blob: e72283e1a5a35083edb2979c693fedbc6649a90e [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/profiler/native_stack_sampler.h"
#include <dlfcn.h>
#include <libkern/OSByteOrder.h>
#include <libunwind.h>
#include <mach-o/compact_unwind_encoding.h>
#include <mach-o/getsect.h>
#include <mach-o/swap.h>
#include <mach/kern_return.h>
#include <mach/mach.h>
#include <mach/thread_act.h>
#include <pthread.h>
#include <sys/resource.h>
#include <sys/syslimits.h>
#include <algorithm>
#include <map>
#include <memory>
#include "base/logging.h"
#include "base/mac/mach_logging.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/strings/string_number_conversions.h"
extern "C" {
void _sigtramp(int, int, struct sigset*);
}
namespace base {
namespace {
// Maps a module's address range (half-open) in memory to an index in a separate
// data structure.
struct ModuleIndex {
ModuleIndex(uintptr_t start, uintptr_t end, size_t idx)
: base_address(start), end_address(end), index(idx){};
// Base address of the represented module.
uintptr_t base_address;
// First address off the end of the represented module.
uintptr_t end_address;
// An index to the represented module in a separate container.
size_t index;
};
// Module identifiers ---------------------------------------------------------
// Returns the unique build ID for a module loaded at |module_addr|. Returns the
// empty string if the function fails to get the build ID.
//
// Build IDs are created by the concatenation of the module's GUID (Windows) /
// UUID (Mac) and an "age" field that indicates how many times that GUID/UUID
// has been reused. In Windows binaries, the "age" field is present in the
// module header, but on the Mac, UUIDs are never reused and so the "age" value
// appended to the UUID is always 0.
std::string GetUniqueId(const void* module_addr) {
const mach_header_64* mach_header =
reinterpret_cast<const mach_header_64*>(module_addr);
DCHECK_EQ(MH_MAGIC_64, mach_header->magic);
size_t offset = sizeof(mach_header_64);
size_t offset_limit = sizeof(mach_header_64) + mach_header->sizeofcmds;
for (uint32_t i = 0; (i < mach_header->ncmds) &&
(offset + sizeof(load_command) < offset_limit);
++i) {
const load_command* current_cmd = reinterpret_cast<const load_command*>(
reinterpret_cast<const uint8_t*>(mach_header) + offset);
if (offset + current_cmd->cmdsize > offset_limit) {
// This command runs off the end of the command list. This is malformed.
return std::string();
}
if (current_cmd->cmd == LC_UUID) {
if (current_cmd->cmdsize < sizeof(uuid_command)) {
// This "UUID command" is too small. This is malformed.
return std::string();
}
const uuid_command* uuid_cmd =
reinterpret_cast<const uuid_command*>(current_cmd);
static_assert(sizeof(uuid_cmd->uuid) == sizeof(uuid_t),
"UUID field of UUID command should be 16 bytes.");
// The ID is comprised of the UUID concatenated with the Mac's "age" value
// which is always 0.
return HexEncode(&uuid_cmd->uuid, sizeof(uuid_cmd->uuid)) + "0";
}
offset += current_cmd->cmdsize;
}
return std::string();
}
// Gets the index for the Module containing |instruction_pointer| in
// |modules|, adding it if it's not already present. Returns
// StackSamplingProfiler::Frame::kUnknownModuleIndex if no Module can be
// determined for |module|.
size_t GetModuleIndex(const uintptr_t instruction_pointer,
std::vector<StackSamplingProfiler::Module>* modules,
std::vector<ModuleIndex>* profile_module_index) {
// Check if |instruction_pointer| is in the address range of a module we've
// already seen.
auto module_index =
std::find_if(profile_module_index->begin(), profile_module_index->end(),
[instruction_pointer](const ModuleIndex& index) {
return instruction_pointer >= index.base_address &&
instruction_pointer < index.end_address;
});
if (module_index != profile_module_index->end()) {
return module_index->index;
}
Dl_info inf;
if (!dladdr(reinterpret_cast<const void*>(instruction_pointer), &inf))
return StackSamplingProfiler::Frame::kUnknownModuleIndex;
StackSamplingProfiler::Module module(
reinterpret_cast<uintptr_t>(inf.dli_fbase), GetUniqueId(inf.dli_fbase),
base::FilePath(inf.dli_fname));
modules->push_back(module);
const mach_header_64* mach_header =
reinterpret_cast<const mach_header_64*>(inf.dli_fbase);
DCHECK_EQ(MH_MAGIC_64, mach_header->magic);
unsigned long module_size;
getsegmentdata(mach_header, SEG_TEXT, &module_size);
uintptr_t base_module_address = reinterpret_cast<uintptr_t>(mach_header);
size_t index = modules->size() - 1;
profile_module_index->emplace_back(base_module_address,
base_module_address + module_size, index);
return index;
}
// Stack walking --------------------------------------------------------------
// Fills |state| with |target_thread|'s context.
//
// Note that this is called while a thread is suspended. Make very very sure
// that no shared resources (e.g. memory allocators) are used for the duration
// of this function.
bool GetThreadState(thread_act_t target_thread, x86_thread_state64_t* state) {
mach_msg_type_number_t count =
static_cast<mach_msg_type_number_t>(x86_THREAD_STATE64_COUNT);
return thread_get_state(target_thread, x86_THREAD_STATE64,
reinterpret_cast<thread_state_t>(state),
&count) == KERN_SUCCESS;
}
// If the value at |pointer| points to the original stack, rewrites it to point
// to the corresponding location in the copied stack.
//
// Note that this is called while a thread is suspended. Make very very sure
// that no shared resources (e.g. memory allocators) are used for the duration
// of this function.
uintptr_t RewritePointerIfInOriginalStack(
const uintptr_t* original_stack_bottom,
const uintptr_t* original_stack_top,
uintptr_t* stack_copy_bottom,
uintptr_t pointer) {
uintptr_t original_stack_bottom_int =
reinterpret_cast<uintptr_t>(original_stack_bottom);
uintptr_t original_stack_top_int =
reinterpret_cast<uintptr_t>(original_stack_top);
uintptr_t stack_copy_bottom_int =
reinterpret_cast<uintptr_t>(stack_copy_bottom);
if ((pointer < original_stack_bottom_int) ||
(pointer >= original_stack_top_int)) {
return pointer;
}
return stack_copy_bottom_int + (pointer - original_stack_bottom_int);
}
// Copies the stack to a buffer while rewriting possible pointers to locations
// within the stack to point to the corresponding locations in the copy. This is
// necessary to handle stack frames with dynamic stack allocation, where a
// pointer to the beginning of the dynamic allocation area is stored on the
// stack and/or in a non-volatile register.
//
// Eager rewriting of anything that looks like a pointer to the stack, as done
// in this function, does not adversely affect the stack unwinding. The only
// other values on the stack the unwinding depends on are return addresses,
// which should not point within the stack memory. The rewriting is guaranteed
// to catch all pointers because the stacks are guaranteed by the ABI to be
// sizeof(void*) aligned.
//
// Note that this is called while a thread is suspended. Make very very sure
// that no shared resources (e.g. memory allocators) are used for the duration
// of this function.
void CopyStackAndRewritePointers(uintptr_t* stack_copy_bottom,
const uintptr_t* original_stack_bottom,
const uintptr_t* original_stack_top,
x86_thread_state64_t* thread_state)
NO_SANITIZE("address") {
size_t count = original_stack_top - original_stack_bottom;
for (size_t pos = 0; pos < count; ++pos) {
stack_copy_bottom[pos] = RewritePointerIfInOriginalStack(
original_stack_bottom, original_stack_top, stack_copy_bottom,
original_stack_bottom[pos]);
}
uint64_t* rewrite_registers[] = {&thread_state->__rbx, &thread_state->__rbp,
&thread_state->__rsp, &thread_state->__r12,
&thread_state->__r13, &thread_state->__r14,
&thread_state->__r15};
for (auto* reg : rewrite_registers) {
*reg = RewritePointerIfInOriginalStack(
original_stack_bottom, original_stack_top, stack_copy_bottom, *reg);
}
}
// Extracts the "frame offset" for a given frame from the compact unwind info.
// A frame offset indicates the location of saved non-volatile registers in
// relation to the frame pointer. See |mach-o/compact_unwind_encoding.h| for
// details.
uint32_t GetFrameOffset(int compact_unwind_info) {
// The frame offset lives in bytes 16-23. This shifts it down by the number of
// leading zeroes in the mask, then masks with (1 << number of one bits in the
// mask) - 1, turning 0x00FF0000 into 0x000000FF. Adapted from |EXTRACT_BITS|
// in libunwind's CompactUnwinder.hpp.
return (
(compact_unwind_info >> __builtin_ctz(UNWIND_X86_64_RBP_FRAME_OFFSET)) &
(((1 << __builtin_popcount(UNWIND_X86_64_RBP_FRAME_OFFSET))) - 1));
}
// Walks the stack represented by |unwind_context|, calling back to the provided
// lambda for each frame. Returns false if an error occurred, otherwise returns
// true.
template <typename StackFrameCallback>
bool WalkStackFromContext(
unw_context_t* unwind_context,
uintptr_t stack_top,
size_t* frame_count,
std::vector<StackSamplingProfiler::Module>* current_modules,
std::vector<ModuleIndex>* profile_module_index,
const StackFrameCallback& callback) {
unw_cursor_t unwind_cursor;
unw_init_local(&unwind_cursor, unwind_context);
int step_result;
unw_word_t ip;
do {
++(*frame_count);
unw_get_reg(&unwind_cursor, UNW_REG_IP, &ip);
// Ensure IP is in a module.
//
// Frameless unwinding (non-DWARF) works by fetching the function's
// stack size from the unwind encoding or stack, and adding it to the
// stack pointer to determine the function's return address.
//
// If we're in a function prologue or epilogue, the actual stack size
// may be smaller than it will be during the normal course of execution.
// When libunwind adds the expected stack size, it will look for the
// return address in the wrong place. This check should ensure that we
// bail before trying to deref a bad IP obtained this way in the previous
// frame.
size_t module_index =
GetModuleIndex(ip, current_modules, profile_module_index);
if (module_index == StackSamplingProfiler::Frame::kUnknownModuleIndex) {
return false;
}
callback(static_cast<uintptr_t>(ip), module_index);
// If this stack frame has a frame pointer, stepping the cursor will involve
// indexing memory access off of that pointer. In that case, sanity-check
// the frame pointer register to ensure it's within bounds.
//
// Additionally, the stack frame might be in a prologue or epilogue,
// which can cause a crash when the unwinder attempts to access non-volatile
// registers that have not yet been pushed, or have already been popped from
// the stack. libwunwind will try to restore those registers using an offset
// from the frame pointer. However, since we copy the stack from RSP up, any
// locations below the stack pointer are before the beginning of the stack
// buffer. Account for this by checking that the expected location is above
// the stack pointer, and rejecting the sample if it isn't.
unw_proc_info_t proc_info;
unw_get_proc_info(&unwind_cursor, &proc_info);
if ((proc_info.format & UNWIND_X86_64_MODE_MASK) ==
UNWIND_X86_64_MODE_RBP_FRAME) {
unw_word_t rsp, rbp;
unw_get_reg(&unwind_cursor, UNW_X86_64_RSP, &rsp);
unw_get_reg(&unwind_cursor, UNW_X86_64_RBP, &rbp);
uint32_t offset = GetFrameOffset(proc_info.format);
if ((rbp - offset * 8) < rsp || rbp > stack_top) {
return false;
}
}
step_result = unw_step(&unwind_cursor);
} while (step_result > 0);
if (step_result != 0)
return false;
return true;
}
const char* LibSystemKernelName() {
static char path[PATH_MAX];
static char* name = nullptr;
if (name)
return name;
Dl_info info;
dladdr(reinterpret_cast<void*>(_exit), &info);
strlcpy(path, info.dli_fname, PATH_MAX);
name = path;
#if !defined(ADDRESS_SANITIZER)
DCHECK_EQ(std::string(name),
std::string("/usr/lib/system/libsystem_kernel.dylib"));
#endif
return name;
}
void GetSigtrampRange(uintptr_t* start, uintptr_t* end) {
uintptr_t address = reinterpret_cast<uintptr_t>(&_sigtramp);
DCHECK(address != 0);
*start = address;
unw_context_t context;
unw_cursor_t cursor;
unw_proc_info_t info;
unw_getcontext(&context);
// Set the context's RIP to the beginning of sigtramp,
// +1 byte to work around a bug in 10.11 (crbug.com/764468).
context.data[16] = address + 1;
unw_init_local(&cursor, &context);
unw_get_proc_info(&cursor, &info);
DCHECK_EQ(info.start_ip, address);
*end = info.end_ip;
}
// Walks the stack represented by |thread_state|, calling back to the provided
// lambda for each frame.
template <typename StackFrameCallback>
void WalkStack(const x86_thread_state64_t& thread_state,
uintptr_t stack_top,
std::vector<StackSamplingProfiler::Module>* current_modules,
std::vector<ModuleIndex>* profile_module_index,
const StackFrameCallback& callback) {
size_t frame_count = 0;
// This uses libunwind to walk the stack. libunwind is designed to be used for
// a thread to walk its own stack. This creates two problems.
// Problem 1: There is no official way to create a unw_context other than to
// create it from the current state of the current thread's stack. To get
// around this, forge a context. A unw_context is just a copy of the 16 main
// registers followed by the instruction pointer, nothing more.
// Coincidentally, the first 17 items of the x86_thread_state64_t type are
// exactly those registers in exactly the same order, so just bulk copy them
// over.
unw_context_t unwind_context;
memcpy(&unwind_context, &thread_state, sizeof(uintptr_t) * 17);
bool result =
WalkStackFromContext(&unwind_context, stack_top, &frame_count,
current_modules, profile_module_index, callback);
if (!result)
return;
if (frame_count == 1) {
// Problem 2: Because libunwind is designed to be triggered by user code on
// their own thread, if it hits a library that has no unwind info for the
// function that is being executed, it just stops. This isn't a problem in
// the normal case, but in this case, it's quite possible that the stack
// being walked is stopped in a function that bridges to the kernel and thus
// is missing the unwind info.
// For now, just unwind the single case where the thread is stopped in a
// function in libsystem_kernel.
uint64_t& rsp = unwind_context.data[7];
uint64_t& rip = unwind_context.data[16];
Dl_info info;
if (dladdr(reinterpret_cast<void*>(rip), &info) != 0 &&
strcmp(info.dli_fname, LibSystemKernelName()) == 0) {
rip = *reinterpret_cast<uint64_t*>(rsp);
rsp += 8;
WalkStackFromContext(&unwind_context, stack_top, &frame_count,
current_modules, profile_module_index, callback);
}
}
}
// ScopedSuspendThread --------------------------------------------------------
// Suspends a thread for the lifetime of the object.
class ScopedSuspendThread {
public:
explicit ScopedSuspendThread(mach_port_t thread_port)
: thread_port_(thread_suspend(thread_port) == KERN_SUCCESS
? thread_port
: MACH_PORT_NULL) {}
~ScopedSuspendThread() {
if (!was_successful())
return;
kern_return_t kr = thread_resume(thread_port_);
MACH_CHECK(kr == KERN_SUCCESS, kr) << "thread_resume";
}
bool was_successful() const { return thread_port_ != MACH_PORT_NULL; }
private:
mach_port_t thread_port_;
DISALLOW_COPY_AND_ASSIGN(ScopedSuspendThread);
};
// NativeStackSamplerMac ------------------------------------------------------
class NativeStackSamplerMac : public NativeStackSampler {
public:
NativeStackSamplerMac(mach_port_t thread_port,
AnnotateCallback annotator,
NativeStackSamplerTestDelegate* test_delegate);
~NativeStackSamplerMac() override;
// StackSamplingProfiler::NativeStackSampler:
void ProfileRecordingStarting(
std::vector<StackSamplingProfiler::Module>* modules) override;
void RecordStackSample(StackBuffer* stack_buffer,
StackSamplingProfiler::Sample* sample) override;
void ProfileRecordingStopped(StackBuffer* stack_buffer) override;
private:
// Suspends the thread with |thread_port_|, copies its stack and resumes the
// thread, then records the stack frames and associated modules into |sample|.
void SuspendThreadAndRecordStack(StackBuffer* stack_buffer,
StackSamplingProfiler::Sample* sample);
// Weak reference: Mach port for thread being profiled.
mach_port_t thread_port_;
const AnnotateCallback annotator_;
NativeStackSamplerTestDelegate* const test_delegate_;
// The stack base address corresponding to |thread_handle_|.
const void* const thread_stack_base_address_;
// Weak. Points to the modules associated with the profile being recorded
// between ProfileRecordingStarting() and ProfileRecordingStopped().
std::vector<StackSamplingProfiler::Module>* current_modules_ = nullptr;
// Maps a module's address range to the corresponding Module's index within
// current_modules_.
std::vector<ModuleIndex> profile_module_index_;
// The address range of |_sigtramp|, the signal trampoline function.
uintptr_t sigtramp_start_;
uintptr_t sigtramp_end_;
DISALLOW_COPY_AND_ASSIGN(NativeStackSamplerMac);
};
NativeStackSamplerMac::NativeStackSamplerMac(
mach_port_t thread_port,
AnnotateCallback annotator,
NativeStackSamplerTestDelegate* test_delegate)
: thread_port_(thread_port),
annotator_(annotator),
test_delegate_(test_delegate),
thread_stack_base_address_(
pthread_get_stackaddr_np(pthread_from_mach_thread_np(thread_port))) {
DCHECK(annotator_);
GetSigtrampRange(&sigtramp_start_, &sigtramp_end_);
// This class suspends threads, and those threads might be suspended in dyld.
// Therefore, for all the system functions that might be linked in dynamically
// that are used while threads are suspended, make calls to them to make sure
// that they are linked up.
x86_thread_state64_t thread_state;
GetThreadState(thread_port_, &thread_state);
}
NativeStackSamplerMac::~NativeStackSamplerMac() {}
void NativeStackSamplerMac::ProfileRecordingStarting(
std::vector<StackSamplingProfiler::Module>* modules) {
current_modules_ = modules;
profile_module_index_.clear();
}
void NativeStackSamplerMac::RecordStackSample(
StackBuffer* stack_buffer,
StackSamplingProfiler::Sample* sample) {
DCHECK(current_modules_);
SuspendThreadAndRecordStack(stack_buffer, sample);
}
void NativeStackSamplerMac::ProfileRecordingStopped(StackBuffer* stack_buffer) {
current_modules_ = nullptr;
}
void NativeStackSamplerMac::SuspendThreadAndRecordStack(
StackBuffer* stack_buffer,
StackSamplingProfiler::Sample* sample) {
x86_thread_state64_t thread_state;
// Copy the stack.
uintptr_t new_stack_top = 0;
{
// IMPORTANT NOTE: Do not do ANYTHING in this in this scope that might
// allocate memory, including indirectly via use of DCHECK/CHECK or other
// logging statements. Otherwise this code can deadlock on heap locks in the
// default heap acquired by the target thread before it was suspended.
ScopedSuspendThread suspend_thread(thread_port_);
if (!suspend_thread.was_successful())
return;
if (!GetThreadState(thread_port_, &thread_state))
return;
uintptr_t stack_top =
reinterpret_cast<uintptr_t>(thread_stack_base_address_);
uintptr_t stack_bottom = thread_state.__rsp;
if (stack_bottom >= stack_top)
return;
uintptr_t stack_size = stack_top - stack_bottom;
if (stack_size > stack_buffer->size())
return;
(*annotator_)(sample);
CopyStackAndRewritePointers(
reinterpret_cast<uintptr_t*>(stack_buffer->buffer()),
reinterpret_cast<uintptr_t*>(stack_bottom),
reinterpret_cast<uintptr_t*>(stack_top), &thread_state);
new_stack_top =
reinterpret_cast<uintptr_t>(stack_buffer->buffer()) + stack_size;
} // ScopedSuspendThread
if (test_delegate_)
test_delegate_->OnPreStackWalk();
// Walk the stack and record it.
// Reserve enough memory for most stacks, to avoid repeated allocations.
// Approximately 99.9% of recorded stacks are 128 frames or fewer.
sample->frames.reserve(128);
auto* current_modules = current_modules_;
auto* profile_module_index = &profile_module_index_;
// Unwinding sigtramp remotely is very fragile. It's a complex DWARF unwind
// that needs to restore the entire thread context which was saved by the
// kernel when the interrupt occurred. Bail instead of risking a crash.
uintptr_t ip = thread_state.__rip;
if (ip >= sigtramp_start_ && ip < sigtramp_end_) {
sample->frames.emplace_back(
ip, GetModuleIndex(ip, current_modules, profile_module_index));
return;
}
WalkStack(thread_state, new_stack_top, current_modules, profile_module_index,
[sample, current_modules, profile_module_index](
uintptr_t frame_ip, size_t module_index) {
sample->frames.emplace_back(frame_ip, module_index);
});
}
} // namespace
std::unique_ptr<NativeStackSampler> NativeStackSampler::Create(
PlatformThreadId thread_id,
AnnotateCallback annotator,
NativeStackSamplerTestDelegate* test_delegate) {
return std::make_unique<NativeStackSamplerMac>(thread_id, annotator,
test_delegate);
}
size_t NativeStackSampler::GetStackBufferSize() {
// In platform_thread_mac's GetDefaultThreadStackSize(), RLIMIT_STACK is used
// for all stacks, not just the main thread's, so it is good for use here.
struct rlimit stack_rlimit;
if (getrlimit(RLIMIT_STACK, &stack_rlimit) == 0 &&
stack_rlimit.rlim_cur != RLIM_INFINITY) {
return stack_rlimit.rlim_cur;
}
// If getrlimit somehow fails, return the default macOS main thread stack size
// of 8 MB (DFLSSIZ in <i386/vmparam.h>) with extra wiggle room.
return 12 * 1024 * 1024;
}
} // namespace base