blob: defc8aa0924be194ea9fcad9e674ee6d510fc36b [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/sync_socket.h"
#include <limits.h>
#include <stddef.h>
#include <utility>
#include "base/containers/span.h"
#include "base/logging.h"
#include "base/notimplemented.h"
#include "base/notreached.h"
#include "base/rand_util.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/win/scoped_handle.h"
namespace base {
using win::ScopedHandle;
namespace {
// IMPORTANT: do not change how this name is generated because it will break
// in sandboxed scenarios as we might have by-name policies that allow pipe
// creation. Also keep the secure random number generation.
const wchar_t kPipeNameFormat[] = L"\\\\.\\pipe\\chrome.sync.%u.%u.%lu";
const size_t kPipePathMax = std::size(kPipeNameFormat) + (3 * 10) + 1;
// To avoid users sending negative message lengths to Send/Receive
// we clamp message lengths, which are size_t, to no more than INT_MAX.
const size_t kMaxMessageLength = static_cast<size_t>(INT_MAX);
const int kOutBufferSize = 4096;
const int kInBufferSize = 4096;
const int kDefaultTimeoutMilliSeconds = 1000;
bool CreatePairImpl(ScopedHandle* socket_a,
ScopedHandle* socket_b,
bool overlapped) {
DCHECK_NE(socket_a, socket_b);
DCHECK(!socket_a->is_valid());
DCHECK(!socket_b->is_valid());
wchar_t name[kPipePathMax];
ScopedHandle handle_a;
DWORD flags = PIPE_ACCESS_DUPLEX | FILE_FLAG_FIRST_PIPE_INSTANCE;
if (overlapped)
flags |= FILE_FLAG_OVERLAPPED;
do {
unsigned long rnd_name;
RandBytes(&rnd_name, sizeof(rnd_name));
swprintf(name, kPipePathMax,
kPipeNameFormat,
GetCurrentProcessId(),
GetCurrentThreadId(),
rnd_name);
handle_a.Set(CreateNamedPipeW(
name,
flags,
PIPE_TYPE_BYTE | PIPE_READMODE_BYTE,
1,
kOutBufferSize,
kInBufferSize,
kDefaultTimeoutMilliSeconds,
NULL));
} while (!handle_a.is_valid() && (GetLastError() == ERROR_PIPE_BUSY));
if (!handle_a.is_valid()) {
NOTREACHED();
return false;
}
// The SECURITY_ANONYMOUS flag means that the server side (handle_a) cannot
// impersonate the client (handle_b). This allows us not to care which side
// ends up in which side of a privilege boundary.
flags = SECURITY_SQOS_PRESENT | SECURITY_ANONYMOUS;
if (overlapped)
flags |= FILE_FLAG_OVERLAPPED;
ScopedHandle handle_b(CreateFileW(name,
GENERIC_READ | GENERIC_WRITE,
0, // no sharing.
NULL, // default security attributes.
OPEN_EXISTING, // opens existing pipe.
flags,
NULL)); // no template file.
if (!handle_b.is_valid()) {
DPLOG(ERROR) << "CreateFileW failed";
return false;
}
if (!ConnectNamedPipe(handle_a.get(), NULL)) {
DWORD error = GetLastError();
if (error != ERROR_PIPE_CONNECTED) {
DPLOG(ERROR) << "ConnectNamedPipe failed";
return false;
}
}
*socket_a = std::move(handle_a);
*socket_b = std::move(handle_b);
return true;
}
// Inline helper to avoid having the cast everywhere.
DWORD GetNextChunkSize(size_t current_pos, size_t max_size) {
// The following statement is for 64 bit portability.
return static_cast<DWORD>(((max_size - current_pos) <= UINT_MAX) ?
(max_size - current_pos) : UINT_MAX);
}
// Template function that supports calling ReadFile or WriteFile in an
// overlapped fashion and waits for IO completion. The function also waits
// on an event that can be used to cancel the operation. If the operation
// is cancelled, the function returns and closes the relevant socket object.
template <typename DataType, typename Function>
size_t CancelableFileOperation(Function operation,
HANDLE file,
span<DataType> buffer,
WaitableEvent* io_event,
WaitableEvent* cancel_event,
CancelableSyncSocket* socket,
DWORD timeout_in_ms) {
ScopedBlockingCall scoped_blocking_call(FROM_HERE, BlockingType::MAY_BLOCK);
// The buffer must be byte size or the length check won't make much sense.
static_assert(sizeof(DataType) == 1u, "incorrect buffer type");
CHECK(!buffer.empty());
CHECK_LE(buffer.size(), kMaxMessageLength);
CHECK_NE(file, SyncSocket::kInvalidHandle);
// Track the finish time so we can calculate the timeout as data is read.
TimeTicks current_time, finish_time;
if (timeout_in_ms != INFINITE) {
current_time = TimeTicks::Now();
finish_time = current_time + base::Milliseconds(timeout_in_ms);
}
size_t count = 0;
do {
// The OVERLAPPED structure will be modified by ReadFile or WriteFile.
OVERLAPPED ol = { 0 };
ol.hEvent = io_event->handle();
const DWORD chunk_size = GetNextChunkSize(count, buffer.size());
// This is either the ReadFile or WriteFile call depending on whether
// we're receiving or sending data.
DWORD len = 0;
auto operation_buffer = buffer.subspan(count, chunk_size);
// SAFETY: The below static_cast is in range for DWORD because
// `operation_buffer` is constructed with a DWORD length above from
// `chunk_size`.
const BOOL operation_ok =
operation(file, operation_buffer.data(),
static_cast<DWORD>(operation_buffer.size()), &len, &ol);
if (!operation_ok) {
if (::GetLastError() == ERROR_IO_PENDING) {
HANDLE events[] = { io_event->handle(), cancel_event->handle() };
const DWORD wait_result = WaitForMultipleObjects(
std::size(events), events, FALSE,
timeout_in_ms == INFINITE
? timeout_in_ms
: static_cast<DWORD>(
(finish_time - current_time).InMilliseconds()));
if (wait_result != WAIT_OBJECT_0 + 0) {
// CancelIo() doesn't synchronously cancel outstanding IO, only marks
// outstanding IO for cancellation. We must call GetOverlappedResult()
// below to ensure in flight writes complete before returning.
CancelIo(file);
}
// We set the |bWait| parameter to TRUE for GetOverlappedResult() to
// ensure writes are complete before returning.
if (!GetOverlappedResult(file, &ol, &len, TRUE))
len = 0;
if (wait_result == WAIT_OBJECT_0 + 1) {
DVLOG(1) << "Shutdown was signaled. Closing socket.";
socket->Close();
return count;
}
// Timeouts will be handled by the while() condition below since
// GetOverlappedResult() may complete successfully after CancelIo().
DCHECK(wait_result == WAIT_OBJECT_0 + 0 || wait_result == WAIT_TIMEOUT);
} else {
break;
}
}
count += len;
// Quit the operation if we can't write/read anymore.
if (len != chunk_size) {
break;
}
// Since TimeTicks::Now() is expensive, only bother updating the time if we
// have more work to do.
if (timeout_in_ms != INFINITE && count < buffer.size()) {
current_time = base::TimeTicks::Now();
}
} while (count < buffer.size() &&
(timeout_in_ms == INFINITE || current_time < finish_time));
return count;
}
} // namespace
// static
bool SyncSocket::CreatePair(SyncSocket* socket_a, SyncSocket* socket_b) {
return CreatePairImpl(&socket_a->handle_, &socket_b->handle_, false);
}
void SyncSocket::Close() {
handle_.Close();
}
size_t SyncSocket::Send(span<const uint8_t> data) {
ScopedBlockingCall scoped_blocking_call(FROM_HERE, BlockingType::MAY_BLOCK);
CHECK_LE(data.size(), kMaxMessageLength);
DCHECK(IsValid());
size_t count = 0;
while (count < data.size()) {
DWORD len;
const DWORD chunk_size = GetNextChunkSize(count, data.size());
auto data_chunk = data.subspan(count, chunk_size);
// SAFETY: The below static_cast is in range for DWORD because `data_chunk`
// is constructed with a DWORD length above from `chunk_size`.
if (::WriteFile(handle(), data_chunk.data(),
static_cast<DWORD>(data_chunk.size()), &len,
NULL) == FALSE) {
return count;
}
count += len;
}
return count;
}
size_t SyncSocket::Send(const void* buffer, size_t length) {
return Send(make_span(static_cast<const uint8_t*>(buffer), length));
}
size_t SyncSocket::ReceiveWithTimeout(span<uint8_t> buffer, TimeDelta timeout) {
NOTIMPLEMENTED();
return 0;
}
size_t SyncSocket::ReceiveWithTimeout(void* buffer,
size_t length,
TimeDelta timeout) {
NOTIMPLEMENTED();
return 0;
}
size_t SyncSocket::Receive(span<uint8_t> buffer) {
ScopedBlockingCall scoped_blocking_call(FROM_HERE, BlockingType::MAY_BLOCK);
CHECK_LE(buffer.size(), kMaxMessageLength);
DCHECK(IsValid());
size_t count = 0;
while (count < buffer.size()) {
DWORD len;
const DWORD chunk_size = GetNextChunkSize(count, buffer.size());
auto data_chunk = buffer.subspan(count, chunk_size);
// SAFETY: The below static_cast is in range for DWORD because `data_chunk`
// is constructed with a DWORD length above from `chunk_size`.
if (::ReadFile(handle(), data_chunk.data(),
static_cast<DWORD>(data_chunk.size()), &len,
NULL) == FALSE) {
return count;
}
count += len;
}
return count;
}
size_t SyncSocket::Receive(void* buffer, size_t length) {
return Receive(make_span(static_cast<uint8_t*>(buffer), length));
}
size_t SyncSocket::Peek() {
DWORD available = 0;
PeekNamedPipe(handle(), NULL, 0, NULL, &available, NULL);
return available;
}
bool SyncSocket::IsValid() const {
return handle_.is_valid();
}
SyncSocket::Handle SyncSocket::handle() const {
return handle_.get();
}
SyncSocket::Handle SyncSocket::Release() {
return handle_.release();
}
bool CancelableSyncSocket::Shutdown() {
// This doesn't shut down the pipe immediately, but subsequent Receive or Send
// methods will fail straight away.
shutdown_event_.Signal();
return true;
}
void CancelableSyncSocket::Close() {
SyncSocket::Close();
shutdown_event_.Reset();
}
size_t CancelableSyncSocket::Send(span<const uint8_t> data) {
static const DWORD kWaitTimeOutInMs = 500;
return CancelableFileOperation(&::WriteFile, handle(), data, &file_operation_,
&shutdown_event_, this, kWaitTimeOutInMs);
}
size_t CancelableSyncSocket::Send(const void* buffer, size_t length) {
return Send(make_span(static_cast<const uint8_t*>(buffer), length));
}
size_t CancelableSyncSocket::Receive(span<uint8_t> buffer) {
return CancelableFileOperation(&::ReadFile, handle(), buffer,
&file_operation_, &shutdown_event_, this,
INFINITE);
}
size_t CancelableSyncSocket::Receive(void* buffer, size_t length) {
return Receive(make_span(static_cast<uint8_t*>(buffer), length));
}
size_t CancelableSyncSocket::ReceiveWithTimeout(span<uint8_t> buffer,
TimeDelta timeout) {
return CancelableFileOperation(&::ReadFile, handle(), buffer,
&file_operation_, &shutdown_event_, this,
static_cast<DWORD>(timeout.InMilliseconds()));
}
size_t CancelableSyncSocket::ReceiveWithTimeout(void* buffer,
size_t length,
TimeDelta timeout) {
return ReceiveWithTimeout(make_span(static_cast<uint8_t*>(buffer), length),
std::move(timeout));
}
// static
bool CancelableSyncSocket::CreatePair(CancelableSyncSocket* socket_a,
CancelableSyncSocket* socket_b) {
return CreatePairImpl(&socket_a->handle_, &socket_b->handle_, true);
}
} // namespace base