blob: f3957c10545130fdd9ff818d355a2014150a7910 [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/picture_layer_tiling.h"
#include <cmath>
#include "base/debug/trace_event.h"
#include "cc/math_util.h"
#include "ui/gfx/point_conversions.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/safe_integer_conversions.h"
#include "ui/gfx/size_conversions.h"
namespace cc {
scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create(
float contents_scale) {
return make_scoped_ptr(new PictureLayerTiling(contents_scale));
}
scoped_ptr<PictureLayerTiling> PictureLayerTiling::Clone() const {
return make_scoped_ptr(new PictureLayerTiling(*this));
}
PictureLayerTiling::PictureLayerTiling(float contents_scale)
: client_(NULL),
contents_scale_(contents_scale),
tiling_data_(gfx::Size(), gfx::Size(), true),
resolution_(NON_IDEAL_RESOLUTION),
last_source_frame_number_(0),
last_impl_frame_time_(0) {
}
PictureLayerTiling::~PictureLayerTiling() {
}
void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) {
client_ = client;
}
gfx::Rect PictureLayerTiling::ContentRect() const {
return gfx::Rect(tiling_data_.total_size());
}
gfx::SizeF PictureLayerTiling::ContentSizeF() const {
return gfx::ScaleSize(layer_bounds_, contents_scale_);
}
Tile* PictureLayerTiling::TileAt(int i, int j) const {
TileMap::const_iterator iter = tiles_.find(TileMapKey(i, j));
if (iter == tiles_.end())
return NULL;
return iter->second.get();
}
void PictureLayerTiling::CreateTile(int i, int j) {
gfx::Rect tile_rect = tiling_data_.TileBoundsWithBorder(i, j);
tile_rect.set_size(tiling_data_.max_texture_size());
TileMapKey key(i, j);
DCHECK(tiles_.find(key) == tiles_.end());
scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect);
if (tile)
tiles_[key] = tile;
}
Region PictureLayerTiling::OpaqueRegionInContentRect(
const gfx::Rect& content_rect) const {
Region opaque_region;
// TODO(enne): implement me
return opaque_region;
}
void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) {
if (layer_bounds_ == layer_bounds)
return;
gfx::Size old_layer_bounds = layer_bounds_;
layer_bounds_ = layer_bounds;
gfx::Size old_content_bounds = tiling_data_.total_size();
gfx::Size content_bounds =
gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_));
tiling_data_.SetTotalSize(content_bounds);
if (layer_bounds_.IsEmpty()) {
tiles_.clear();
return;
}
gfx::Size tile_size = client_->CalculateTileSize(
tiling_data_.max_texture_size(),
content_bounds);
if (tile_size != tiling_data_.max_texture_size()) {
tiling_data_.SetMaxTextureSize(tile_size);
tiles_.clear();
CreateTilesFromLayerRect(gfx::Rect(layer_bounds_));
return;
}
// Any tiles outside our new bounds are invalid and should be dropped.
if (old_content_bounds.width() > content_bounds.width() ||
old_content_bounds.height() > content_bounds.height()) {
int right =
tiling_data_.TileXIndexFromSrcCoord(content_bounds.width() - 1);
int bottom =
tiling_data_.TileYIndexFromSrcCoord(content_bounds.height() - 1);
std::vector<TileMapKey> invalid_tile_keys;
for (TileMap::const_iterator it = tiles_.begin();
it != tiles_.end(); ++it) {
if (it->first.first > right || it->first.second > bottom)
invalid_tile_keys.push_back(it->first);
}
for (size_t i = 0; i < invalid_tile_keys.size(); ++i)
tiles_.erase(invalid_tile_keys[i]);
}
// Create tiles for newly exposed areas.
Region layer_region((gfx::Rect(layer_bounds_)));
layer_region.Subtract(gfx::Rect(old_layer_bounds));
for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) {
Invalidate(iter.rect());
CreateTilesFromLayerRect(iter.rect());
}
}
void PictureLayerTiling::Invalidate(const Region& layer_invalidation) {
std::vector<TileMapKey> new_tiles;
for (Region::Iterator region_iter(layer_invalidation);
region_iter.has_rect();
region_iter.next()) {
gfx::Rect layer_invalidation = region_iter.rect();
layer_invalidation.Intersect(gfx::Rect(layer_bounds_));
gfx::Rect rect =
gfx::ToEnclosingRect(ScaleRect(layer_invalidation, contents_scale_));
for (PictureLayerTiling::Iterator tile_iter(this, contents_scale_, rect,
PictureLayerTiling::LayerDeviceAlignmentUnknown);
tile_iter;
++tile_iter) {
TileMapKey key(tile_iter.tile_i_, tile_iter.tile_j_);
TileMap::iterator found = tiles_.find(key);
if (found == tiles_.end())
continue;
tiles_.erase(found);
new_tiles.push_back(key);
}
}
for (size_t i = 0; i < new_tiles.size(); ++i)
CreateTile(new_tiles[i].first, new_tiles[i].second);
}
void PictureLayerTiling::CreateTilesFromLayerRect(gfx::Rect layer_rect) {
gfx::Rect content_rect =
gfx::ToEnclosingRect(ScaleRect(layer_rect, contents_scale_));
CreateTilesFromContentRect(content_rect);
}
void PictureLayerTiling::CreateTilesFromContentRect(gfx::Rect content_rect) {
for (TilingData::Iterator iter(&tiling_data_, content_rect); iter; ++iter) {
TileMap::iterator found =
tiles_.find(TileMapKey(iter.index_x(), iter.index_y()));
// Ignore any tiles that already exist.
if (found != tiles_.end())
continue;
CreateTile(iter.index_x(), iter.index_y());
}
}
PictureLayerTiling::Iterator::Iterator()
: tiling_(NULL),
current_tile_(NULL),
tile_i_(0),
tile_j_(0),
left_(0),
top_(0),
right_(-1),
bottom_(-1) {
}
PictureLayerTiling::Iterator::Iterator(const PictureLayerTiling* tiling,
float dest_scale,
gfx::Rect dest_rect,
LayerDeviceAlignment layerDeviceAlignment)
: tiling_(tiling),
dest_rect_(dest_rect),
current_tile_(NULL),
dest_to_content_scale_(0),
tile_i_(0),
tile_j_(0),
left_(0),
top_(0),
right_(-1),
bottom_(-1) {
DCHECK(tiling_);
if (dest_rect_.IsEmpty())
return;
dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale;
// This is the maximum size that the dest rect can be, given the content size.
gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize(
tiling_->ContentRect().size(),
1 / dest_to_content_scale_,
1 / dest_to_content_scale_));
gfx::Rect content_rect =
gfx::ToEnclosingRect(gfx::ScaleRect(dest_rect_,
dest_to_content_scale_,
dest_to_content_scale_));
// IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to
// check for non-intersection first.
content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size()));
if (content_rect.IsEmpty())
return;
left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x());
top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y());
right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(
content_rect.right() - 1);
bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(
content_rect.bottom() - 1);
tile_i_ = left_ - 1;
tile_j_ = top_;
++(*this);
}
PictureLayerTiling::Iterator::~Iterator() {
}
PictureLayerTiling::Iterator& PictureLayerTiling::Iterator::operator++() {
if (tile_j_ > bottom_)
return *this;
bool first_time = tile_i_ < left_;
bool new_row = false;
tile_i_++;
if (tile_i_ > right_) {
tile_i_ = left_;
tile_j_++;
new_row = true;
if (tile_j_ > bottom_) {
current_tile_ = NULL;
return *this;
}
}
current_tile_ = tiling_->TileAt(tile_i_, tile_j_);
// Calculate the current geometry rect. Due to floating point rounding
// and ToEnclosingRect, tiles might overlap in destination space on the
// edges.
gfx::Rect last_geometry_rect = current_geometry_rect_;
gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_);
current_geometry_rect_ = gfx::ToEnclosingRect(
gfx::ScaleRect(content_rect, 1 / dest_to_content_scale_,
1 / dest_to_content_scale_));
current_geometry_rect_.Intersect(dest_rect_);
if (first_time)
return *this;
// Iteration happens left->right, top->bottom. Running off the bottom-right
// edge is handled by the intersection above with dest_rect_. Here we make
// sure that the new current geometry rect doesn't overlap with the last.
int min_left;
int min_top;
if (new_row) {
min_left = dest_rect_.x();
min_top = last_geometry_rect.bottom();
} else {
min_left = last_geometry_rect.right();
min_top = last_geometry_rect.y();
}
int inset_left = std::max(0, min_left - current_geometry_rect_.x());
int inset_top = std::max(0, min_top - current_geometry_rect_.y());
current_geometry_rect_.Inset(inset_left, inset_top, 0, 0);
if (!new_row) {
DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x());
DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom());
DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y());
}
return *this;
}
gfx::Rect PictureLayerTiling::Iterator::geometry_rect() const {
return current_geometry_rect_;
}
gfx::Rect PictureLayerTiling::Iterator::full_tile_geometry_rect() const {
gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_);
rect.set_size(tiling_->tiling_data_.max_texture_size());
return rect;
}
gfx::RectF PictureLayerTiling::Iterator::texture_rect() const {
gfx::PointF tex_origin =
tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin();
// Convert from dest space => content space => texture space.
gfx::RectF texture_rect(current_geometry_rect_);
texture_rect.Scale(dest_to_content_scale_,
dest_to_content_scale_);
texture_rect.Offset(-tex_origin.OffsetFromOrigin());
texture_rect.Intersect(tiling_->ContentRect());
return texture_rect;
}
gfx::Size PictureLayerTiling::Iterator::texture_size() const {
return tiling_->tiling_data_.max_texture_size();
}
void PictureLayerTiling::UpdateTilePriorities(
WhichTree tree,
gfx::Size device_viewport,
const gfx::RectF& viewport_in_layer_space,
gfx::Size last_layer_bounds,
gfx::Size current_layer_bounds,
float last_layer_contents_scale,
float current_layer_contents_scale,
const gfx::Transform& last_screen_transform,
const gfx::Transform& current_screen_transform,
int current_source_frame_number,
double current_frame_time,
bool store_screen_space_quads_on_tiles) {
if (ContentRect().IsEmpty())
return;
bool first_update_in_new_source_frame =
current_source_frame_number != last_source_frame_number_;
bool first_update_in_new_impl_frame =
current_frame_time != last_impl_frame_time_;
// In pending tree, this is always called. We update priorities:
// - Immediately after a commit (first_update_in_new_source_frame).
// - On animation ticks after the first frame in the tree
// (first_update_in_new_impl_frame).
// In active tree, this is only called during draw. We update priorities:
// - On draw if properties were not already computed by the pending tree
// and activated for the frame (first_update_in_new_impl_frame).
if (!first_update_in_new_impl_frame && !first_update_in_new_source_frame)
return;
double time_delta = 0;
if (last_impl_frame_time_ != 0 && last_layer_bounds == current_layer_bounds)
time_delta = current_frame_time - last_impl_frame_time_;
gfx::Rect viewport_in_content_space =
gfx::ToEnclosingRect(gfx::ScaleRect(viewport_in_layer_space,
contents_scale_));
gfx::Size tile_size = tiling_data_.max_texture_size();
int64 prioritized_rect_area =
TilePriority::kNumTilesToCoverWithInflatedViewportRectForPrioritization *
tile_size.width() * tile_size.height();
gfx::Rect prioritized_rect = ExpandRectEquallyToAreaBoundedBy(
viewport_in_content_space,
prioritized_rect_area,
ContentRect());
DCHECK(ContentRect().Contains(prioritized_rect));
// Iterate through all of the tiles that were live last frame but will
// not be live this frame, and mark them as being dead.
for (TilingData::DifferenceIterator iter(&tiling_data_,
last_prioritized_rect_,
prioritized_rect);
iter;
++iter) {
TileMap::iterator find = tiles_.find(iter.index());
if (find == tiles_.end())
continue;
TilePriority priority;
DCHECK(!priority.is_live);
Tile* tile = find->second.get();
tile->set_priority(tree, priority);
}
last_prioritized_rect_ = prioritized_rect;
gfx::Rect view_rect(device_viewport);
float current_scale = current_layer_contents_scale / contents_scale_;
float last_scale = last_layer_contents_scale / contents_scale_;
// Fast path tile priority calculation when both transforms are translations.
if (last_screen_transform.IsIdentityOrTranslation() &&
current_screen_transform.IsIdentityOrTranslation())
{
gfx::Vector2dF current_offset(
current_screen_transform.matrix().get(0, 3),
current_screen_transform.matrix().get(1, 3));
gfx::Vector2dF last_offset(
last_screen_transform.matrix().get(0, 3),
last_screen_transform.matrix().get(1, 3));
for (TilingData::Iterator iter(&tiling_data_, prioritized_rect);
iter; ++iter) {
TileMap::iterator find = tiles_.find(iter.index());
if (find == tiles_.end())
continue;
Tile* tile = find->second.get();
gfx::Rect tile_bounds =
tiling_data_.TileBounds(iter.index_x(), iter.index_y());
gfx::RectF current_screen_rect = gfx::ScaleRect(
tile_bounds,
current_scale,
current_scale) + current_offset;
gfx::RectF last_screen_rect = gfx::ScaleRect(
tile_bounds,
last_scale,
last_scale) + last_offset;
float distance_to_visible_in_pixels =
TilePriority::manhattanDistance(current_screen_rect, view_rect);
float time_to_visible_in_seconds =
TilePriority::TimeForBoundsToIntersect(
last_screen_rect, current_screen_rect, time_delta, view_rect);
TilePriority priority(
resolution_,
time_to_visible_in_seconds,
distance_to_visible_in_pixels);
if (store_screen_space_quads_on_tiles)
priority.set_current_screen_quad(gfx::QuadF(current_screen_rect));
tile->set_priority(tree, priority);
}
} else {
for (TilingData::Iterator iter(&tiling_data_, prioritized_rect);
iter; ++iter) {
TileMap::iterator find = tiles_.find(iter.index());
if (find == tiles_.end())
continue;
Tile* tile = find->second.get();
gfx::Rect tile_bounds =
tiling_data_.TileBounds(iter.index_x(), iter.index_y());
gfx::RectF current_layer_content_rect = gfx::ScaleRect(
tile_bounds,
current_scale,
current_scale);
gfx::RectF current_screen_rect = MathUtil::mapClippedRect(
current_screen_transform, current_layer_content_rect);
gfx::RectF last_layer_content_rect = gfx::ScaleRect(
tile_bounds,
last_scale,
last_scale);
gfx::RectF last_screen_rect = MathUtil::mapClippedRect(
last_screen_transform, last_layer_content_rect);
float distance_to_visible_in_pixels =
TilePriority::manhattanDistance(current_screen_rect, view_rect);
float time_to_visible_in_seconds =
TilePriority::TimeForBoundsToIntersect(
last_screen_rect, current_screen_rect, time_delta, view_rect);
TilePriority priority(
resolution_,
time_to_visible_in_seconds,
distance_to_visible_in_pixels);
if (store_screen_space_quads_on_tiles) {
bool clipped;
priority.set_current_screen_quad(
MathUtil::mapQuad(current_screen_transform,
gfx::QuadF(current_layer_content_rect),
clipped));
}
tile->set_priority(tree, priority);
}
}
last_source_frame_number_ = current_source_frame_number;
last_impl_frame_time_ = current_frame_time;
}
void PictureLayerTiling::DidBecomeActive() {
for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
it->second->set_priority(ACTIVE_TREE, it->second->priority(PENDING_TREE));
it->second->set_priority(PENDING_TREE, TilePriority());
// Tile holds a ref onto a picture pile. If the tile never gets invalidated
// and recreated, then that picture pile ref could exist indefinitely. To
// prevent this, ask the client to update the pile to its own ref. This
// will cause PicturePileImpls and their clones to get deleted once the
// corresponding PictureLayerImpl and any in flight raster jobs go out of
// scope.
client_->UpdatePile(it->second);
}
}
scoped_ptr<base::Value> PictureLayerTiling::AsValue() const {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->SetInteger("num_tiles", tiles_.size());
state->SetDouble("content_scale", contents_scale_);
state->Set("content_bounds",
MathUtil::asValue(ContentRect().size()).release());
return state.PassAs<base::Value>();
}
namespace {
int ComputeOffsetToExpand4EdgesEqually(int old_width,
int old_height,
int64 target_area) {
// We need to expand the rect in 4 directions, we can compute the
// amount to expand along each axis with a quadratic equation:
// (old_w + add) * (old_h + add) = target_area
// old_w * old_h + old_w * add + add * old_h + add * add = target_area
// add^2 + add * (old_w + old_h) - target_area + old_w * old_h = 0
// Therefore, we solve the quadratic equation with:
// a = 1
// b = old_w + old_h
// c = -target_area + old_w * old_h
int a = 1;
int64 b = old_width + old_height;
int64 c = -target_area + old_width * old_height;
int sqrt_part = std::sqrt(b * b - 4.0 * a * c);
int add_each_axis = (-b + sqrt_part) / 2 / a;
return add_each_axis / 2;
}
int ComputeOffsetToExpand3EdgesEqually(int old_width,
int old_height,
int64 target_area,
bool left_complete,
bool top_complete,
bool right_complete,
bool bottom_complete) {
// We need to expand the rect in three directions, so we will have to
// expand along one axis twice as much as the other. Otherwise, this
// is very similar to the case where we expand in all 4 directions.
if (left_complete || right_complete) {
// Expanding twice as much vertically as horizontally.
// (old_w + add) * (old_h + add*2) = target_area
// old_w * old_h + old_w * add*2 + add * old_h + add * add*2 = target_area
// (add^2)*2 + add * (old_w*2 + old_h) - target_area + old_w * old_h = 0
// Therefore, we solve the quadratic equation with:
// a = 2
// b = old_w*2 + old_h
// c = -target_area + old_w * old_h
int a = 2;
int64 b = old_width * 2 + old_height;
int64 c = -target_area + old_width * old_height;
int sqrt_part = std::sqrt(b * b - 4.0 * a * c);
int add_each_direction = (-b + sqrt_part) / 2 / a;
return add_each_direction;
} else {
// Expanding twice as much horizontally as vertically.
// (old_w + add*2) * (old_h + add) = target_area
// old_w * old_h + old_w * add + add*2 * old_h + add*2 * add = target_area
// (add^2)*2 + add * (old_w + old_h*2) - target_area + old_w * old_h = 0
// Therefore, we solve the quadratic equation with:
// a = 2
// b = old_w + old_h*2
// c = -target_area + old_w * old_h
int a = 2;
int64 b = old_width + old_height * 2;
int64 c = -target_area + old_width * old_height;
int sqrt_part = std::sqrt(b * b - 4.0 * a * c);
int add_each_direction = (-b + sqrt_part) / 2 / a;
return add_each_direction;
}
}
int ComputeOffsetToExpand2EdgesEqually(int old_width,
int old_height,
int64 target_area,
bool left_complete,
bool top_complete,
bool right_complete,
bool bottom_complete) {
// We need to expand the rect along two directions. If the two directions
// are opposite from each other then we only need to compute a distance
// along a single axis.
if (left_complete && right_complete) {
// Expanding along the vertical axis only:
// old_w * (old_h + add) = target_area
// old_w * old_h + old_w * add = target_area
// add_vertically = (target_area - old_w * old_h) / old_w
int add_vertically = target_area / old_width - old_height;
return add_vertically / 2;
} else if (top_complete && bottom_complete) {
// Expanding along the horizontal axis only:
// (old_w + add) * old_h = target_area
// old_w * old_h + add * old_h = target_area
// add_horizontally = (target_area - old_w * old_h) / old_h
int add_horizontally = target_area / old_height - old_width;
return add_horizontally / 2;
} else {
// If we need to expand along both horizontal and vertical axes, we can use
// the same result as if we were expanding all four edges. But we apply the
// offset computed for opposing edges to a single edge.
int add_each_direction = ComputeOffsetToExpand4EdgesEqually(
old_width, old_height, target_area);
return add_each_direction * 2;
}
}
int ComputeOffsetToExpand1Edge(int old_width,
int old_height,
int64 target_area,
bool left_complete,
bool top_complete,
bool right_complete,
bool bottom_complete) {
// We need to expand the rect in a single direction, so we are either
// moving just a verical edge, or just a horizontal edge.
if (!top_complete || !bottom_complete) {
// Moving a vertical edge:
// old_w * (old_h + add) = target_area
// old_w * old_h + old_w * add = target_area
// add_vertically = (target_area - old_w * old_h) / old_w
int add_vertically = target_area / old_width - old_height;
return add_vertically;
} else {
// Moving a horizontal edge:
// (old_w + add) * old_h = target_area
// old_w * old_h + add * old_h = target_area
// add_horizontally = (target_area - old_w * old_h) / old_h
int add_horizontally = target_area / old_height - old_width;
return add_horizontally;
}
}
} // namespace
// static
gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy(
gfx::Rect starting_rect,
int64 target_area,
gfx::Rect bounding_rect) {
bool left_complete = false;
bool top_complete = false;
bool right_complete = false;
bool bottom_complete = false;
int num_edges_complete = 0;
gfx::Rect working_rect = starting_rect;
for (int i = 0; i < 4; ++i) {
if (num_edges_complete != i)
continue;
int offset_for_each_edge = 0;
switch (num_edges_complete) {
case 0:
offset_for_each_edge = ComputeOffsetToExpand4EdgesEqually(
working_rect.width(),
working_rect.height(),
target_area);
break;
case 1:
offset_for_each_edge = ComputeOffsetToExpand3EdgesEqually(
working_rect.width(),
working_rect.height(),
target_area,
left_complete,
top_complete,
right_complete,
bottom_complete);
break;
case 2:
offset_for_each_edge = ComputeOffsetToExpand2EdgesEqually(
working_rect.width(),
working_rect.height(),
target_area,
left_complete,
top_complete,
right_complete,
bottom_complete);
break;
case 3:
offset_for_each_edge = ComputeOffsetToExpand1Edge(
working_rect.width(),
working_rect.height(),
target_area,
left_complete,
top_complete,
right_complete,
bottom_complete);
}
working_rect.Inset((left_complete ? 0 : -offset_for_each_edge),
(top_complete ? 0 : -offset_for_each_edge),
(right_complete ? 0 : -offset_for_each_edge),
(bottom_complete ? 0 : -offset_for_each_edge));
if (bounding_rect.Contains(working_rect))
return working_rect;
working_rect.Intersect(bounding_rect);
if (working_rect.x() == bounding_rect.x()) left_complete = true;
if (working_rect.y() == bounding_rect.y()) top_complete = true;
if (working_rect.right() == bounding_rect.right()) right_complete = true;
if (working_rect.bottom() == bounding_rect.bottom()) bottom_complete = true;
num_edges_complete = (left_complete ? 1 : 0) +
(top_complete ? 1 : 0) +
(right_complete ? 1 : 0) +
(bottom_complete ? 1 : 0);
if (num_edges_complete == 4)
return working_rect;
}
NOTREACHED();
return starting_rect;
}
} // namespace cc