blob: d3e7f0dc57f487ea6a8c0d050a5c42bf73b366f3 [file] [log] [blame]
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "encoding.h"
#include <cassert>
#include <cmath>
#include <cstring>
#include <limits>
#include <stack>
namespace inspector_protocol_encoding {
namespace cbor {
namespace {
// Indicates the number of bits the "initial byte" needs to be shifted to the
// right after applying |kMajorTypeMask| to produce the major type in the
// lowermost bits.
static constexpr uint8_t kMajorTypeBitShift = 5u;
// Mask selecting the low-order 5 bits of the "initial byte", which is where
// the additional information is encoded.
static constexpr uint8_t kAdditionalInformationMask = 0x1f;
// Mask selecting the high-order 3 bits of the "initial byte", which indicates
// the major type of the encoded value.
static constexpr uint8_t kMajorTypeMask = 0xe0;
// Indicates the integer is in the following byte.
static constexpr uint8_t kAdditionalInformation1Byte = 24u;
// Indicates the integer is in the next 2 bytes.
static constexpr uint8_t kAdditionalInformation2Bytes = 25u;
// Indicates the integer is in the next 4 bytes.
static constexpr uint8_t kAdditionalInformation4Bytes = 26u;
// Indicates the integer is in the next 8 bytes.
static constexpr uint8_t kAdditionalInformation8Bytes = 27u;
// Encodes the initial byte, consisting of the |type| in the first 3 bits
// followed by 5 bits of |additional_info|.
constexpr uint8_t EncodeInitialByte(MajorType type, uint8_t additional_info) {
return (static_cast<uint8_t>(type) << kMajorTypeBitShift) |
(additional_info & kAdditionalInformationMask);
}
// TAG 24 indicates that what follows is a byte string which is
// encoded in CBOR format. We use this as a wrapper for
// maps and arrays, allowing us to skip them, because the
// byte string carries its size (byte length).
// https://tools.ietf.org/html/rfc7049#section-2.4.4.1
static constexpr uint8_t kInitialByteForEnvelope =
EncodeInitialByte(MajorType::TAG, 24);
// The initial byte for a byte string with at most 2^32 bytes
// of payload. This is used for envelope encoding, even if
// the byte string is shorter.
static constexpr uint8_t kInitialByteFor32BitLengthByteString =
EncodeInitialByte(MajorType::BYTE_STRING, 26);
// See RFC 7049 Section 2.2.1, indefinite length arrays / maps have additional
// info = 31.
static constexpr uint8_t kInitialByteIndefiniteLengthArray =
EncodeInitialByte(MajorType::ARRAY, 31);
static constexpr uint8_t kInitialByteIndefiniteLengthMap =
EncodeInitialByte(MajorType::MAP, 31);
// See RFC 7049 Section 2.3, Table 1; this is used for finishing indefinite
// length maps / arrays.
static constexpr uint8_t kStopByte =
EncodeInitialByte(MajorType::SIMPLE_VALUE, 31);
// See RFC 7049 Section 2.3, Table 2.
static constexpr uint8_t kEncodedTrue =
EncodeInitialByte(MajorType::SIMPLE_VALUE, 21);
static constexpr uint8_t kEncodedFalse =
EncodeInitialByte(MajorType::SIMPLE_VALUE, 20);
static constexpr uint8_t kEncodedNull =
EncodeInitialByte(MajorType::SIMPLE_VALUE, 22);
static constexpr uint8_t kInitialByteForDouble =
EncodeInitialByte(MajorType::SIMPLE_VALUE, 27);
// See RFC 7049 Table 3 and Section 2.4.4.2. This is used as a prefix for
// arbitrary binary data encoded as BYTE_STRING.
static constexpr uint8_t kExpectedConversionToBase64Tag =
EncodeInitialByte(MajorType::TAG, 22);
// Writes the bytes for |v| to |out|, starting with the most significant byte.
// See also: https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
template <typename T, class C>
void WriteBytesMostSignificantByteFirst(T v, C* out) {
for (int shift_bytes = sizeof(T) - 1; shift_bytes >= 0; --shift_bytes)
out->push_back(0xff & (v >> (shift_bytes * 8)));
}
// Extracts sizeof(T) bytes from |in| to extract a value of type T
// (e.g. uint64_t, uint32_t, ...), most significant byte first.
// See also: https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
template <typename T>
T ReadBytesMostSignificantByteFirst(span<uint8_t> in) {
assert(static_cast<std::size_t>(in.size()) >= sizeof(T));
T result = 0;
for (std::size_t shift_bytes = 0; shift_bytes < sizeof(T); ++shift_bytes)
result |= T(in[sizeof(T) - 1 - shift_bytes]) << (shift_bytes * 8);
return result;
}
} // namespace
namespace internals {
// Reads the start of a token with definitive size from |bytes|.
// |type| is the major type as specified in RFC 7049 Section 2.1.
// |value| is the payload (e.g. for MajorType::UNSIGNED) or is the size
// (e.g. for BYTE_STRING).
// If successful, returns the number of bytes read. Otherwise returns -1.
int8_t ReadTokenStart(span<uint8_t> bytes, MajorType* type, uint64_t* value) {
if (bytes.empty())
return -1;
uint8_t initial_byte = bytes[0];
*type = MajorType((initial_byte & kMajorTypeMask) >> kMajorTypeBitShift);
uint8_t additional_information = initial_byte & kAdditionalInformationMask;
if (additional_information < 24) {
// Values 0-23 are encoded directly into the additional info of the
// initial byte.
*value = additional_information;
return 1;
}
if (additional_information == kAdditionalInformation1Byte) {
// Values 24-255 are encoded with one initial byte, followed by the value.
if (bytes.size() < 2)
return -1;
*value = ReadBytesMostSignificantByteFirst<uint8_t>(bytes.subspan(1));
return 2;
}
if (additional_information == kAdditionalInformation2Bytes) {
// Values 256-65535: 1 initial byte + 2 bytes payload.
if (static_cast<std::size_t>(bytes.size()) < 1 + sizeof(uint16_t))
return -1;
*value = ReadBytesMostSignificantByteFirst<uint16_t>(bytes.subspan(1));
return 3;
}
if (additional_information == kAdditionalInformation4Bytes) {
// 32 bit uint: 1 initial byte + 4 bytes payload.
if (static_cast<std::size_t>(bytes.size()) < 1 + sizeof(uint32_t))
return -1;
*value = ReadBytesMostSignificantByteFirst<uint32_t>(bytes.subspan(1));
return 5;
}
if (additional_information == kAdditionalInformation8Bytes) {
// 64 bit uint: 1 initial byte + 8 bytes payload.
if (static_cast<std::size_t>(bytes.size()) < 1 + sizeof(uint64_t))
return -1;
*value = ReadBytesMostSignificantByteFirst<uint64_t>(bytes.subspan(1));
return 9;
}
return -1;
}
// Writes the start of a token with |type|. The |value| may indicate the size,
// or it may be the payload if the value is an unsigned integer.
template <typename C>
void WriteTokenStartTmpl(MajorType type, uint64_t value, C* encoded) {
if (value < 24) {
// Values 0-23 are encoded directly into the additional info of the
// initial byte.
encoded->push_back(EncodeInitialByte(type, /*additional_info=*/value));
return;
}
if (value <= std::numeric_limits<uint8_t>::max()) {
// Values 24-255 are encoded with one initial byte, followed by the value.
encoded->push_back(EncodeInitialByte(type, kAdditionalInformation1Byte));
encoded->push_back(value);
return;
}
if (value <= std::numeric_limits<uint16_t>::max()) {
// Values 256-65535: 1 initial byte + 2 bytes payload.
encoded->push_back(EncodeInitialByte(type, kAdditionalInformation2Bytes));
WriteBytesMostSignificantByteFirst<uint16_t>(value, encoded);
return;
}
if (value <= std::numeric_limits<uint32_t>::max()) {
// 32 bit uint: 1 initial byte + 4 bytes payload.
encoded->push_back(EncodeInitialByte(type, kAdditionalInformation4Bytes));
WriteBytesMostSignificantByteFirst<uint32_t>(static_cast<uint32_t>(value),
encoded);
return;
}
// 64 bit uint: 1 initial byte + 8 bytes payload.
encoded->push_back(EncodeInitialByte(type, kAdditionalInformation8Bytes));
WriteBytesMostSignificantByteFirst<uint64_t>(value, encoded);
}
void WriteTokenStart(MajorType type,
uint64_t value,
std::vector<uint8_t>* encoded) {
WriteTokenStartTmpl(type, value, encoded);
}
void WriteTokenStart(MajorType type, uint64_t value, std::string* encoded) {
WriteTokenStartTmpl(type, value, encoded);
}
} // namespace internals
// =============================================================================
// Detecting CBOR content
// =============================================================================
uint8_t InitialByteForEnvelope() {
return kInitialByteForEnvelope;
}
uint8_t InitialByteFor32BitLengthByteString() {
return kInitialByteFor32BitLengthByteString;
}
bool IsCBORMessage(span<uint8_t> msg) {
return msg.size() >= 6 && msg[0] == InitialByteForEnvelope() &&
msg[1] == InitialByteFor32BitLengthByteString();
}
// =============================================================================
// Encoding invidiual CBOR items
// =============================================================================
uint8_t EncodeTrue() {
return kEncodedTrue;
}
uint8_t EncodeFalse() {
return kEncodedFalse;
}
uint8_t EncodeNull() {
return kEncodedNull;
}
uint8_t EncodeIndefiniteLengthArrayStart() {
return kInitialByteIndefiniteLengthArray;
}
uint8_t EncodeIndefiniteLengthMapStart() {
return kInitialByteIndefiniteLengthMap;
}
uint8_t EncodeStop() {
return kStopByte;
}
template <typename C>
void EncodeInt32Tmpl(int32_t value, C* out) {
if (value >= 0) {
internals::WriteTokenStart(MajorType::UNSIGNED, value, out);
} else {
uint64_t representation = static_cast<uint64_t>(-(value + 1));
internals::WriteTokenStart(MajorType::NEGATIVE, representation, out);
}
}
void EncodeInt32(int32_t value, std::vector<uint8_t>* out) {
EncodeInt32Tmpl(value, out);
}
void EncodeInt32(int32_t value, std::string* out) {
EncodeInt32Tmpl(value, out);
}
template <typename C>
void EncodeString16Tmpl(span<uint16_t> in, C* out) {
uint64_t byte_length = static_cast<uint64_t>(in.size_bytes());
internals::WriteTokenStart(MajorType::BYTE_STRING, byte_length, out);
// When emitting UTF16 characters, we always write the least significant byte
// first; this is because it's the native representation for X86.
// TODO(johannes): Implement a more efficient thing here later, e.g.
// casting *iff* the machine has this byte order.
// The wire format for UTF16 chars will probably remain the same
// (least significant byte first) since this way we can have
// golden files, unittests, etc. that port easily and universally.
// See also:
// https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
for (const uint16_t two_bytes : in) {
out->push_back(two_bytes);
out->push_back(two_bytes >> 8);
}
}
void EncodeString16(span<uint16_t> in, std::vector<uint8_t>* out) {
EncodeString16Tmpl(in, out);
}
void EncodeString16(span<uint16_t> in, std::string* out) {
EncodeString16Tmpl(in, out);
}
template <typename C>
void EncodeString8Tmpl(span<uint8_t> in, C* out) {
internals::WriteTokenStart(MajorType::STRING,
static_cast<uint64_t>(in.size_bytes()), out);
out->insert(out->end(), in.begin(), in.end());
}
void EncodeString8(span<uint8_t> in, std::vector<uint8_t>* out) {
EncodeString8Tmpl(in, out);
}
void EncodeString8(span<uint8_t> in, std::string* out) {
EncodeString8Tmpl(in, out);
}
template <typename C>
void EncodeFromLatin1Tmpl(span<uint8_t> latin1, C* out) {
for (std::ptrdiff_t ii = 0; ii < latin1.size(); ++ii) {
if (latin1[ii] <= 127)
continue;
// If there's at least one non-ASCII char, convert to UTF8.
std::vector<uint8_t> utf8(latin1.begin(), latin1.begin() + ii);
for (; ii < latin1.size(); ++ii) {
if (latin1[ii] <= 127) {
utf8.push_back(latin1[ii]);
} else {
// 0xC0 means it's a UTF8 sequence with 2 bytes.
utf8.push_back((latin1[ii] >> 6) | 0xc0);
utf8.push_back((latin1[ii] | 0x80) & 0xbf);
}
}
EncodeString8(SpanFrom(utf8), out);
return;
}
EncodeString8(latin1, out);
}
void EncodeFromLatin1(span<uint8_t> latin1, std::vector<uint8_t>* out) {
EncodeFromLatin1Tmpl(latin1, out);
}
void EncodeFromLatin1(span<uint8_t> latin1, std::string* out) {
EncodeFromLatin1Tmpl(latin1, out);
}
template <typename C>
void EncodeFromUTF16Tmpl(span<uint16_t> utf16, C* out) {
// If there's at least one non-ASCII char, encode as STRING16 (UTF16).
for (uint16_t ch : utf16) {
if (ch <= 127)
continue;
EncodeString16(utf16, out);
return;
}
// It's all US-ASCII, strip out every second byte and encode as UTF8.
internals::WriteTokenStart(MajorType::STRING,
static_cast<uint64_t>(utf16.size()), out);
out->insert(out->end(), utf16.begin(), utf16.end());
}
void EncodeFromUTF16(span<uint16_t> utf16, std::vector<uint8_t>* out) {
EncodeFromUTF16Tmpl(utf16, out);
}
void EncodeFromUTF16(span<uint16_t> utf16, std::string* out) {
EncodeFromUTF16Tmpl(utf16, out);
}
template <typename C>
void EncodeBinaryTmpl(span<uint8_t> in, C* out) {
out->push_back(kExpectedConversionToBase64Tag);
uint64_t byte_length = static_cast<uint64_t>(in.size_bytes());
internals::WriteTokenStart(MajorType::BYTE_STRING, byte_length, out);
out->insert(out->end(), in.begin(), in.end());
}
void EncodeBinary(span<uint8_t> in, std::vector<uint8_t>* out) {
EncodeBinaryTmpl(in, out);
}
void EncodeBinary(span<uint8_t> in, std::string* out) {
EncodeBinaryTmpl(in, out);
}
// A double is encoded with a specific initial byte
// (kInitialByteForDouble) plus the 64 bits of payload for its value.
constexpr std::ptrdiff_t kEncodedDoubleSize = 1 + sizeof(uint64_t);
// An envelope is encoded with a specific initial byte
// (kInitialByteForEnvelope), plus the start byte for a BYTE_STRING with a 32
// bit wide length, plus a 32 bit length for that string.
constexpr std::ptrdiff_t kEncodedEnvelopeHeaderSize = 1 + 1 + sizeof(uint32_t);
template <typename C>
void EncodeDoubleTmpl(double value, C* out) {
// The additional_info=27 indicates 64 bits for the double follow.
// See RFC 7049 Section 2.3, Table 1.
out->push_back(kInitialByteForDouble);
union {
double from_double;
uint64_t to_uint64;
} reinterpret;
reinterpret.from_double = value;
WriteBytesMostSignificantByteFirst<uint64_t>(reinterpret.to_uint64, out);
}
void EncodeDouble(double value, std::vector<uint8_t>* out) {
EncodeDoubleTmpl(value, out);
}
void EncodeDouble(double value, std::string* out) {
EncodeDoubleTmpl(value, out);
}
// =============================================================================
// cbor::EnvelopeEncoder - for wrapping submessages
// =============================================================================
template <typename C>
void EncodeStartTmpl(C* out, std::size_t* byte_size_pos) {
assert(*byte_size_pos == 0);
out->push_back(kInitialByteForEnvelope);
out->push_back(kInitialByteFor32BitLengthByteString);
*byte_size_pos = out->size();
out->resize(out->size() + sizeof(uint32_t));
}
void EnvelopeEncoder::EncodeStart(std::vector<uint8_t>* out) {
EncodeStartTmpl<std::vector<uint8_t>>(out, &byte_size_pos_);
}
void EnvelopeEncoder::EncodeStart(std::string* out) {
EncodeStartTmpl<std::string>(out, &byte_size_pos_);
}
template <typename C>
bool EncodeStopTmpl(C* out, std::size_t* byte_size_pos) {
assert(*byte_size_pos != 0);
// The byte size is the size of the payload, that is, all the
// bytes that were written past the byte size position itself.
uint64_t byte_size = out->size() - (*byte_size_pos + sizeof(uint32_t));
// We store exactly 4 bytes, so at most INT32MAX, with most significant
// byte first.
if (byte_size > std::numeric_limits<uint32_t>::max())
return false;
for (int shift_bytes = sizeof(uint32_t) - 1; shift_bytes >= 0;
--shift_bytes) {
(*out)[(*byte_size_pos)++] = 0xff & (byte_size >> (shift_bytes * 8));
}
return true;
}
bool EnvelopeEncoder::EncodeStop(std::vector<uint8_t>* out) {
return EncodeStopTmpl(out, &byte_size_pos_);
}
bool EnvelopeEncoder::EncodeStop(std::string* out) {
return EncodeStopTmpl(out, &byte_size_pos_);
}
// =============================================================================
// cbor::NewCBOREncoder - for encoding from a streaming parser
// =============================================================================
namespace {
template <typename C>
class CBOREncoder : public StreamingParserHandler {
public:
CBOREncoder(C* out, Status* status) : out_(out), status_(status) {
*status_ = Status();
}
void HandleMapBegin() override {
if (!status_->ok())
return;
envelopes_.emplace_back();
envelopes_.back().EncodeStart(out_);
out_->push_back(kInitialByteIndefiniteLengthMap);
}
void HandleMapEnd() override {
if (!status_->ok())
return;
out_->push_back(kStopByte);
assert(!envelopes_.empty());
if (!envelopes_.back().EncodeStop(out_)) {
HandleError(
Status(Error::CBOR_ENVELOPE_SIZE_LIMIT_EXCEEDED, out_->size()));
return;
}
envelopes_.pop_back();
}
void HandleArrayBegin() override {
if (!status_->ok())
return;
envelopes_.emplace_back();
envelopes_.back().EncodeStart(out_);
out_->push_back(kInitialByteIndefiniteLengthArray);
}
void HandleArrayEnd() override {
if (!status_->ok())
return;
out_->push_back(kStopByte);
assert(!envelopes_.empty());
if (!envelopes_.back().EncodeStop(out_)) {
HandleError(
Status(Error::CBOR_ENVELOPE_SIZE_LIMIT_EXCEEDED, out_->size()));
return;
}
envelopes_.pop_back();
}
void HandleString8(span<uint8_t> chars) override {
if (!status_->ok())
return;
EncodeString8(chars, out_);
}
void HandleString16(span<uint16_t> chars) override {
if (!status_->ok())
return;
EncodeFromUTF16(chars, out_);
}
void HandleBinary(span<uint8_t> bytes) override {
if (!status_->ok())
return;
EncodeBinary(bytes, out_);
}
void HandleDouble(double value) override {
if (!status_->ok())
return;
EncodeDouble(value, out_);
}
void HandleInt32(int32_t value) override {
if (!status_->ok())
return;
EncodeInt32(value, out_);
}
void HandleBool(bool value) override {
if (!status_->ok())
return;
// See RFC 7049 Section 2.3, Table 2.
out_->push_back(value ? kEncodedTrue : kEncodedFalse);
}
void HandleNull() override {
if (!status_->ok())
return;
// See RFC 7049 Section 2.3, Table 2.
out_->push_back(kEncodedNull);
}
void HandleError(Status error) override {
if (!status_->ok())
return;
*status_ = error;
out_->clear();
}
private:
C* out_;
std::vector<EnvelopeEncoder> envelopes_;
Status* status_;
};
} // namespace
std::unique_ptr<StreamingParserHandler> NewCBOREncoder(
std::vector<uint8_t>* out,
Status* status) {
return std::unique_ptr<StreamingParserHandler>(
new CBOREncoder<std::vector<uint8_t>>(out, status));
}
std::unique_ptr<StreamingParserHandler> NewCBOREncoder(std::string* out,
Status* status) {
return std::unique_ptr<StreamingParserHandler>(
new CBOREncoder<std::string>(out, status));
}
// =============================================================================
// cbor::CBORTokenizer - for parsing individual CBOR items
// =============================================================================
CBORTokenizer::CBORTokenizer(span<uint8_t> bytes) : bytes_(bytes) {
ReadNextToken(/*enter_envelope=*/false);
}
CBORTokenizer::~CBORTokenizer() {}
CBORTokenTag CBORTokenizer::TokenTag() const {
return token_tag_;
}
void CBORTokenizer::Next() {
if (token_tag_ == CBORTokenTag::ERROR_VALUE ||
token_tag_ == CBORTokenTag::DONE)
return;
ReadNextToken(/*enter_envelope=*/false);
}
void CBORTokenizer::EnterEnvelope() {
assert(token_tag_ == CBORTokenTag::ENVELOPE);
ReadNextToken(/*enter_envelope=*/true);
}
Status CBORTokenizer::Status() const {
return status_;
}
int32_t CBORTokenizer::GetInt32() const {
assert(token_tag_ == CBORTokenTag::INT32);
// The range checks happen in ::ReadNextToken().
return static_cast<uint32_t>(
token_start_type_ == MajorType::UNSIGNED
? token_start_internal_value_
: -static_cast<int64_t>(token_start_internal_value_) - 1);
}
double CBORTokenizer::GetDouble() const {
assert(token_tag_ == CBORTokenTag::DOUBLE);
union {
uint64_t from_uint64;
double to_double;
} reinterpret;
reinterpret.from_uint64 = ReadBytesMostSignificantByteFirst<uint64_t>(
bytes_.subspan(status_.pos + 1));
return reinterpret.to_double;
}
span<uint8_t> CBORTokenizer::GetString8() const {
assert(token_tag_ == CBORTokenTag::STRING8);
auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
return bytes_.subspan(status_.pos + (token_byte_length_ - length), length);
}
span<uint8_t> CBORTokenizer::GetString16WireRep() const {
assert(token_tag_ == CBORTokenTag::STRING16);
auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
return bytes_.subspan(status_.pos + (token_byte_length_ - length), length);
}
span<uint8_t> CBORTokenizer::GetBinary() const {
assert(token_tag_ == CBORTokenTag::BINARY);
auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
return bytes_.subspan(status_.pos + (token_byte_length_ - length), length);
}
span<uint8_t> CBORTokenizer::GetEnvelopeContents() const {
assert(token_tag_ == CBORTokenTag::ENVELOPE);
auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
return bytes_.subspan(status_.pos + kEncodedEnvelopeHeaderSize, length);
}
void CBORTokenizer::ReadNextToken(bool enter_envelope) {
if (enter_envelope) {
status_.pos += kEncodedEnvelopeHeaderSize;
} else {
status_.pos =
status_.pos == Status::npos() ? 0 : status_.pos + token_byte_length_;
}
status_.error = Error::OK;
if (status_.pos >= bytes_.size()) {
token_tag_ = CBORTokenTag::DONE;
return;
}
switch (bytes_[status_.pos]) {
case kStopByte:
SetToken(CBORTokenTag::STOP, 1);
return;
case kInitialByteIndefiniteLengthMap:
SetToken(CBORTokenTag::MAP_START, 1);
return;
case kInitialByteIndefiniteLengthArray:
SetToken(CBORTokenTag::ARRAY_START, 1);
return;
case kEncodedTrue:
SetToken(CBORTokenTag::TRUE_VALUE, 1);
return;
case kEncodedFalse:
SetToken(CBORTokenTag::FALSE_VALUE, 1);
return;
case kEncodedNull:
SetToken(CBORTokenTag::NULL_VALUE, 1);
return;
case kExpectedConversionToBase64Tag: { // BINARY
int8_t bytes_read = internals::ReadTokenStart(
bytes_.subspan(status_.pos + 1), &token_start_type_,
&token_start_internal_value_);
int64_t token_byte_length = 1 + bytes_read + token_start_internal_value_;
if (-1 == bytes_read || token_start_type_ != MajorType::BYTE_STRING ||
status_.pos + token_byte_length > bytes_.size()) {
SetError(Error::CBOR_INVALID_BINARY);
return;
}
SetToken(CBORTokenTag::BINARY,
static_cast<std::ptrdiff_t>(token_byte_length));
return;
}
case kInitialByteForDouble: { // DOUBLE
if (status_.pos + kEncodedDoubleSize > bytes_.size()) {
SetError(Error::CBOR_INVALID_DOUBLE);
return;
}
SetToken(CBORTokenTag::DOUBLE, kEncodedDoubleSize);
return;
}
case kInitialByteForEnvelope: { // ENVELOPE
if (status_.pos + kEncodedEnvelopeHeaderSize > bytes_.size()) {
SetError(Error::CBOR_INVALID_ENVELOPE);
return;
}
// The envelope must be a byte string with 32 bit length.
if (bytes_[status_.pos + 1] != kInitialByteFor32BitLengthByteString) {
SetError(Error::CBOR_INVALID_ENVELOPE);
return;
}
// Read the length of the byte string.
token_start_internal_value_ = ReadBytesMostSignificantByteFirst<uint32_t>(
bytes_.subspan(status_.pos + 2));
// Make sure the payload is contained within the message.
if (token_start_internal_value_ + kEncodedEnvelopeHeaderSize +
status_.pos >
static_cast<std::size_t>(bytes_.size())) {
SetError(Error::CBOR_INVALID_ENVELOPE);
return;
}
auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
SetToken(CBORTokenTag::ENVELOPE, kEncodedEnvelopeHeaderSize + length);
return;
}
default: {
span<uint8_t> remainder =
bytes_.subspan(status_.pos, bytes_.size() - status_.pos);
assert(!remainder.empty());
int8_t token_start_length = internals::ReadTokenStart(
remainder, &token_start_type_, &token_start_internal_value_);
bool success = token_start_length != -1;
switch (token_start_type_) {
case MajorType::UNSIGNED: // INT32.
if (!success || std::numeric_limits<int32_t>::max() <
token_start_internal_value_) {
SetError(Error::CBOR_INVALID_INT32);
return;
}
SetToken(CBORTokenTag::INT32, token_start_length);
return;
case MajorType::NEGATIVE: // INT32.
if (!success ||
std::numeric_limits<int32_t>::min() >
-static_cast<int64_t>(token_start_internal_value_) - 1) {
SetError(Error::CBOR_INVALID_INT32);
return;
}
SetToken(CBORTokenTag::INT32, token_start_length);
return;
case MajorType::STRING: { // STRING8.
if (!success || remainder.size() < static_cast<int64_t>(
token_start_internal_value_)) {
SetError(Error::CBOR_INVALID_STRING8);
return;
}
auto length =
static_cast<std::ptrdiff_t>(token_start_internal_value_);
SetToken(CBORTokenTag::STRING8, token_start_length + length);
return;
}
case MajorType::BYTE_STRING: { // STRING16.
if (!success ||
remainder.size() <
static_cast<int64_t>(token_start_internal_value_) ||
// Must be divisible by 2 since UTF16 is 2 bytes per character.
token_start_internal_value_ & 1) {
SetError(Error::CBOR_INVALID_STRING16);
return;
}
auto length =
static_cast<std::ptrdiff_t>(token_start_internal_value_);
SetToken(CBORTokenTag::STRING16, token_start_length + length);
return;
}
case MajorType::ARRAY:
case MajorType::MAP:
case MajorType::TAG:
case MajorType::SIMPLE_VALUE:
SetError(Error::CBOR_UNSUPPORTED_VALUE);
return;
}
}
}
}
void CBORTokenizer::SetToken(CBORTokenTag token_tag,
std::ptrdiff_t token_byte_length) {
token_tag_ = token_tag;
token_byte_length_ = token_byte_length;
}
void CBORTokenizer::SetError(Error error) {
token_tag_ = CBORTokenTag::ERROR_VALUE;
status_.error = error;
}
// =============================================================================
// cbor::ParseCBOR - for receiving streaming parser events for CBOR messages
// =============================================================================
namespace {
// When parsing CBOR, we limit recursion depth for objects and arrays
// to this constant.
static constexpr int kStackLimit = 300;
// Below are three parsing routines for CBOR, which cover enough
// to roundtrip JSON messages.
bool ParseMap(int32_t stack_depth,
CBORTokenizer* tokenizer,
StreamingParserHandler* out);
bool ParseArray(int32_t stack_depth,
CBORTokenizer* tokenizer,
StreamingParserHandler* out);
bool ParseValue(int32_t stack_depth,
CBORTokenizer* tokenizer,
StreamingParserHandler* out);
void ParseUTF16String(CBORTokenizer* tokenizer, StreamingParserHandler* out) {
std::vector<uint16_t> value;
span<uint8_t> rep = tokenizer->GetString16WireRep();
for (std::ptrdiff_t ii = 0; ii < rep.size(); ii += 2)
value.push_back((rep[ii + 1] << 8) | rep[ii]);
out->HandleString16(span<uint16_t>(value.data(), value.size()));
tokenizer->Next();
}
bool ParseUTF8String(CBORTokenizer* tokenizer, StreamingParserHandler* out) {
assert(tokenizer->TokenTag() == CBORTokenTag::STRING8);
out->HandleString8(tokenizer->GetString8());
tokenizer->Next();
return true;
}
bool ParseValue(int32_t stack_depth,
CBORTokenizer* tokenizer,
StreamingParserHandler* out) {
if (stack_depth > kStackLimit) {
out->HandleError(
Status{Error::CBOR_STACK_LIMIT_EXCEEDED, tokenizer->Status().pos});
return false;
}
// Skip past the envelope to get to what's inside.
if (tokenizer->TokenTag() == CBORTokenTag::ENVELOPE)
tokenizer->EnterEnvelope();
switch (tokenizer->TokenTag()) {
case CBORTokenTag::ERROR_VALUE:
out->HandleError(tokenizer->Status());
return false;
case CBORTokenTag::DONE:
out->HandleError(Status{Error::CBOR_UNEXPECTED_EOF_EXPECTED_VALUE,
tokenizer->Status().pos});
return false;
case CBORTokenTag::TRUE_VALUE:
out->HandleBool(true);
tokenizer->Next();
return true;
case CBORTokenTag::FALSE_VALUE:
out->HandleBool(false);
tokenizer->Next();
return true;
case CBORTokenTag::NULL_VALUE:
out->HandleNull();
tokenizer->Next();
return true;
case CBORTokenTag::INT32:
out->HandleInt32(tokenizer->GetInt32());
tokenizer->Next();
return true;
case CBORTokenTag::DOUBLE:
out->HandleDouble(tokenizer->GetDouble());
tokenizer->Next();
return true;
case CBORTokenTag::STRING8:
return ParseUTF8String(tokenizer, out);
case CBORTokenTag::STRING16:
ParseUTF16String(tokenizer, out);
return true;
case CBORTokenTag::BINARY: {
out->HandleBinary(tokenizer->GetBinary());
tokenizer->Next();
return true;
}
case CBORTokenTag::MAP_START:
return ParseMap(stack_depth + 1, tokenizer, out);
case CBORTokenTag::ARRAY_START:
return ParseArray(stack_depth + 1, tokenizer, out);
default:
out->HandleError(
Status{Error::CBOR_UNSUPPORTED_VALUE, tokenizer->Status().pos});
return false;
}
}
// |bytes| must start with the indefinite length array byte, so basically,
// ParseArray may only be called after an indefinite length array has been
// detected.
bool ParseArray(int32_t stack_depth,
CBORTokenizer* tokenizer,
StreamingParserHandler* out) {
assert(tokenizer->TokenTag() == CBORTokenTag::ARRAY_START);
tokenizer->Next();
out->HandleArrayBegin();
while (tokenizer->TokenTag() != CBORTokenTag::STOP) {
if (tokenizer->TokenTag() == CBORTokenTag::DONE) {
out->HandleError(
Status{Error::CBOR_UNEXPECTED_EOF_IN_ARRAY, tokenizer->Status().pos});
return false;
}
if (tokenizer->TokenTag() == CBORTokenTag::ERROR_VALUE) {
out->HandleError(tokenizer->Status());
return false;
}
// Parse value.
if (!ParseValue(stack_depth, tokenizer, out))
return false;
}
out->HandleArrayEnd();
tokenizer->Next();
return true;
}
// |bytes| must start with the indefinite length array byte, so basically,
// ParseArray may only be called after an indefinite length array has been
// detected.
bool ParseMap(int32_t stack_depth,
CBORTokenizer* tokenizer,
StreamingParserHandler* out) {
assert(tokenizer->TokenTag() == CBORTokenTag::MAP_START);
out->HandleMapBegin();
tokenizer->Next();
while (tokenizer->TokenTag() != CBORTokenTag::STOP) {
if (tokenizer->TokenTag() == CBORTokenTag::DONE) {
out->HandleError(
Status{Error::CBOR_UNEXPECTED_EOF_IN_MAP, tokenizer->Status().pos});
return false;
}
if (tokenizer->TokenTag() == CBORTokenTag::ERROR_VALUE) {
out->HandleError(tokenizer->Status());
return false;
}
// Parse key.
if (tokenizer->TokenTag() == CBORTokenTag::STRING8) {
if (!ParseUTF8String(tokenizer, out))
return false;
} else if (tokenizer->TokenTag() == CBORTokenTag::STRING16) {
ParseUTF16String(tokenizer, out);
} else {
out->HandleError(
Status{Error::CBOR_INVALID_MAP_KEY, tokenizer->Status().pos});
return false;
}
// Parse value.
if (!ParseValue(stack_depth, tokenizer, out))
return false;
}
out->HandleMapEnd();
tokenizer->Next();
return true;
}
} // namespace
void ParseCBOR(span<uint8_t> bytes, StreamingParserHandler* out) {
if (bytes.empty()) {
out->HandleError(Status{Error::CBOR_NO_INPUT, 0});
return;
}
if (bytes[0] != kInitialByteForEnvelope) {
out->HandleError(Status{Error::CBOR_INVALID_START_BYTE, 0});
return;
}
CBORTokenizer tokenizer(bytes);
if (tokenizer.TokenTag() == CBORTokenTag::ERROR_VALUE) {
out->HandleError(tokenizer.Status());
return;
}
// We checked for the envelope start byte above, so the tokenizer
// must agree here, since it's not an error.
assert(tokenizer.TokenTag() == CBORTokenTag::ENVELOPE);
tokenizer.EnterEnvelope();
if (tokenizer.TokenTag() != CBORTokenTag::MAP_START) {
out->HandleError(
Status{Error::CBOR_MAP_START_EXPECTED, tokenizer.Status().pos});
return;
}
if (!ParseMap(/*stack_depth=*/1, &tokenizer, out))
return;
if (tokenizer.TokenTag() == CBORTokenTag::DONE)
return;
if (tokenizer.TokenTag() == CBORTokenTag::ERROR_VALUE) {
out->HandleError(tokenizer.Status());
return;
}
out->HandleError(Status{Error::CBOR_TRAILING_JUNK, tokenizer.Status().pos});
}
// =============================================================================
// cbor::AppendString8EntryToMap - for limited in-place editing of messages
// =============================================================================
template <typename C>
Status AppendString8EntryToCBORMapTmpl(span<uint8_t> string8_key,
span<uint8_t> string8_value,
C* cbor) {
// Careful below: Don't compare (*cbor)[idx] with a uint8_t, since
// it could be a char (signed!). Instead, use bytes.
span<uint8_t> bytes(reinterpret_cast<const uint8_t*>(cbor->data()),
cbor->size());
CBORTokenizer tokenizer(bytes);
if (tokenizer.TokenTag() == CBORTokenTag::ERROR_VALUE)
return tokenizer.Status();
if (tokenizer.TokenTag() != CBORTokenTag::ENVELOPE)
return Status(Error::CBOR_INVALID_ENVELOPE, 0);
std::ptrdiff_t envelope_size = tokenizer.GetEnvelopeContents().size();
std::size_t old_size = cbor->size();
if (old_size != std::size_t(envelope_size) + kEncodedEnvelopeHeaderSize)
return Status(Error::CBOR_INVALID_ENVELOPE, 0);
if (envelope_size == 0 ||
(tokenizer.GetEnvelopeContents()[0] != EncodeIndefiniteLengthMapStart()))
return Status(Error::CBOR_MAP_START_EXPECTED, kEncodedEnvelopeHeaderSize);
if (bytes[bytes.size() - 1] != EncodeStop())
return Status(Error::CBOR_MAP_STOP_EXPECTED, cbor->size() - 1);
cbor->pop_back();
EncodeString8(string8_key, cbor);
EncodeString8(string8_value, cbor);
cbor->push_back(EncodeStop());
std::size_t new_envelope_size = envelope_size + (cbor->size() - old_size);
if (new_envelope_size > std::numeric_limits<uint32_t>::max())
return Status(Error::CBOR_ENVELOPE_SIZE_LIMIT_EXCEEDED, 0);
std::size_t size_pos = cbor->size() - new_envelope_size - sizeof(uint32_t);
uint8_t* out = reinterpret_cast<uint8_t*>(&cbor->at(size_pos));
*(out++) = (new_envelope_size >> 24) & 0xff;
*(out++) = (new_envelope_size >> 16) & 0xff;
*(out++) = (new_envelope_size >> 8) & 0xff;
*(out) = new_envelope_size & 0xff;
return Status();
}
Status AppendString8EntryToCBORMap(span<uint8_t> string8_key,
span<uint8_t> string8_value,
std::vector<uint8_t>* cbor) {
return AppendString8EntryToCBORMapTmpl(string8_key, string8_value, cbor);
}
Status AppendString8EntryToCBORMap(span<uint8_t> string8_key,
span<uint8_t> string8_value,
std::string* cbor) {
return AppendString8EntryToCBORMapTmpl(string8_key, string8_value, cbor);
}
} // namespace cbor
namespace json {
// =============================================================================
// json::NewJSONEncoder - for encoding streaming parser events as JSON
// =============================================================================
namespace {
// Prints |value| to |out| with 4 hex digits, most significant chunk first.
template <typename C>
void PrintHex(uint16_t value, C* out) {
for (int ii = 3; ii >= 0; --ii) {
int four_bits = 0xf & (value >> (4 * ii));
out->push_back(four_bits + ((four_bits <= 9) ? '0' : ('a' - 10)));
}
}
// In the writer below, we maintain a stack of State instances.
// It is just enough to emit the appropriate delimiters and brackets
// in JSON.
enum class Container {
// Used for the top-level, initial state.
NONE,
// Inside a JSON object.
MAP,
// Inside a JSON array.
ARRAY
};
class State {
public:
explicit State(Container container) : container_(container) {}
void StartElement(std::vector<uint8_t>* out) {
// FIXME!!!
}
void StartElement(std::string* out) {
assert(container_ != Container::NONE || size_ == 0);
if (size_ != 0) {
char delim = (!(size_ & 1) || container_ == Container::ARRAY) ? ',' : ':';
out->append(1, delim);
}
++size_;
}
Container container() const { return container_; }
private:
Container container_ = Container::NONE;
int size_ = 0;
};
constexpr char kBase64Table[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz0123456789+/";
template <typename C>
void Base64Encode(const span<uint8_t>& in, C* out) {
// The following three cases are based on the tables in the example
// section in https://en.wikipedia.org/wiki/Base64. We process three
// input bytes at a time, emitting 4 output bytes at a time.
std::ptrdiff_t ii = 0;
// While possible, process three input bytes.
for (; ii + 3 <= in.size(); ii += 3) {
uint32_t twentyfour_bits = (in[ii] << 16) | (in[ii + 1] << 8) | in[ii + 2];
out->push_back(kBase64Table[(twentyfour_bits >> 18)]);
out->push_back(kBase64Table[(twentyfour_bits >> 12) & 0x3f]);
out->push_back(kBase64Table[(twentyfour_bits >> 6) & 0x3f]);
out->push_back(kBase64Table[twentyfour_bits & 0x3f]);
}
if (ii + 2 <= in.size()) { // Process two input bytes.
uint32_t twentyfour_bits = (in[ii] << 16) | (in[ii + 1] << 8);
out->push_back(kBase64Table[(twentyfour_bits >> 18)]);
out->push_back(kBase64Table[(twentyfour_bits >> 12) & 0x3f]);
out->push_back(kBase64Table[(twentyfour_bits >> 6) & 0x3f]);
out->push_back('='); // Emit padding.
return;
}
if (ii + 1 <= in.size()) { // Process a single input byte.
uint32_t twentyfour_bits = (in[ii] << 16);
out->push_back(kBase64Table[(twentyfour_bits >> 18)]);
out->push_back(kBase64Table[(twentyfour_bits >> 12) & 0x3f]);
out->push_back('='); // Emit padding.
out->push_back('='); // Emit padding.
}
}
// Implements a handler for JSON parser events to emit a JSON string.
template <typename C>
class JSONEncoder : public StreamingParserHandler {
public:
JSONEncoder(const Platform* platform, C* out, Status* status)
: platform_(platform), out_(out), status_(status) {
*status_ = Status();
state_.emplace(Container::NONE);
}
void HandleMapBegin() override {
if (!status_->ok())
return;
assert(!state_.empty());
state_.top().StartElement(out_);
state_.emplace(Container::MAP);
Emit('{');
}
void HandleMapEnd() override {
if (!status_->ok())
return;
assert(state_.size() >= 2 && state_.top().container() == Container::MAP);
state_.pop();
Emit('}');
}
void HandleArrayBegin() override {
if (!status_->ok())
return;
state_.top().StartElement(out_);
state_.emplace(Container::ARRAY);
Emit('[');
}
void HandleArrayEnd() override {
if (!status_->ok())
return;
assert(state_.size() >= 2 && state_.top().container() == Container::ARRAY);
state_.pop();
Emit(']');
}
void HandleString16(span<uint16_t> chars) override {
if (!status_->ok())
return;
state_.top().StartElement(out_);
Emit('"');
for (const uint16_t ch : chars) {
if (ch == '"') {
Emit("\\\"");
} else if (ch == '\\') {
Emit("\\\\");
} else if (ch == '\b') {
Emit("\\b");
} else if (ch == '\f') {
Emit("\\f");
} else if (ch == '\n') {
Emit("\\n");
} else if (ch == '\r') {
Emit("\\r");
} else if (ch == '\t') {
Emit("\\t");
} else if (ch >= 32 && ch <= 126) {
Emit(ch);
} else {
Emit("\\u");
PrintHex(ch, out_);
}
}
Emit('"');
}
void HandleString8(span<uint8_t> chars) override {
if (!status_->ok())
return;
state_.top().StartElement(out_);
Emit('"');
for (std::ptrdiff_t ii = 0; ii < chars.size(); ++ii) {
uint8_t c = chars[ii];
if (c == '"') {
Emit("\\\"");
} else if (c == '\\') {
Emit("\\\\");
} else if (c == '\b') {
Emit("\\b");
} else if (c == '\f') {
Emit("\\f");
} else if (c == '\n') {
Emit("\\n");
} else if (c == '\r') {
Emit("\\r");
} else if (c == '\t') {
Emit("\\t");
} else if (c >= 32 && c <= 126) {
Emit(c);
} else if (c < 32) {
Emit("\\u");
PrintHex(static_cast<uint16_t>(c), out_);
} else {
// Inspect the leading byte to figure out how long the utf8
// byte sequence is; while doing this initialize |codepoint|
// with the first few bits.
// See table in: https://en.wikipedia.org/wiki/UTF-8
// byte one is 110x xxxx -> 2 byte utf8 sequence
// byte one is 1110 xxxx -> 3 byte utf8 sequence
// byte one is 1111 0xxx -> 4 byte utf8 sequence
uint32_t codepoint;
int num_bytes_left;
if ((c & 0xe0) == 0xc0) { // 2 byte utf8 sequence
num_bytes_left = 1;
codepoint = c & 0x1f;
} else if ((c & 0xf0) == 0xe0) { // 3 byte utf8 sequence
num_bytes_left = 2;
codepoint = c & 0x0f;
} else if ((c & 0xf8) == 0xf0) { // 4 byte utf8 sequence
codepoint = c & 0x07;
num_bytes_left = 3;
} else {
continue; // invalid leading byte
}
// If we have enough bytes in our input, decode the remaining ones
// belonging to this Unicode character into |codepoint|.
if (ii + num_bytes_left > chars.size())
continue;
while (num_bytes_left > 0) {
c = chars[++ii];
--num_bytes_left;
// Check the next byte is a continuation byte, that is 10xx xxxx.
if ((c & 0xc0) != 0x80)
continue;
codepoint = (codepoint << 6) | (c & 0x3f);
}
// Disallow overlong encodings for ascii characters, as these
// would include " and other characters significant to JSON
// string termination / control.
if (codepoint < 0x7f)
continue;
// Invalid in UTF8, and can't be represented in UTF16 anyway.
if (codepoint > 0x10ffff)
continue;
// So, now we transcode to UTF16,
// using the math described at https://en.wikipedia.org/wiki/UTF-16,
// for either one or two 16 bit characters.
if (codepoint < 0xffff) {
Emit("\\u");
PrintHex(static_cast<uint16_t>(codepoint), out_);
continue;
}
codepoint -= 0x10000;
// high surrogate
Emit("\\u");
PrintHex(static_cast<uint16_t>((codepoint >> 10) + 0xd800), out_);
// low surrogate
Emit("\\u");
PrintHex(static_cast<uint16_t>((codepoint & 0x3ff) + 0xdc00), out_);
}
}
Emit('"');
}
void HandleBinary(span<uint8_t> bytes) override {
if (!status_->ok())
return;
state_.top().StartElement(out_);
Emit('"');
Base64Encode(bytes, out_);
Emit('"');
}
void HandleDouble(double value) override {
if (!status_->ok())
return;
state_.top().StartElement(out_);
// JSON cannot represent NaN or Infinity. So, for compatibility,
// we behave like the JSON object in web browsers: emit 'null'.
if (!std::isfinite(value)) {
Emit("null");
return;
}
std::unique_ptr<char[]> str_value = platform_->DToStr(value);
// DToStr may fail to emit a 0 before the decimal dot. E.g. this is
// the case in base::NumberToString in Chromium (which is based on
// dmg_fp). So, much like
// https://cs.chromium.org/chromium/src/base/json/json_writer.cc
// we probe for this and emit the leading 0 anyway if necessary.
const char* chars = str_value.get();
if (chars[0] == '.') {
Emit('0');
} else if (chars[0] == '-' && chars[1] == '.') {
Emit("-0");
++chars;
}
Emit(chars);
}
void HandleInt32(int32_t value) override {
if (!status_->ok())
return;
state_.top().StartElement(out_);
Emit(std::to_string(value));
}
void HandleBool(bool value) override {
if (!status_->ok())
return;
state_.top().StartElement(out_);
Emit(value ? "true" : "false");
}
void HandleNull() override {
if (!status_->ok())
return;
state_.top().StartElement(out_);
Emit("null");
}
void HandleError(Status error) override {
assert(!error.ok());
*status_ = error;
out_->clear();
}
private:
void Emit(char c) { out_->push_back(c); }
void Emit(const char* str) {
out_->insert(out_->end(), str, str + strlen(str));
}
void Emit(const std::string& str) {
out_->insert(out_->end(), str.begin(), str.end());
}
const Platform* platform_;
C* out_;
Status* status_;
std::stack<State> state_;
};
} // namespace
std::unique_ptr<StreamingParserHandler> NewJSONEncoder(
const Platform* platform,
std::vector<uint8_t>* out,
Status* status) {
return std::unique_ptr<StreamingParserHandler>(
new JSONEncoder<std::vector<uint8_t>>(platform, out, status));
}
std::unique_ptr<StreamingParserHandler> NewJSONEncoder(const Platform* platform,
std::string* out,
Status* status) {
return std::unique_ptr<StreamingParserHandler>(
new JSONEncoder<std::string>(platform, out, status));
}
// =============================================================================
// json::ParseJSON - for receiving streaming parser events for JSON.
// =============================================================================
namespace {
const int kStackLimit = 300;
enum Token {
ObjectBegin,
ObjectEnd,
ArrayBegin,
ArrayEnd,
StringLiteral,
Number,
BoolTrue,
BoolFalse,
NullToken,
ListSeparator,
ObjectPairSeparator,
InvalidToken,
NoInput
};
const char* const kNullString = "null";
const char* const kTrueString = "true";
const char* const kFalseString = "false";
template <typename Char>
class JsonParser {
public:
JsonParser(const Platform* platform, StreamingParserHandler* handler)
: platform_(platform), handler_(handler) {}
void Parse(const Char* start, std::size_t length) {
start_pos_ = start;
const Char* end = start + length;
const Char* tokenEnd;
ParseValue(start, end, &tokenEnd, 0);
if (tokenEnd != end) {
HandleError(Error::JSON_PARSER_UNPROCESSED_INPUT_REMAINS, tokenEnd);
}
}
private:
bool CharsToDouble(const uint16_t* chars,
std::size_t length,
double* result) {
std::string buffer;
buffer.reserve(length + 1);
for (std::size_t ii = 0; ii < length; ++ii) {
bool is_ascii = !(chars[ii] & ~0x7F);
if (!is_ascii)
return false;
buffer.push_back(static_cast<char>(chars[ii]));
}
return platform_->StrToD(buffer.c_str(), result);
}
bool CharsToDouble(const uint8_t* chars, std::size_t length, double* result) {
std::string buffer(reinterpret_cast<const char*>(chars), length);
return platform_->StrToD(buffer.c_str(), result);
}
static bool ParseConstToken(const Char* start,
const Char* end,
const Char** token_end,
const char* token) {
// |token| is \0 terminated, it's one of the constants at top of the file.
while (start < end && *token != '\0' && *start++ == *token++) {
}
if (*token != '\0')
return false;
*token_end = start;
return true;
}
static bool ReadInt(const Char* start,
const Char* end,
const Char** token_end,
bool allow_leading_zeros) {
if (start == end)
return false;
bool has_leading_zero = '0' == *start;
int length = 0;
while (start < end && '0' <= *start && *start <= '9') {
++start;
++length;
}
if (!length)
return false;
if (!allow_leading_zeros && length > 1 && has_leading_zero)
return false;
*token_end = start;
return true;
}
static bool ParseNumberToken(const Char* start,
const Char* end,
const Char** token_end) {
// We just grab the number here. We validate the size in DecodeNumber.
// According to RFC4627, a valid number is: [minus] int [frac] [exp]
if (start == end)
return false;
Char c = *start;
if ('-' == c)
++start;
if (!ReadInt(start, end, &start, /*allow_leading_zeros=*/false))
return false;
if (start == end) {
*token_end = start;
return true;
}
// Optional fraction part
c = *start;
if ('.' == c) {
++start;
if (!ReadInt(start, end, &start, /*allow_leading_zeros=*/true))
return false;
if (start == end) {
*token_end = start;
return true;
}
c = *start;
}
// Optional exponent part
if ('e' == c || 'E' == c) {
++start;
if (start == end)
return false;
c = *start;
if ('-' == c || '+' == c) {
++start;
if (start == end)
return false;
}
if (!ReadInt(start, end, &start, /*allow_leading_zeros=*/true))
return false;
}
*token_end = start;
return true;
}
static bool ReadHexDigits(const Char* start,
const Char* end,
const Char** token_end,
int digits) {
if (end - start < digits)
return false;
for (int i = 0; i < digits; ++i) {
Char c = *start++;
if (!(('0' <= c && c <= '9') || ('a' <= c && c <= 'f') ||
('A' <= c && c <= 'F')))
return false;
}
*token_end = start;
return true;
}
static bool ParseStringToken(const Char* start,
const Char* end,
const Char** token_end) {
while (start < end) {
Char c = *start++;
if ('\\' == c) {
if (start == end)
return false;
c = *start++;
// Make sure the escaped char is valid.
switch (c) {
case 'x':
if (!ReadHexDigits(start, end, &start, 2))
return false;
break;
case 'u':
if (!ReadHexDigits(start, end, &start, 4))
return false;
break;
case '\\':
case '/':
case 'b':
case 'f':
case 'n':
case 'r':
case 't':
case 'v':
case '"':
break;
default:
return false;
}
} else if ('"' == c) {
*token_end = start;
return true;
}
}
return false;
}
static bool SkipComment(const Char* start,
const Char* end,
const Char** comment_end) {
if (start == end)
return false;
if (*start != '/' || start + 1 >= end)
return false;
++start;
if (*start == '/') {
// Single line comment, read to newline.
for (++start; start < end; ++start) {
if (*start == '\n' || *start == '\r') {
*comment_end = start + 1;
return true;
}
}
*comment_end = end;
// Comment reaches end-of-input, which is fine.
return true;
}
if (*start == '*') {
Char previous = '\0';
// Block comment, read until end marker.
for (++start; start < end; previous = *start++) {
if (previous == '*' && *start == '/') {
*comment_end = start + 1;
return true;
}
}
// Block comment must close before end-of-input.
return false;
}
return false;
}
static bool IsSpaceOrNewLine(Char c) {
// \v = vertial tab; \f = form feed page break.
return c == ' ' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
c == '\t';
}
static void SkipWhitespaceAndComments(const Char* start,
const Char* end,
const Char** whitespace_end) {
while (start < end) {
if (IsSpaceOrNewLine(*start)) {
++start;
} else if (*start == '/') {
const Char* comment_end;
if (!SkipComment(start, end, &comment_end))
break;
start = comment_end;
} else {
break;
}
}
*whitespace_end = start;
}
static Token ParseToken(const Char* start,
const Char* end,
const Char** tokenStart,
const Char** token_end) {
SkipWhitespaceAndComments(start, end, tokenStart);
start = *tokenStart;
if (start == end)
return NoInput;
switch (*start) {
case 'n':
if (ParseConstToken(start, end, token_end, kNullString))
return NullToken;
break;
case 't':
if (ParseConstToken(start, end, token_end, kTrueString))
return BoolTrue;
break;
case 'f':
if (ParseConstToken(start, end, token_end, kFalseString))
return BoolFalse;
break;
case '[':
*token_end = start + 1;
return ArrayBegin;
case ']':
*token_end = start + 1;
return ArrayEnd;
case ',':
*token_end = start + 1;
return ListSeparator;
case '{':
*token_end = start + 1;
return ObjectBegin;
case '}':
*token_end = start + 1;
return ObjectEnd;
case ':':
*token_end = start + 1;
return ObjectPairSeparator;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case '-':
if (ParseNumberToken(start, end, token_end))
return Number;
break;
case '"':
if (ParseStringToken(start + 1, end, token_end))
return StringLiteral;
break;
}
return InvalidToken;
}
static int HexToInt(Char c) {
if ('0' <= c && c <= '9')
return c - '0';
if ('A' <= c && c <= 'F')
return c - 'A' + 10;
if ('a' <= c && c <= 'f')
return c - 'a' + 10;
assert(false); // Unreachable.
return 0;
}
static bool DecodeString(const Char* start,
const Char* end,
std::vector<uint16_t>* output) {
if (start == end)
return true;
if (start > end)
return false;
output->reserve(end - start);
while (start < end) {
uint16_t c = *start++;
// If the |Char| we're dealing with is really a byte, then
// we have utf8 here, and we need to check for multibyte characters
// and transcode them to utf16 (either one or two utf16 chars).
if (sizeof(Char) == sizeof(uint8_t) && c >= 0x7f) {
// Inspect the leading byte to figure out how long the utf8
// byte sequence is; while doing this initialize |codepoint|
// with the first few bits.
// See table in: https://en.wikipedia.org/wiki/UTF-8
// byte one is 110x xxxx -> 2 byte utf8 sequence
// byte one is 1110 xxxx -> 3 byte utf8 sequence
// byte one is 1111 0xxx -> 4 byte utf8 sequence
uint32_t codepoint;
int num_bytes_left;
if ((c & 0xe0) == 0xc0) { // 2 byte utf8 sequence
num_bytes_left = 1;
codepoint = c & 0x1f;
} else if ((c & 0xf0) == 0xe0) { // 3 byte utf8 sequence
num_bytes_left = 2;
codepoint = c & 0x0f;
} else if ((c & 0xf8) == 0xf0) { // 4 byte utf8 sequence
codepoint = c & 0x07;
num_bytes_left = 3;
} else {
return false; // invalid leading byte
}
// If we have enough bytes in our inpput, decode the remaining ones
// belonging to this Unicode character into |codepoint|.
if (start + num_bytes_left > end)
return false;
while (num_bytes_left > 0) {
c = *start++;
--num_bytes_left;
// Check the next byte is a continuation byte, that is 10xx xxxx.
if ((c & 0xc0) != 0x80)
return false;
codepoint = (codepoint << 6) | (c & 0x3f);
}
// Disallow overlong encodings for ascii characters, as these
// would include " and other characters significant to JSON
// string termination / control.
if (codepoint < 0x7f)
return false;
// Invalid in UTF8, and can't be represented in UTF16 anyway.
if (codepoint > 0x10ffff)
return false;
// So, now we transcode to UTF16,
// using the math described at https://en.wikipedia.org/wiki/UTF-16,
// for either one or two 16 bit characters.
if (codepoint < 0xffff) {
output->push_back(codepoint);
continue;
}
codepoint -= 0x10000;
output->push_back((codepoint >> 10) + 0xd800); // high surrogate
output->push_back((codepoint & 0x3ff) + 0xdc00); // low surrogate
continue;
}
if ('\\' != c) {
output->push_back(c);
continue;
}
if (start == end)
return false;
c = *start++;
if (c == 'x') {
// \x is not supported.
return false;
}
switch (c) {
case '"':
case '/':
case '\\':
break;
case 'b':
c = '\b';
break;
case 'f':
c = '\f';
break;
case 'n':
c = '\n';
break;
case 'r':
c = '\r';
break;
case 't':
c = '\t';
break;
case 'v':
c = '\v';
break;
case 'u':
c = (HexToInt(*start) << 12) + (HexToInt(*(start + 1)) << 8) +
(HexToInt(*(start + 2)) << 4) + HexToInt(*(start + 3));
start += 4;
break;
default:
return false;
}
output->push_back(c);
}
return true;
}
void ParseValue(const Char* start,
const Char* end,
const Char** value_token_end,
int depth) {
if (depth > kStackLimit) {
HandleError(Error::JSON_PARSER_STACK_LIMIT_EXCEEDED, start);
return;
}
const Char* token_start;
const Char* token_end;
Token token = ParseToken(start, end, &token_start, &token_end);
switch (token) {
case NoInput:
HandleError(Error::JSON_PARSER_NO_INPUT, token_start);
return;
case InvalidToken:
HandleError(Error::JSON_PARSER_INVALID_TOKEN, token_start);
return;
case NullToken:
handler_->HandleNull();
break;
case BoolTrue:
handler_->HandleBool(true);
break;
case BoolFalse:
handler_->HandleBool(false);
break;
case Number: {
double value;
if (!CharsToDouble(token_start, token_end - token_start, &value)) {
HandleError(Error::JSON_PARSER_INVALID_NUMBER, token_start);
return;
}
if (value >= std::numeric_limits<int32_t>::min() &&
value <= std::numeric_limits<int32_t>::max() &&
static_cast<int32_t>(value) == value)
handler_->HandleInt32(static_cast<int32_t>(value));
else
handler_->HandleDouble(value);
break;
}
case StringLiteral: {
std::vector<uint16_t> value;
bool ok = DecodeString(token_start + 1, token_end - 1, &value);
if (!ok) {
HandleError(Error::JSON_PARSER_INVALID_STRING, token_start);
return;
}
handler_->HandleString16(span<uint16_t>(value.data(), value.size()));
break;
}
case ArrayBegin: {
handler_->HandleArrayBegin();
start = token_end;
token = ParseToken(start, end, &token_start, &token_end);
while (token != ArrayEnd) {
ParseValue(start, end, &token_end, depth + 1);
if (error_)
return;
// After a list value, we expect a comma or the end of the list.
start = token_end;
token = ParseToken(start, end, &token_start, &token_end);
if (token == ListSeparator) {
start = token_end;
token = ParseToken(start, end, &token_start, &token_end);
if (token == ArrayEnd) {
HandleError(Error::JSON_PARSER_UNEXPECTED_ARRAY_END, token_start);
return;
}
} else if (token != ArrayEnd) {
// Unexpected value after list value. Bail out.
HandleError(Error::JSON_PARSER_COMMA_OR_ARRAY_END_EXPECTED,
token_start);
return;
}
}
handler_->HandleArrayEnd();
break;
}
case ObjectBegin: {
handler_->HandleMapBegin();
start = token_end;
token = ParseToken(start, end, &token_start, &token_end);
while (token != ObjectEnd) {
if (token != StringLiteral) {
HandleError(Error::JSON_PARSER_STRING_LITERAL_EXPECTED,
token_start);
return;
}
std::vector<uint16_t> key;
if (!DecodeString(token_start + 1, token_end - 1, &key)) {
HandleError(Error::JSON_PARSER_INVALID_STRING, token_start);
return;
}
handler_->HandleString16(span<uint16_t>(key.data(), key.size()));
start = token_end;
token = ParseToken(start, end, &token_start, &token_end);
if (token != ObjectPairSeparator) {
HandleError(Error::JSON_PARSER_COLON_EXPECTED, token_start);
return;
}
start = token_end;
ParseValue(start, end, &token_end, depth + 1);
if (error_)
return;
start = token_end;
// After a key/value pair, we expect a comma or the end of the
// object.
token = ParseToken(start, end, &token_start, &token_end);
if (token == ListSeparator) {
start = token_end;
token = ParseToken(start, end, &token_start, &token_end);
if (token == ObjectEnd) {
HandleError(Error::JSON_PARSER_UNEXPECTED_MAP_END, token_start);
return;
}
} else if (token != ObjectEnd) {
// Unexpected value after last object value. Bail out.
HandleError(Error::JSON_PARSER_COMMA_OR_MAP_END_EXPECTED,
token_start);
return;
}
}
handler_->HandleMapEnd();
break;
}
default:
// We got a token that's not a value.
HandleError(Error::JSON_PARSER_VALUE_EXPECTED, token_start);
return;
}
SkipWhitespaceAndComments(token_end, end, value_token_end);
}
void HandleError(Error error, const Char* pos) {
assert(error != Error::OK);
if (!error_) {
handler_->HandleError(Status{error, pos - start_pos_});
error_ = true;
}
}
const Char* start_pos_ = nullptr;
bool error_ = false;
const Platform* platform_;
StreamingParserHandler* handler_;
};
} // namespace
void ParseJSON(const Platform& platform,
span<uint8_t> chars,
StreamingParserHandler* handler) {
JsonParser<uint8_t> parser(&platform, handler);
parser.Parse(chars.data(), chars.size());
}
void ParseJSON(const Platform& platform,
span<uint16_t> chars,
StreamingParserHandler* handler) {
JsonParser<uint16_t> parser(&platform, handler);
parser.Parse(chars.data(), chars.size());
}
// =============================================================================
// json::ConvertCBORToJSON, json::ConvertJSONToCBOR - for transcoding
// =============================================================================
template <typename C>
Status ConvertCBORToJSONTmpl(const Platform& platform,
span<uint8_t> cbor,
C* json) {
Status status;
std::unique_ptr<StreamingParserHandler> json_writer =
NewJSONEncoder(&platform, json, &status);
cbor::ParseCBOR(cbor, json_writer.get());
return status;
}
Status ConvertCBORToJSON(const Platform& platform,
span<uint8_t> cbor,
std::vector<uint8_t>* json) {
return ConvertCBORToJSONTmpl(platform, cbor, json);
}
Status ConvertCBORToJSON(const Platform& platform,
span<uint8_t> cbor,
std::string* json) {
return ConvertCBORToJSONTmpl(platform, cbor, json);
}
template <typename C>
Status ConvertJSONToCBORTmpl(const Platform& platform,
span<uint8_t> json,
C* cbor) {
Status status;
std::unique_ptr<StreamingParserHandler> encoder =
cbor::NewCBOREncoder(cbor, &status);
ParseJSON(platform, json, encoder.get());
return status;
}
Status ConvertJSONToCBOR(const Platform& platform,
span<uint8_t> json,
std::string* cbor) {
return ConvertJSONToCBORTmpl(platform, json, cbor);
}
Status ConvertJSONToCBOR(const Platform& platform,
span<uint8_t> json,
std::vector<uint8_t>* cbor) {
return ConvertJSONToCBORTmpl(platform, json, cbor);
}
} // namespace json
} // namespace inspector_protocol_encoding