blob: 49cbb0f8d75510f0dddfd8f457e0d0016f89a5ca [file] [log] [blame]
/*
* Copyright (C) 2007 Alexey Proskuryakov <ap@webkit.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "core/xml/XPathNodeSet.h"
#include "core/dom/Attr.h"
#include "core/dom/Document.h"
#include "core/dom/Element.h"
#include "core/dom/NodeTraversal.h"
namespace blink {
namespace XPath {
// When a node set is large, sorting it by traversing the whole document is
// better (we can assume that we aren't dealing with documents that we cannot
// even traverse in reasonable time).
const unsigned traversalSortCutoff = 10000;
typedef HeapVector<Member<Node>> NodeSetVector;
NodeSet* NodeSet::create(const NodeSet& other)
{
NodeSet* nodeSet = NodeSet::create();
nodeSet->m_isSorted = other.m_isSorted;
nodeSet->m_subtreesAreDisjoint = other.m_subtreesAreDisjoint;
nodeSet->m_nodes.appendVector(other.m_nodes);
return nodeSet;
}
static inline Node* parentWithDepth(unsigned depth, const NodeSetVector& parents)
{
ASSERT(parents.size() >= depth + 1);
return parents[parents.size() - 1 - depth];
}
static void sortBlock(unsigned from, unsigned to, HeapVector<NodeSetVector>& parentMatrix, bool mayContainAttributeNodes)
{
// Should not call this function with less that two nodes to sort.
ASSERT(from + 1 < to);
unsigned minDepth = UINT_MAX;
for (unsigned i = from; i < to; ++i) {
unsigned depth = parentMatrix[i].size() - 1;
if (minDepth > depth)
minDepth = depth;
}
// Find the common ancestor.
unsigned commonAncestorDepth = minDepth;
Node* commonAncestor;
while (true) {
commonAncestor = parentWithDepth(commonAncestorDepth, parentMatrix[from]);
if (commonAncestorDepth == 0)
break;
bool allEqual = true;
for (unsigned i = from + 1; i < to; ++i) {
if (commonAncestor != parentWithDepth(commonAncestorDepth, parentMatrix[i])) {
allEqual = false;
break;
}
}
if (allEqual)
break;
--commonAncestorDepth;
}
if (commonAncestorDepth == minDepth) {
// One of the nodes is the common ancestor => it is the first in
// document order. Find it and move it to the beginning.
for (unsigned i = from; i < to; ++i) {
if (commonAncestor == parentMatrix[i][0]) {
parentMatrix[i].swap(parentMatrix[from]);
if (from + 2 < to)
sortBlock(from + 1, to, parentMatrix, mayContainAttributeNodes);
return;
}
}
}
if (mayContainAttributeNodes && commonAncestor->isElementNode()) {
// The attribute nodes and namespace nodes of an element occur before
// the children of the element. The namespace nodes are defined to occur
// before the attribute nodes. The relative order of namespace nodes is
// implementation-dependent. The relative order of attribute nodes is
// implementation-dependent.
unsigned sortedEnd = from;
// FIXME: namespace nodes are not implemented.
for (unsigned i = sortedEnd; i < to; ++i) {
Node* n = parentMatrix[i][0];
if (n->isAttributeNode() && toAttr(n)->ownerElement() == commonAncestor)
parentMatrix[i].swap(parentMatrix[sortedEnd++]);
}
if (sortedEnd != from) {
if (to - sortedEnd > 1)
sortBlock(sortedEnd, to, parentMatrix, mayContainAttributeNodes);
return;
}
}
// Children nodes of the common ancestor induce a subdivision of our
// node-set. Sort it according to this subdivision, and recursively sort
// each group.
HeapHashSet<Member<Node>> parentNodes;
for (unsigned i = from; i < to; ++i)
parentNodes.add(parentWithDepth(commonAncestorDepth + 1, parentMatrix[i]));
unsigned previousGroupEnd = from;
unsigned groupEnd = from;
for (Node* n = commonAncestor->firstChild(); n; n = n->nextSibling()) {
// If parentNodes contains the node, perform a linear search to move its
// children in the node-set to the beginning.
if (parentNodes.contains(n)) {
for (unsigned i = groupEnd; i < to; ++i) {
if (parentWithDepth(commonAncestorDepth + 1, parentMatrix[i]) == n)
parentMatrix[i].swap(parentMatrix[groupEnd++]);
}
if (groupEnd - previousGroupEnd > 1)
sortBlock(previousGroupEnd, groupEnd, parentMatrix, mayContainAttributeNodes);
ASSERT(previousGroupEnd != groupEnd);
previousGroupEnd = groupEnd;
#if ENABLE(ASSERT)
parentNodes.remove(n);
#endif
}
}
ASSERT(parentNodes.isEmpty());
}
void NodeSet::sort() const
{
if (m_isSorted)
return;
unsigned nodeCount = m_nodes.size();
if (nodeCount < 2) {
const_cast<bool&>(m_isSorted) = true;
return;
}
if (nodeCount > traversalSortCutoff) {
traversalSort();
return;
}
bool containsAttributeNodes = false;
HeapVector<NodeSetVector> parentMatrix(nodeCount);
for (unsigned i = 0; i < nodeCount; ++i) {
NodeSetVector& parentsVector = parentMatrix[i];
Node* n = m_nodes[i].get();
parentsVector.append(n);
if (n->isAttributeNode()) {
n = toAttr(n)->ownerElement();
parentsVector.append(n);
containsAttributeNodes = true;
}
for (n = n->parentNode(); n; n = n->parentNode())
parentsVector.append(n);
}
sortBlock(0, nodeCount, parentMatrix, containsAttributeNodes);
// It is not possible to just assign the result to m_nodes, because some
// nodes may get dereferenced and destroyed.
HeapVector<Member<Node>> sortedNodes;
sortedNodes.reserveInitialCapacity(nodeCount);
for (unsigned i = 0; i < nodeCount; ++i)
sortedNodes.append(parentMatrix[i][0]);
const_cast<HeapVector<Member<Node>>&>(m_nodes).swap(sortedNodes);
}
static Node* findRootNode(Node* node)
{
if (node->isAttributeNode())
node = toAttr(node)->ownerElement();
if (node->inShadowIncludingDocument()) {
node = &node->document();
} else {
while (Node* parent = node->parentNode())
node = parent;
}
return node;
}
void NodeSet::traversalSort() const
{
HeapHashSet<Member<Node>> nodes;
bool containsAttributeNodes = false;
unsigned nodeCount = m_nodes.size();
ASSERT(nodeCount > 1);
for (unsigned i = 0; i < nodeCount; ++i) {
Node* node = m_nodes[i].get();
nodes.add(node);
if (node->isAttributeNode())
containsAttributeNodes = true;
}
HeapVector<Member<Node>> sortedNodes;
sortedNodes.reserveInitialCapacity(nodeCount);
for (Node& n : NodeTraversal::startsAt(*findRootNode(m_nodes.first()))) {
if (nodes.contains(&n))
sortedNodes.append(&n);
if (!containsAttributeNodes || !n.isElementNode())
continue;
Element* element = toElement(&n);
AttributeCollection attributes = element->attributes();
for (auto& attribute : attributes) {
Attr* attr = element->attrIfExists(attribute.name());
if (attr && nodes.contains(attr))
sortedNodes.append(attr);
}
}
ASSERT(sortedNodes.size() == nodeCount);
const_cast<HeapVector<Member<Node>>&>(m_nodes).swap(sortedNodes);
}
void NodeSet::reverse()
{
if (m_nodes.isEmpty())
return;
unsigned from = 0;
unsigned to = m_nodes.size() - 1;
while (from < to) {
m_nodes[from].swap(m_nodes[to]);
++from;
--to;
}
}
Node* NodeSet::firstNode() const
{
if (isEmpty())
return nullptr;
// FIXME: fully sorting the node-set just to find its first node is
// wasteful.
sort();
return m_nodes.at(0).get();
}
Node* NodeSet::anyNode() const
{
if (isEmpty())
return nullptr;
return m_nodes.at(0).get();
}
} // namespace XPath
} // namespace blink