitionAllocSlotFreeList>();
else
free_slots_ = std::make_unique<SimpleFreeList<AllocatorState::SlotIdx>>();
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
free_slots_->Initialize(state_.total_reserved_pages,
std::move(free_list_indices));
#else
free_slots_->Initialize(state_.total_reserved_pages);
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
}
slot_to_metadata_idx_.resize(state_.total_reserved_pages);
std::fill(slot_to_metadata_idx_.begin(), slot_to_metadata_idx_.end(),
AllocatorState::kInvalidMetadataIdx);
state_.slot_to_metadata_addr =
reinterpret_cast<uintptr_t>(&slot_to_metadata_idx_.front());
metadata_ =
std::make_unique<AllocatorState::SlotMetadata[]>(state_.num_metadata);
state_.metadata_addr = reinterpret_cast<uintptr_t>(metadata_.get());
#if BUILDFLAG(IS_ANDROID)
// Explicitly allow memory ranges the crash_handler needs to read. This is
// required for WebView because it has a stricter set of privacy constraints
// on what it reads from the crashing process.
for (auto& memory_region : GetInternalMemoryRegions())
crash_reporter::AllowMemoryRange(memory_region.first, memory_region.second);
#elif BUILDFLAG(IS_IOS)
// Explicitly add internal memory regions to Crashpad's iOS intermediate dump
// handler.
crashpad::SimpleAddressRangeBag* ios_extra_ranges =
crash_reporter::IntermediateDumpExtraMemoryRanges();
if (ios_extra_ranges) {
for (auto& memory_region : GetInternalMemoryRegions()) {
if (!ios_extra_ranges->Insert(memory_region.first,
memory_region.second)) {
PLOG(INFO) << "Failed to add InternalMemoryRegions to Crashpad.";
}
}
}
#endif
return true;
}
void GuardedPageAllocator::DestructForTesting() {
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
partition_alloc::GwpAsanSupport::DestructForTesting();
#else // BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
// No need to call UnmapRegion() as ~GuardedPageAllocator does this.
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
}
std::vector<std::pair<void*, size_t>>
GuardedPageAllocator::GetInternalMemoryRegions() {
std::vector<std::pair<void*, size_t>> regions;
regions.emplace_back(&state_, sizeof(state_));
regions.emplace_back(metadata_.get(), sizeof(AllocatorState::SlotMetadata) *
state_.num_metadata);
regions.emplace_back(
slot_to_metadata_idx_.data(),
sizeof(AllocatorState::MetadataIdx) * state_.total_reserved_pages);
return regions;
}
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
// TODO(glazunov): Add PartitionAlloc-specific `UnmapRegion()` when PA
// supports reclaiming super pages.
GuardedPageAllocator::~GuardedPageAllocator() = default;
#else // BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
GuardedPageAllocator::~GuardedPageAllocator() {
if (state_.total_requested_pages)
UnmapRegion();
}
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
void* GuardedPageAllocator::MapRegionHint() const {
#if defined(ARCH_CPU_64_BITS)
// Mapping the GWP-ASan region in to the lower 32-bits of address space makes
// it much more likely that a bad pointer dereference points into our region
// and triggers a false positive report, so try to hint to the OS that we want
// the region to be in the upper address space.
static const uintptr_t kMinAddress = 1ULL << 32;
static const uintptr_t kMaxAddress = 1ULL << 46;
uint64_t rand = base::RandUint64() & (kMaxAddress - 1);
if (rand < kMinAddress)
rand += kMinAddress;
return reinterpret_cast<void*>(rand & ~(state_.page_size - 1));
#else
return nullptr;
#endif // defined(ARCH_CPU_64_BITS)
}
void* GuardedPageAllocator::Allocate(size_t size,
size_t align,
const char* type) {
if (!is_partition_alloc_)
DCHECK_EQ(type, nullptr);
if (!size || size > state_.page_size || align > state_.page_size)
return nullptr;
// Default alignment is size's next smallest power-of-two, up to
// kGpaAllocAlignment.
if (!align) {
align = std::min(std::bit_floor(size), kGpaAllocAlignment);
}
CHECK(std::has_single_bit(align));
AllocatorState::SlotIdx free_slot;
AllocatorState::MetadataIdx free_metadata;
if (!ReserveSlotAndMetadata(&free_slot, &free_metadata, type))
return nullptr;
uintptr_t free_page = state_.SlotToAddr(free_slot);
MarkPageReadWrite(reinterpret_cast<void*>(free_page));
size_t offset;
if (free_slot & 1)
// Return right-aligned allocation to detect overflows.
offset = state_.page_size - base::bits::AlignUp(size, align);
else
// Return left-aligned allocation to detect underflows.
offset = 0;
void* alloc = reinterpret_cast<void*>(free_page + offset);
// Initialize slot metadata and only then update slot_to_metadata_idx so that
// the mapping never points to an incorrect metadata mapping.
RecordAllocationMetadata(free_metadata, size, alloc);
{
// Lock to avoid race with the slot_to_metadata_idx_ check/write in
// ReserveSlotAndMetadata().
base::AutoLock lock(lock_);
slot_to_metadata_idx_[free_slot] = free_metadata;
}
return alloc;
}
void GuardedPageAllocator::Deallocate(void* ptr) {
CHECK(PointerIsMine(ptr));
const uintptr_t addr = reinterpret_cast<uintptr_t>(ptr);
AllocatorState::SlotIdx slot = state_.AddrToSlot(state_.GetPageAddr(addr));
AllocatorState::MetadataIdx metadata_idx = slot_to_metadata_idx_[slot];
// Check for a call to free() with an incorrect pointer, e.g. the pointer does
// not match the allocated pointer. This may occur with a bad free pointer or
// an outdated double free when the metadata has expired.
if (metadata_idx == AllocatorState::kInvalidMetadataIdx ||
addr != metadata_[metadata_idx].alloc_ptr) {
state_.free_invalid_address = addr;
__builtin_trap();
}
// Check for double free.
if (metadata_[metadata_idx].deallocation_occurred.exchange(true)) {
state_.double_free_address = addr;
// TODO(crbug.com/40611148): The other thread may not be done writing
// a stack trace so we could spin here until it's read; however, it's also
// possible we are racing an allocation in the middle of
// RecordAllocationMetadata. For now it's possible a racy double free could
// lead to a bad stack trace, but no internal allocator corruption.
__builtin_trap();
}
// Record deallocation stack trace/thread id before marking the page
// inaccessible in case a use-after-free occurs immediately.
RecordDeallocationMetadata(metadata_idx);
MarkPageInaccessible(reinterpret_cast<void*>(state_.GetPageAddr(addr)));
FreeSlotAndMetadata(slot, metadata_idx);
}
size_t GuardedPageAllocator::GetRequestedSize(const void* ptr) const {
CHECK(PointerIsMine(ptr));
const uintptr_t addr = reinterpret_cast<uintptr_t>(ptr);
AllocatorState::SlotIdx slot = state_.AddrToSlot(state_.GetPageAddr(addr));
AllocatorState::MetadataIdx metadata_idx = slot_to_metadata_idx_[slot];
#if !BUILDFLAG(IS_APPLE)
CHECK_LT(metadata_idx, state_.num_metadata);
CHECK_EQ(addr, metadata_[metadata_idx].alloc_ptr);
#else
// macOS core libraries call malloc_size() inside an allocation. The macOS
// malloc_size() returns 0 when the pointer is not recognized.
// https://crbug.com/946736
if (metadata_idx == AllocatorState::kInvalidMetadataIdx ||
addr != metadata_[metadata_idx].alloc_ptr)
return 0;
#endif
return metadata_[metadata_idx].alloc_size;
}
size_t GuardedPageAllocator::RegionSize() const {
return (2 * state_.total_reserved_pages + 1) * state_.page_size;
}
bool GuardedPageAllocator::ReserveSlotAndMetadata(
AllocatorState::SlotIdx* slot,
AllocatorState::MetadataIdx* metadata_idx,
const char* type) {
base::AutoLock lock(lock_);
if (num_alloced_pages_ == max_alloced_pages_ ||
!free_slots_->Allocate(slot, type)) {
if (!oom_hit_) {
if (++consecutive_oom_hits_ == kOutOfMemoryCount) {
oom_hit_ = true;
base::AutoUnlock unlock(lock_);
std::move(oom_callback_).Run(total_allocations_);
}
}
return false;
}
consecutive_oom_hits_ = 0;
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
if (!partition_alloc::GwpAsanSupport::CanReuse(state_.SlotToAddr(*slot))) {
// The selected slot is still referenced by a dangling raw_ptr. Put it back
// and reject the current allocation request. This is expected to occur
// rarely so retrying isn't necessary.
// TODO(glazunov): Evaluate whether this change makes catching UAFs more or
// less likely.
free_slots_->Free(*slot);
return false;
}
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE)
CHECK(free_metadata_.Allocate(metadata_idx, nullptr));
if (metadata_[*metadata_idx].alloc_ptr) {
// Overwrite the outdated slot_to_metadata_idx mapping from the previous use
// of this metadata if it's still valid.
DCHECK(state_.PointerIsMine(metadata_[*metadata_idx].alloc_ptr));
size_t old_slot = state_.GetNearestSlot(metadata_[*metadata_idx].alloc_ptr);
if (slot_to_metadata_idx_[old_slot] == *metadata_idx)
slot_to_metadata_idx_[old_slot] = AllocatorState::kInvalidMetadataIdx;
}
num_alloced_pages_++;
total_allocations_++;
return true;
}
void GuardedPageAllocator::FreeSlotAndMetadata(
AllocatorState::SlotIdx slot,
AllocatorState::MetadataIdx metadata_idx) {
DCHECK_LT(slot, state_.total_reserved_pages);
DCHECK_LT(metadata_idx, state_.num_metadata);
base::AutoLock lock(lock_);
free_slots_->Free(slot);
free_metadata_.Free(metadata_idx);
DCHECK_GT(num_alloced_pages_, 0U);
num_alloced_pages_--;
}
void GuardedPageAllocator::RecordAllocationMetadata(
AllocatorState::MetadataIdx metadata_idx,
size_t size,
void* ptr) {
metadata_[metadata_idx].alloc_size = size;
metadata_[metadata_idx].alloc_ptr = reinterpret_cast<uintptr_t>(ptr);
const void* trace[AllocatorState::kMaxStackFrames];
size_t len = AllocationInfo::GetStackTrace(trace);
metadata_[metadata_idx].alloc.trace_len =
Pack(reinterpret_cast<uintptr_t*>(trace), len,
metadata_[metadata_idx].stack_trace_pool,
sizeof(metadata_[metadata_idx].stack_trace_pool) / 2);
metadata_[metadata_idx].alloc.tid = base::PlatformThread::CurrentId();
metadata_[metadata_idx].alloc.trace_collected = true;
metadata_[metadata_idx].dealloc.tid = base::kInvalidThreadId;
metadata_[metadata_idx].dealloc.trace_len = 0;
metadata_[metadata_idx].dealloc.trace_collected = false;
metadata_[metadata_idx].deallocation_occurred = false;
}
void GuardedPageAllocator::RecordDeallocationMetadata(
AllocatorState::MetadataIdx metadata_idx) {
const void* trace[AllocatorState::kMaxStackFrames];
size_t len = AllocationInfo::GetStackTrace(trace);
metadata_[metadata_idx].dealloc.trace_len =
Pack(reinterpret_cast<uintptr_t*>(trace), len,
UNSAFE_TODO(metadata_[metadata_idx].stack_trace_pool +
metadata_[metadata_idx].alloc.trace_len),
sizeof(metadata_[metadata_idx].stack_trace_pool) -
metadata_[metadata_idx].alloc.trace_len);
metadata_[metadata_idx].dealloc.tid = base::PlatformThread::CurrentId();
metadata_[metadata_idx].dealloc.trace_collected = true;
}
std::string GuardedPageAllocator::GetCrashKey() const {
return base::StringPrintf("%zx", reinterpret_cast<uintptr_t>(&state_));
}
} // namespace internal
} // namespace gwp_asan