blob: 984cda0ca65dd70ad78bb8d96c68be75d123f83c [file] [log] [blame]
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/disk_cache/sql/eviction_candidate_aggregator.h"
#include <vector>
#include "base/barrier_closure.h"
#include "base/memory/scoped_refptr.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/thread_pool.h"
#include "base/test/task_environment.h"
#include "base/time/time.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace disk_cache {
namespace {
using ResId = SqlPersistentStore::ResId;
using ShardId = SqlPersistentStore::ShardId;
using EvictionCandidateList =
EvictionCandidateAggregator::EvictionCandidateList;
class EvictionCandidateAggregatorTest : public testing::Test {
public:
EvictionCandidateAggregatorTest() = default;
~EvictionCandidateAggregatorTest() override = default;
protected:
base::test::TaskEnvironment task_environment_;
};
// Tests that candidates are sorted by last_used time, oldest first.
TEST_F(EvictionCandidateAggregatorTest, SortsByTime) {
const int kNumShards = 2;
std::vector<scoped_refptr<base::SequencedTaskRunner>> task_runners;
for (int i = 0; i < kNumShards; ++i) {
task_runners.push_back(base::ThreadPool::CreateSequencedTaskRunner({}));
}
// We need to remove 100 bytes, so the two oldest entries should be selected.
const int64_t kSizeToBeRemoved = 100;
auto aggregator = base::MakeRefCounted<EvictionCandidateAggregator>(
kSizeToBeRemoved, task_runners);
const base::Time now = base::Time::Now();
EvictionCandidateList candidates0;
// Oldest candidate.
candidates0.emplace_back(ResId(1), ShardId(0), 50, now);
// 4th oldest candidate.
candidates0.emplace_back(ResId(2), ShardId(0), 50, now + base::Seconds(3));
EvictionCandidateList candidates1;
// 2nd oldest candidate.
candidates1.emplace_back(ResId(3), ShardId(1), 60, now + base::Seconds(1));
// 3rd oldest candidate.
candidates1.emplace_back(ResId(4), ShardId(1), 60, now + base::Seconds(2));
base::RunLoop run_loop;
auto on_done = base::BarrierClosure(kNumShards, run_loop.QuitClosure());
auto cb0 = base::BindOnce(
[](base::OnceClosure on_done, std::vector<ResId> res_ids,
int64_t bytes_usage, base::TimeTicks post_task_time) {
// This shard had the oldest candidate (ResId(1)).
EXPECT_THAT(res_ids, testing::ElementsAre(ResId(1)));
EXPECT_EQ(bytes_usage, 50);
std::move(on_done).Run();
},
on_done);
auto cb1 = base::BindOnce(
[](base::OnceClosure on_done, std::vector<ResId> res_ids,
int64_t bytes_usage, base::TimeTicks post_task_time) {
// This shard had the second oldest candidate (ResId(3)).
EXPECT_THAT(res_ids, testing::ElementsAre(ResId(3)));
EXPECT_EQ(bytes_usage, 60);
std::move(on_done).Run();
},
on_done);
task_runners[0]->PostTask(
FROM_HERE,
base::BindOnce(&EvictionCandidateAggregator::OnCandidate, aggregator,
ShardId(0), std::move(candidates0), std::move(cb0)));
task_runners[1]->PostTask(
FROM_HERE,
base::BindOnce(&EvictionCandidateAggregator::OnCandidate, aggregator,
ShardId(1), std::move(candidates1), std::move(cb1)));
run_loop.Run();
}
// Tests that the aggregator selects just enough candidates to meet the
// size_to_be_removed requirement.
TEST_F(EvictionCandidateAggregatorTest, SelectsEnoughToRemove) {
std::vector<scoped_refptr<base::SequencedTaskRunner>> task_runners;
task_runners.push_back(base::ThreadPool::CreateSequencedTaskRunner({}));
// We need to remove 100 bytes. The oldest two entries sum to 90, so the third
// one (50 bytes) must also be selected, bringing the total to 140.
const int64_t kSizeToBeRemoved = 100;
auto aggregator = base::MakeRefCounted<EvictionCandidateAggregator>(
kSizeToBeRemoved, task_runners);
const base::Time now = base::Time::Now();
EvictionCandidateList candidates;
candidates.emplace_back(ResId(1), ShardId(0), 40, now);
candidates.emplace_back(ResId(2), ShardId(0), 50, now + base::Seconds(1));
candidates.emplace_back(ResId(3), ShardId(0), 50, now + base::Seconds(2));
candidates.emplace_back(ResId(4), ShardId(0), 80, now + base::Seconds(3));
base::RunLoop run_loop;
auto cb = base::BindOnce(
[](base::OnceClosure on_done, std::vector<ResId> res_ids,
int64_t bytes_usage, base::TimeTicks post_task_time) {
EXPECT_THAT(res_ids,
testing::ElementsAre(ResId(1), ResId(2), ResId(3)));
EXPECT_EQ(bytes_usage, 40 + 50 + 50);
std::move(on_done).Run();
},
run_loop.QuitClosure());
task_runners[0]->PostTask(
FROM_HERE,
base::BindOnce(&EvictionCandidateAggregator::OnCandidate, aggregator,
ShardId(0), std::move(candidates), std::move(cb)));
run_loop.Run();
}
// Tests that the aggregator works correctly with multiple task runners.
TEST_F(EvictionCandidateAggregatorTest, HandlesMultipleSequences) {
const int kNumShards = 3;
std::vector<scoped_refptr<base::SequencedTaskRunner>> task_runners;
for (int i = 0; i < kNumShards; ++i) {
task_runners.push_back(base::ThreadPool::CreateSequencedTaskRunner({}));
}
const int64_t kSizeToBeRemoved = 150;
auto aggregator = base::MakeRefCounted<EvictionCandidateAggregator>(
kSizeToBeRemoved, task_runners);
const base::Time now = base::Time::Now();
EvictionCandidateList candidates0;
candidates0.emplace_back(ResId(1), ShardId(0), 50, now);
candidates0.emplace_back(ResId(2), ShardId(0), 50, now + base::Seconds(5));
EvictionCandidateList candidates1;
candidates1.emplace_back(ResId(3), ShardId(1), 60, now + base::Seconds(1));
EvictionCandidateList candidates2;
candidates2.emplace_back(ResId(4), ShardId(2), 70, now + base::Seconds(2));
candidates2.emplace_back(ResId(5), ShardId(2), 10, now + base::Seconds(3));
base::RunLoop run_loop;
auto on_done = base::BarrierClosure(kNumShards, run_loop.QuitClosure());
auto cb0 = base::BindOnce(
[](scoped_refptr<base::SequencedTaskRunner> runner,
base::OnceClosure on_done, std::vector<ResId> res_ids,
int64_t bytes_usage, base::TimeTicks post_task_time) {
EXPECT_TRUE(runner->RunsTasksInCurrentSequence());
EXPECT_THAT(res_ids, testing::ElementsAre(ResId(1)));
EXPECT_EQ(bytes_usage, 50);
std::move(on_done).Run();
},
task_runners[0], on_done);
auto cb1 = base::BindOnce(
[](scoped_refptr<base::SequencedTaskRunner> runner,
base::OnceClosure on_done, std::vector<ResId> res_ids,
int64_t bytes_usage, base::TimeTicks post_task_time) {
EXPECT_TRUE(runner->RunsTasksInCurrentSequence());
EXPECT_THAT(res_ids, testing::ElementsAre(ResId(3)));
EXPECT_EQ(bytes_usage, 60);
std::move(on_done).Run();
},
task_runners[1], on_done);
auto cb2 = base::BindOnce(
[](scoped_refptr<base::SequencedTaskRunner> runner,
base::OnceClosure on_done, std::vector<ResId> res_ids,
int64_t bytes_usage, base::TimeTicks post_task_time) {
EXPECT_TRUE(runner->RunsTasksInCurrentSequence());
EXPECT_THAT(res_ids, testing::ElementsAre(ResId(4)));
EXPECT_EQ(bytes_usage, 70);
std::move(on_done).Run();
},
task_runners[2], on_done);
task_runners[0]->PostTask(
FROM_HERE,
base::BindOnce(&EvictionCandidateAggregator::OnCandidate, aggregator,
ShardId(0), std::move(candidates0), std::move(cb0)));
task_runners[1]->PostTask(
FROM_HERE,
base::BindOnce(&EvictionCandidateAggregator::OnCandidate, aggregator,
ShardId(1), std::move(candidates1), std::move(cb1)));
task_runners[2]->PostTask(
FROM_HERE,
base::BindOnce(&EvictionCandidateAggregator::OnCandidate, aggregator,
ShardId(2), std::move(candidates2), std::move(cb2)));
run_loop.Run();
}
} // namespace
} // namespace disk_cache