blob: 786b1bc55463856eaf31dba0124a259e5bca9498 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_connection.h"
#include <ostream>
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/memory/scoped_ptr.h"
#include "base/stl_util.h"
#include "net/base/net_errors.h"
#include "net/quic/congestion_control/loss_detection_interface.h"
#include "net/quic/congestion_control/send_algorithm_interface.h"
#include "net/quic/crypto/null_encrypter.h"
#include "net/quic/crypto/quic_decrypter.h"
#include "net/quic/crypto/quic_encrypter.h"
#include "net/quic/quic_ack_notifier.h"
#include "net/quic/quic_flags.h"
#include "net/quic/quic_protocol.h"
#include "net/quic/quic_utils.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/mock_random.h"
#include "net/quic/test_tools/quic_config_peer.h"
#include "net/quic/test_tools/quic_connection_peer.h"
#include "net/quic/test_tools/quic_framer_peer.h"
#include "net/quic/test_tools/quic_packet_creator_peer.h"
#include "net/quic/test_tools/quic_packet_generator_peer.h"
#include "net/quic/test_tools/quic_sent_packet_manager_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/quic/test_tools/simple_quic_framer.h"
#include "net/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::StringPiece;
using std::map;
using std::ostream;
using std::string;
using std::vector;
using testing::AnyNumber;
using testing::AtLeast;
using testing::Contains;
using testing::DoAll;
using testing::InSequence;
using testing::InvokeWithoutArgs;
using testing::NiceMock;
using testing::Ref;
using testing::Return;
using testing::SaveArg;
using testing::StrictMock;
using testing::_;
namespace net {
namespace test {
namespace {
const char data1[] = "foo";
const char data2[] = "bar";
const bool kFin = true;
const bool kEntropyFlag = true;
const QuicPacketEntropyHash kTestEntropyHash = 76;
const int kDefaultRetransmissionTimeMs = 500;
// TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
class TaggingEncrypter : public QuicEncrypter {
public:
explicit TaggingEncrypter(uint8 tag)
: tag_(tag) {
}
~TaggingEncrypter() override {}
// QuicEncrypter interface.
bool SetKey(StringPiece key) override { return true; }
bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; }
bool EncryptPacket(QuicPacketSequenceNumber sequence_number,
StringPiece associated_data,
StringPiece plaintext,
char* output,
size_t* output_length,
size_t max_output_length) override {
const size_t len = plaintext.size() + kTagSize;
if (max_output_length < len) {
return false;
}
memcpy(output, plaintext.data(), plaintext.size());
output += plaintext.size();
memset(output, tag_, kTagSize);
*output_length = len;
return true;
}
size_t GetKeySize() const override { return 0; }
size_t GetNoncePrefixSize() const override { return 0; }
size_t GetMaxPlaintextSize(size_t ciphertext_size) const override {
return ciphertext_size - kTagSize;
}
size_t GetCiphertextSize(size_t plaintext_size) const override {
return plaintext_size + kTagSize;
}
StringPiece GetKey() const override { return StringPiece(); }
StringPiece GetNoncePrefix() const override { return StringPiece(); }
private:
enum {
kTagSize = 12,
};
const uint8 tag_;
DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter);
};
// TaggingDecrypter ensures that the final kTagSize bytes of the message all
// have the same value and then removes them.
class TaggingDecrypter : public QuicDecrypter {
public:
~TaggingDecrypter() override {}
// QuicDecrypter interface
bool SetKey(StringPiece key) override { return true; }
bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; }
bool DecryptPacket(QuicPacketSequenceNumber sequence_number,
const StringPiece& associated_data,
const StringPiece& ciphertext,
char* output,
size_t* output_length,
size_t max_output_length) override {
if (ciphertext.size() < kTagSize) {
return false;
}
if (!CheckTag(ciphertext, GetTag(ciphertext))) {
return false;
}
*output_length = ciphertext.size() - kTagSize;
memcpy(output, ciphertext.data(), *output_length);
return true;
}
StringPiece GetKey() const override { return StringPiece(); }
StringPiece GetNoncePrefix() const override { return StringPiece(); }
const char* cipher_name() const override { return "Tagging"; }
// Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
uint32 cipher_id() const override { return 0xFFFFFFF0; }
protected:
virtual uint8 GetTag(StringPiece ciphertext) {
return ciphertext.data()[ciphertext.size()-1];
}
private:
enum {
kTagSize = 12,
};
bool CheckTag(StringPiece ciphertext, uint8 tag) {
for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) {
if (ciphertext.data()[i] != tag) {
return false;
}
}
return true;
}
};
// StringTaggingDecrypter ensures that the final kTagSize bytes of the message
// match the expected value.
class StrictTaggingDecrypter : public TaggingDecrypter {
public:
explicit StrictTaggingDecrypter(uint8 tag) : tag_(tag) {}
~StrictTaggingDecrypter() override {}
// TaggingQuicDecrypter
uint8 GetTag(StringPiece ciphertext) override { return tag_; }
const char* cipher_name() const override { return "StrictTagging"; }
// Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
uint32 cipher_id() const override { return 0xFFFFFFF1; }
private:
const uint8 tag_;
};
class TestConnectionHelper : public QuicConnectionHelperInterface {
public:
class TestAlarm : public QuicAlarm {
public:
explicit TestAlarm(QuicAlarm::Delegate* delegate)
: QuicAlarm(delegate) {
}
void SetImpl() override {}
void CancelImpl() override {}
using QuicAlarm::Fire;
};
TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
: clock_(clock),
random_generator_(random_generator) {
clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
}
// QuicConnectionHelperInterface
const QuicClock* GetClock() const override { return clock_; }
QuicRandom* GetRandomGenerator() override { return random_generator_; }
QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override {
return new TestAlarm(delegate);
}
private:
MockClock* clock_;
MockRandom* random_generator_;
DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper);
};
class TestPacketWriter : public QuicPacketWriter {
public:
TestPacketWriter(QuicVersion version, MockClock *clock)
: version_(version),
framer_(SupportedVersions(version_)),
last_packet_size_(0),
write_blocked_(false),
block_on_next_write_(false),
is_write_blocked_data_buffered_(false),
final_bytes_of_last_packet_(0),
final_bytes_of_previous_packet_(0),
use_tagging_decrypter_(false),
packets_write_attempts_(0),
clock_(clock),
write_pause_time_delta_(QuicTime::Delta::Zero()) {
}
// QuicPacketWriter interface
WriteResult WritePacket(const char* buffer,
size_t buf_len,
const IPAddressNumber& self_address,
const IPEndPoint& peer_address) override {
QuicEncryptedPacket packet(buffer, buf_len);
++packets_write_attempts_;
if (packet.length() >= sizeof(final_bytes_of_last_packet_)) {
final_bytes_of_previous_packet_ = final_bytes_of_last_packet_;
memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4,
sizeof(final_bytes_of_last_packet_));
}
if (use_tagging_decrypter_) {
framer_.framer()->SetDecrypter(ENCRYPTION_NONE, new TaggingDecrypter);
}
EXPECT_TRUE(framer_.ProcessPacket(packet));
if (block_on_next_write_) {
write_blocked_ = true;
block_on_next_write_ = false;
}
if (IsWriteBlocked()) {
return WriteResult(WRITE_STATUS_BLOCKED, -1);
}
last_packet_size_ = packet.length();
if (!write_pause_time_delta_.IsZero()) {
clock_->AdvanceTime(write_pause_time_delta_);
}
return WriteResult(WRITE_STATUS_OK, last_packet_size_);
}
bool IsWriteBlockedDataBuffered() const override {
return is_write_blocked_data_buffered_;
}
bool IsWriteBlocked() const override { return write_blocked_; }
void SetWritable() override { write_blocked_ = false; }
void BlockOnNextWrite() { block_on_next_write_ = true; }
// Sets the amount of time that the writer should before the actual write.
void SetWritePauseTimeDelta(QuicTime::Delta delta) {
write_pause_time_delta_ = delta;
}
const QuicPacketHeader& header() { return framer_.header(); }
size_t frame_count() const { return framer_.num_frames(); }
const vector<QuicAckFrame>& ack_frames() const {
return framer_.ack_frames();
}
const vector<QuicStopWaitingFrame>& stop_waiting_frames() const {
return framer_.stop_waiting_frames();
}
const vector<QuicConnectionCloseFrame>& connection_close_frames() const {
return framer_.connection_close_frames();
}
const vector<QuicRstStreamFrame>& rst_stream_frames() const {
return framer_.rst_stream_frames();
}
const vector<QuicStreamFrame>& stream_frames() const {
return framer_.stream_frames();
}
const vector<QuicPingFrame>& ping_frames() const {
return framer_.ping_frames();
}
size_t last_packet_size() {
return last_packet_size_;
}
const QuicVersionNegotiationPacket* version_negotiation_packet() {
return framer_.version_negotiation_packet();
}
void set_is_write_blocked_data_buffered(bool buffered) {
is_write_blocked_data_buffered_ = buffered;
}
void set_perspective(Perspective perspective) {
// We invert perspective here, because the framer needs to parse packets
// we send.
perspective = perspective == Perspective::IS_CLIENT
? Perspective::IS_SERVER
: Perspective::IS_CLIENT;
QuicFramerPeer::SetPerspective(framer_.framer(), perspective);
}
// final_bytes_of_last_packet_ returns the last four bytes of the previous
// packet as a little-endian, uint32. This is intended to be used with a
// TaggingEncrypter so that tests can determine which encrypter was used for
// a given packet.
uint32 final_bytes_of_last_packet() { return final_bytes_of_last_packet_; }
// Returns the final bytes of the second to last packet.
uint32 final_bytes_of_previous_packet() {
return final_bytes_of_previous_packet_;
}
void use_tagging_decrypter() {
use_tagging_decrypter_ = true;
}
uint32 packets_write_attempts() { return packets_write_attempts_; }
void Reset() { framer_.Reset(); }
void SetSupportedVersions(const QuicVersionVector& versions) {
framer_.SetSupportedVersions(versions);
}
private:
QuicVersion version_;
SimpleQuicFramer framer_;
size_t last_packet_size_;
bool write_blocked_;
bool block_on_next_write_;
bool is_write_blocked_data_buffered_;
uint32 final_bytes_of_last_packet_;
uint32 final_bytes_of_previous_packet_;
bool use_tagging_decrypter_;
uint32 packets_write_attempts_;
MockClock *clock_;
// If non-zero, the clock will pause during WritePacket for this amount of
// time.
QuicTime::Delta write_pause_time_delta_;
DISALLOW_COPY_AND_ASSIGN(TestPacketWriter);
};
class TestConnection : public QuicConnection {
public:
TestConnection(QuicConnectionId connection_id,
IPEndPoint address,
TestConnectionHelper* helper,
const PacketWriterFactory& factory,
Perspective perspective,
QuicVersion version)
: QuicConnection(connection_id,
address,
helper,
factory,
/* owns_writer= */ false,
perspective,
/* is_secure= */ false,
SupportedVersions(version)) {
// Disable tail loss probes for most tests.
QuicSentPacketManagerPeer::SetMaxTailLossProbes(
QuicConnectionPeer::GetSentPacketManager(this), 0);
writer()->set_perspective(perspective);
}
void SendAck() {
QuicConnectionPeer::SendAck(this);
}
void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) {
QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm);
}
void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) {
QuicSentPacketManagerPeer::SetLossAlgorithm(
QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm);
}
void SendPacket(EncryptionLevel level,
QuicPacketSequenceNumber sequence_number,
QuicPacket* packet,
QuicPacketEntropyHash entropy_hash,
HasRetransmittableData retransmittable) {
RetransmittableFrames* retransmittable_frames =
retransmittable == HAS_RETRANSMITTABLE_DATA
? new RetransmittableFrames(ENCRYPTION_NONE)
: nullptr;
char buffer[kMaxPacketSize];
QuicEncryptedPacket* encrypted =
QuicConnectionPeer::GetFramer(this)->EncryptPayload(
ENCRYPTION_NONE, sequence_number, *packet, buffer, kMaxPacketSize);
delete packet;
OnSerializedPacket(SerializedPacket(sequence_number,
PACKET_6BYTE_SEQUENCE_NUMBER, encrypted,
entropy_hash, retransmittable_frames));
}
QuicConsumedData SendStreamDataWithString(
QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
QuicAckNotifier::DelegateInterface* delegate) {
return SendStreamDataWithStringHelper(id, data, offset, fin,
MAY_FEC_PROTECT, delegate);
}
QuicConsumedData SendStreamDataWithStringWithFec(
QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
QuicAckNotifier::DelegateInterface* delegate) {
return SendStreamDataWithStringHelper(id, data, offset, fin,
MUST_FEC_PROTECT, delegate);
}
QuicConsumedData SendStreamDataWithStringHelper(
QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
FecProtection fec_protection,
QuicAckNotifier::DelegateInterface* delegate) {
struct iovec iov;
QuicIOVector data_iov(MakeIOVector(data, &iov));
return QuicConnection::SendStreamData(id, data_iov, offset, fin,
fec_protection, delegate);
}
QuicConsumedData SendStreamData3() {
return SendStreamDataWithString(kClientDataStreamId1, "food", 0, !kFin,
nullptr);
}
QuicConsumedData SendStreamData3WithFec() {
return SendStreamDataWithStringWithFec(kClientDataStreamId1, "food", 0,
!kFin, nullptr);
}
QuicConsumedData SendStreamData5() {
return SendStreamDataWithString(kClientDataStreamId2, "food2", 0, !kFin,
nullptr);
}
QuicConsumedData SendStreamData5WithFec() {
return SendStreamDataWithStringWithFec(kClientDataStreamId2, "food2", 0,
!kFin, nullptr);
}
// Ensures the connection can write stream data before writing.
QuicConsumedData EnsureWritableAndSendStreamData5() {
EXPECT_TRUE(CanWriteStreamData());
return SendStreamData5();
}
// The crypto stream has special semantics so that it is not blocked by a
// congestion window limitation, and also so that it gets put into a separate
// packet (so that it is easier to reason about a crypto frame not being
// split needlessly across packet boundaries). As a result, we have separate
// tests for some cases for this stream.
QuicConsumedData SendCryptoStreamData() {
return SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, nullptr);
}
void set_version(QuicVersion version) {
QuicConnectionPeer::GetFramer(this)->set_version(version);
}
void SetSupportedVersions(const QuicVersionVector& versions) {
QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions);
writer()->SetSupportedVersions(versions);
}
void set_perspective(Perspective perspective) {
writer()->set_perspective(perspective);
QuicConnectionPeer::SetPerspective(this, perspective);
}
// Enable path MTU discovery. Assumes that the test is performed from the
// client perspective and the higher value of MTU target is used.
void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) {
ASSERT_EQ(Perspective::IS_CLIENT, perspective());
FLAGS_quic_do_path_mtu_discovery = true;
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(kMTUH);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm, SetFromConfig(_, _));
SetFromConfig(config);
// Normally, the pacing would be disabled in the test, but calling
// SetFromConfig enables it. Set nearly-infinite bandwidth to make the
// pacing algorithm work.
EXPECT_CALL(*send_algorithm, PacingRate())
.WillRepeatedly(Return(QuicBandwidth::FromKBytesPerSecond(10000)));
}
TestConnectionHelper::TestAlarm* GetAckAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetAckAlarm(this));
}
TestConnectionHelper::TestAlarm* GetPingAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetPingAlarm(this));
}
TestConnectionHelper::TestAlarm* GetFecAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetFecAlarm(this));
}
TestConnectionHelper::TestAlarm* GetResumeWritesAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetResumeWritesAlarm(this));
}
TestConnectionHelper::TestAlarm* GetRetransmissionAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetRetransmissionAlarm(this));
}
TestConnectionHelper::TestAlarm* GetSendAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetSendAlarm(this));
}
TestConnectionHelper::TestAlarm* GetTimeoutAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetTimeoutAlarm(this));
}
TestConnectionHelper::TestAlarm* GetMtuDiscoveryAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetMtuDiscoveryAlarm(this));
}
using QuicConnection::SelectMutualVersion;
private:
TestPacketWriter* writer() {
return static_cast<TestPacketWriter*>(QuicConnection::writer());
}
DISALLOW_COPY_AND_ASSIGN(TestConnection);
};
// Used for testing packets revived from FEC packets.
class FecQuicConnectionDebugVisitor
: public QuicConnectionDebugVisitor {
public:
void OnRevivedPacket(const QuicPacketHeader& header,
StringPiece data) override {
revived_header_ = header;
}
// Public accessor method.
QuicPacketHeader revived_header() const {
return revived_header_;
}
private:
QuicPacketHeader revived_header_;
};
class MockPacketWriterFactory : public QuicConnection::PacketWriterFactory {
public:
explicit MockPacketWriterFactory(QuicPacketWriter* writer) {
ON_CALL(*this, Create(_)).WillByDefault(Return(writer));
}
~MockPacketWriterFactory() override {}
MOCK_CONST_METHOD1(Create, QuicPacketWriter*(QuicConnection* connection));
};
// Run tests with combinations of {QuicVersion, fec_send_policy}.
struct TestParams {
TestParams(QuicVersion version, FecSendPolicy fec_send_policy)
: version(version), fec_send_policy(fec_send_policy) {}
friend ostream& operator<<(ostream& os, const TestParams& p) {
os << "{ client_version: " << QuicVersionToString(p.version)
<< " fec_send_policy: " << p.fec_send_policy << " }";
return os;
}
QuicVersion version;
FecSendPolicy fec_send_policy;
};
// Constructs various test permutations.
vector<TestParams> GetTestParams() {
vector<TestParams> params;
QuicVersionVector all_supported_versions = QuicSupportedVersions();
for (size_t i = 0; i < all_supported_versions.size(); ++i) {
params.push_back(TestParams(all_supported_versions[i], FEC_ANY_TRIGGER));
params.push_back(TestParams(all_supported_versions[i], FEC_ALARM_TRIGGER));
}
return params;
}
class QuicConnectionTest : public ::testing::TestWithParam<TestParams> {
protected:
QuicConnectionTest()
: connection_id_(42),
framer_(SupportedVersions(version()),
QuicTime::Zero(),
Perspective::IS_CLIENT),
peer_creator_(connection_id_, &framer_, &random_generator_),
send_algorithm_(new StrictMock<MockSendAlgorithm>),
loss_algorithm_(new MockLossAlgorithm()),
helper_(new TestConnectionHelper(&clock_, &random_generator_)),
writer_(new TestPacketWriter(version(), &clock_)),
factory_(writer_.get()),
connection_(connection_id_,
IPEndPoint(),
helper_.get(),
factory_,
Perspective::IS_CLIENT,
version()),
creator_(QuicConnectionPeer::GetPacketCreator(&connection_)),
generator_(QuicConnectionPeer::GetPacketGenerator(&connection_)),
manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)),
frame1_(1, false, 0, StringPiece(data1)),
frame2_(1, false, 3, StringPiece(data2)),
sequence_number_length_(PACKET_6BYTE_SEQUENCE_NUMBER),
connection_id_length_(PACKET_8BYTE_CONNECTION_ID) {
connection_.set_visitor(&visitor_);
connection_.SetSendAlgorithm(send_algorithm_);
connection_.SetLossAlgorithm(loss_algorithm_);
framer_.set_received_entropy_calculator(&entropy_calculator_);
generator_->set_fec_send_policy(GetParam().fec_send_policy);
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _))
.WillRepeatedly(Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, RetransmissionDelay())
.WillRepeatedly(Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillRepeatedly(Return(kDefaultTCPMSS));
EXPECT_CALL(*send_algorithm_, PacingRate())
.WillRepeatedly(Return(QuicBandwidth::Zero()));
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(true));
EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate())
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
.Times(AnyNumber())
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber());
EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber());
EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber());
EXPECT_CALL(visitor_, HasOpenDynamicStreams())
.WillRepeatedly(Return(false));
EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber());
EXPECT_CALL(*loss_algorithm_, GetLossTimeout())
.WillRepeatedly(Return(QuicTime::Zero()));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillRepeatedly(Return(SequenceNumberSet()));
}
QuicVersion version() { return GetParam().version; }
QuicAckFrame* outgoing_ack() {
QuicConnectionPeer::PopulateAckFrame(&connection_, &ack_);
return &ack_;
}
QuicStopWaitingFrame* stop_waiting() {
QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_);
return &stop_waiting_;
}
QuicPacketSequenceNumber least_unacked() {
if (writer_->stop_waiting_frames().empty()) {
return 0;
}
return writer_->stop_waiting_frames()[0].least_unacked;
}
void use_tagging_decrypter() {
writer_->use_tagging_decrypter();
}
void ProcessPacket(QuicPacketSequenceNumber number) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(number, 0, !kEntropyFlag);
}
QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) {
QuicFrames frames;
frames.push_back(QuicFrame(frame));
QuicPacketCreatorPeer::SetSendVersionInPacket(
&peer_creator_, connection_.perspective() == Perspective::IS_SERVER);
char buffer[kMaxPacketSize];
SerializedPacket serialized_packet =
peer_creator_.SerializeAllFrames(frames, buffer, kMaxPacketSize);
scoped_ptr<QuicEncryptedPacket> encrypted(serialized_packet.packet);
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
return serialized_packet.entropy_hash;
}
size_t ProcessDataPacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group,
bool entropy_flag) {
return ProcessDataPacketAtLevel(number, fec_group, entropy_flag,
ENCRYPTION_NONE);
}
size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group,
bool entropy_flag,
EncryptionLevel level) {
scoped_ptr<QuicPacket> packet(ConstructDataPacket(number, fec_group,
entropy_flag));
char buffer[kMaxPacketSize];
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.EncryptPayload(level, number, *packet, buffer, kMaxPacketSize));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
return encrypted->length();
}
void ProcessClosePacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group) {
scoped_ptr<QuicPacket> packet(ConstructClosePacket(number, fec_group));
char buffer[kMaxPacketSize];
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPayload(
ENCRYPTION_NONE, number, *packet, buffer, kMaxPacketSize));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
}
size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number,
bool expect_revival, bool entropy_flag) {
if (expect_revival) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1).RetiresOnSaturation();
return ProcessDataPacket(number, 1, entropy_flag);
}
// Processes an FEC packet that covers the packets that would have been
// received.
size_t ProcessFecPacket(QuicPacketSequenceNumber number,
QuicPacketSequenceNumber min_protected_packet,
bool expect_revival,
bool entropy_flag,
QuicPacket* packet) {
if (expect_revival) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
// Construct the decrypted data packet so we can compute the correct
// redundancy. If |packet| has been provided then use that, otherwise
// construct a default data packet.
scoped_ptr<QuicPacket> data_packet;
if (packet) {
data_packet.reset(packet);
} else {
data_packet.reset(ConstructDataPacket(number, 1, !kEntropyFlag));
}
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.sequence_number_length = sequence_number_length_;
header.public_header.connection_id_length = connection_id_length_;
header.packet_sequence_number = number;
header.entropy_flag = entropy_flag;
header.fec_flag = true;
header.is_in_fec_group = IN_FEC_GROUP;
header.fec_group = min_protected_packet;
QuicFecData fec_data;
fec_data.fec_group = header.fec_group;
// Since all data packets in this test have the same payload, the
// redundancy is either equal to that payload or the xor of that payload
// with itself, depending on the number of packets.
if (((number - min_protected_packet) % 2) == 0) {
for (size_t i = GetStartOfFecProtectedData(
header.public_header.connection_id_length,
header.public_header.version_flag,
header.public_header.sequence_number_length);
i < data_packet->length(); ++i) {
data_packet->mutable_data()[i] ^= data_packet->data()[i];
}
}
fec_data.redundancy = data_packet->FecProtectedData();
scoped_ptr<QuicPacket> fec_packet(framer_.BuildFecPacket(header, fec_data));
char buffer[kMaxPacketSize];
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPayload(
ENCRYPTION_NONE, number, *fec_packet, buffer, kMaxPacketSize));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
return encrypted->length();
}
QuicByteCount SendStreamDataToPeer(QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
QuicPacketSequenceNumber* last_packet) {
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true)));
connection_.SendStreamDataWithString(id, data, offset, fin, nullptr);
if (last_packet != nullptr) {
*last_packet = creator_->sequence_number();
}
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
return packet_size;
}
void SendAckPacketToPeer() {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendAck();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
}
void ProcessAckPacket(QuicPacketSequenceNumber packet_number,
QuicAckFrame* frame) {
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, packet_number - 1);
ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessStopWaitingPacket(QuicStopWaitingFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
bool IsMissing(QuicPacketSequenceNumber number) {
return IsAwaitingPacket(*outgoing_ack(), number);
}
QuicPacket* ConstructPacket(QuicPacketHeader header, QuicFrames frames) {
QuicPacket* packet = BuildUnsizedDataPacket(&framer_, header, frames);
EXPECT_NE(nullptr, packet);
return packet;
}
QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group,
bool entropy_flag) {
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.sequence_number_length = sequence_number_length_;
header.public_header.connection_id_length = connection_id_length_;
header.entropy_flag = entropy_flag;
header.packet_sequence_number = number;
header.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP;
header.fec_group = fec_group;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
return ConstructPacket(header, frames);
}
QuicPacket* ConstructClosePacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group) {
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.packet_sequence_number = number;
header.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP;
header.fec_group = fec_group;
QuicConnectionCloseFrame qccf;
qccf.error_code = QUIC_PEER_GOING_AWAY;
QuicFrames frames;
frames.push_back(QuicFrame(&qccf));
return ConstructPacket(header, frames);
}
QuicTime::Delta DefaultRetransmissionTime() {
return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
}
QuicTime::Delta DefaultDelayedAckTime() {
return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs);
}
// Initialize a frame acknowledging all packets up to largest_observed.
const QuicAckFrame InitAckFrame(QuicPacketSequenceNumber largest_observed) {
QuicAckFrame frame(MakeAckFrame(largest_observed));
if (largest_observed > 0) {
frame.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_,
largest_observed);
}
return frame;
}
const QuicStopWaitingFrame InitStopWaitingFrame(
QuicPacketSequenceNumber least_unacked) {
QuicStopWaitingFrame frame;
frame.least_unacked = least_unacked;
return frame;
}
// Explicitly nack a packet.
void NackPacket(QuicPacketSequenceNumber missing, QuicAckFrame* frame) {
frame->missing_packets.insert(missing);
frame->entropy_hash ^=
QuicConnectionPeer::PacketEntropy(&connection_, missing);
}
// Undo nacking a packet within the frame.
void AckPacket(QuicPacketSequenceNumber arrived, QuicAckFrame* frame) {
EXPECT_THAT(frame->missing_packets, Contains(arrived));
frame->missing_packets.erase(arrived);
frame->entropy_hash ^=
QuicConnectionPeer::PacketEntropy(&connection_, arrived);
}
void TriggerConnectionClose() {
// Send an erroneous packet to close the connection.
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false));
// Call ProcessDataPacket rather than ProcessPacket, as we should not get a
// packet call to the visitor.
ProcessDataPacket(6000, 0, !kEntropyFlag);
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
}
void BlockOnNextWrite() {
writer_->BlockOnNextWrite();
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
}
void SetWritePauseTimeDelta(QuicTime::Delta delta) {
writer_->SetWritePauseTimeDelta(delta);
}
void CongestionBlockWrites() {
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::FromSeconds(1)));
}
void CongestionUnblockWrites() {
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
}
QuicConnectionId connection_id_;
QuicFramer framer_;
QuicPacketCreator peer_creator_;
MockEntropyCalculator entropy_calculator_;
MockSendAlgorithm* send_algorithm_;
MockLossAlgorithm* loss_algorithm_;
MockClock clock_;
MockRandom random_generator_;
scoped_ptr<TestConnectionHelper> helper_;
scoped_ptr<TestPacketWriter> writer_;
NiceMock<MockPacketWriterFactory> factory_;
TestConnection connection_;
QuicPacketCreator* creator_;
QuicPacketGenerator* generator_;
QuicSentPacketManager* manager_;
StrictMock<MockConnectionVisitor> visitor_;
QuicStreamFrame frame1_;
QuicStreamFrame frame2_;
QuicAckFrame ack_;
QuicStopWaitingFrame stop_waiting_;
QuicSequenceNumberLength sequence_number_length_;
QuicConnectionIdLength connection_id_length_;
private:
DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest);
};
// Run all end to end tests with all supported versions.
INSTANTIATE_TEST_CASE_P(SupportedVersion,
QuicConnectionTest,
::testing::ValuesIn(GetTestParams()));
TEST_P(QuicConnectionTest, MaxPacketSize) {
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
EXPECT_EQ(1350u, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) {
QuicConnectionId connection_id = 42;
TestConnection connection(connection_id, IPEndPoint(), helper_.get(),
factory_, Perspective::IS_SERVER, version());
EXPECT_EQ(Perspective::IS_SERVER, connection.perspective());
EXPECT_EQ(1000u, connection.max_packet_length());
}
TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.set_perspective(Perspective::IS_SERVER);
connection_.set_max_packet_length(1000);
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.packet_sequence_number = 1;
QuicFrames frames;
QuicPaddingFrame padding;
frames.push_back(QuicFrame(&frame1_));
frames.push_back(QuicFrame(&padding));
scoped_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPayload(
ENCRYPTION_NONE, 12, *packet, buffer, kMaxPacketSize));
EXPECT_EQ(kMaxPacketSize, encrypted->length());
framer_.set_version(version());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
EXPECT_EQ(kMaxPacketSize, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, PacketsInOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
EXPECT_EQ(1u, outgoing_ack()->largest_observed);
EXPECT_EQ(0u, outgoing_ack()->missing_packets.size());
ProcessPacket(2);
EXPECT_EQ(2u, outgoing_ack()->largest_observed);
EXPECT_EQ(0u, outgoing_ack()->missing_packets.size());
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_EQ(0u, outgoing_ack()->missing_packets.size());
}
TEST_P(QuicConnectionTest, PacketsOutOfOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_FALSE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(1);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_FALSE(IsMissing(2));
EXPECT_FALSE(IsMissing(1));
}
TEST_P(QuicConnectionTest, DuplicatePacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
// Send packet 3 again, but do not set the expectation that
// the visitor OnStreamFrame() will be called.
ProcessDataPacket(3, 0, !kEntropyFlag);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
}
TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(1));
ProcessPacket(5);
EXPECT_EQ(5u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(1));
EXPECT_TRUE(IsMissing(4));
// Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
// packet the peer will not retransmit. It indicates this by sending 'least
// awaiting' is 4. The connection should then realize 1 will not be
// retransmitted, and will remove it from the missing list.
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _));
ProcessAckPacket(6, &frame);
// Force an ack to be sent.
SendAckPacketToPeer();
EXPECT_TRUE(IsMissing(4));
}
TEST_P(QuicConnectionTest, RejectPacketTooFarOut) {
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false));
// Call ProcessDataPacket rather than ProcessPacket, as we should not get a
// packet call to the visitor.
ProcessDataPacket(6000, 0, !kEntropyFlag);
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
}
TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) {
// Process an unencrypted packet from the non-crypto stream.
frame1_.stream_id = 3;
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA,
false));
ProcessDataPacket(1, 0, !kEntropyFlag);
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
const vector<QuicConnectionCloseFrame>& connection_close_frames =
writer_->connection_close_frames();
EXPECT_EQ(1u, connection_close_frames.size());
EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA,
connection_close_frames[0].error_code);
}
TEST_P(QuicConnectionTest, TruncatedAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketSequenceNumber num_packets = 256 * 2 + 1;
for (QuicPacketSequenceNumber i = 0; i < num_packets; ++i) {
SendStreamDataToPeer(3, "foo", i * 3, !kFin, nullptr);
}
QuicAckFrame frame = InitAckFrame(num_packets);
SequenceNumberSet lost_packets;
// Create an ack with 256 nacks, none adjacent to one another.
for (QuicPacketSequenceNumber i = 1; i <= 256; ++i) {
NackPacket(i * 2, &frame);
if (i < 256) { // Last packet is nacked, but not lost.
lost_packets.insert(i * 2);
}
}
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(entropy_calculator_, EntropyHash(511))
.WillOnce(Return(static_cast<QuicPacketEntropyHash>(0)));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
// A truncated ack will not have the true largest observed.
EXPECT_GT(num_packets, manager_->largest_observed());
AckPacket(192, &frame);
// Removing one missing packet allows us to ack 192 and one more range, but
// 192 has already been declared lost, so it doesn't register as an ack.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(SequenceNumberSet()));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
EXPECT_EQ(num_packets, manager_->largest_observed());
}
TEST_P(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
// Delay sending, then queue up an ack.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(1)));
QuicConnectionPeer::SendAck(&connection_);
// Process an ack with a least unacked of the received ack.
// This causes an ack to be sent when TimeUntilSend returns 0.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
// Skip a packet and then record an ack.
QuicAckFrame frame = InitAckFrame(0);
ProcessAckPacket(3, &frame);
}
TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
// Should ack immediately since we have missing packets.
EXPECT_EQ(1u, writer_->packets_write_attempts());
ProcessPacket(2);
// Should ack immediately since we have missing packets.
EXPECT_EQ(2u, writer_->packets_write_attempts());
ProcessPacket(1);
// Should ack immediately, since this fills the last hole.
EXPECT_EQ(3u, writer_->packets_write_attempts());
ProcessPacket(4);
// Should not cause an ack.
EXPECT_EQ(3u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr);
EXPECT_EQ(2u, writer_->packets_write_attempts());
QuicAckFrame ack1 = InitAckFrame(1);
QuicAckFrame ack2 = InitAckFrame(2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(2, &ack2);
// Should ack immediately since we have missing packets.
EXPECT_EQ(2u, writer_->packets_write_attempts());
ProcessAckPacket(1, &ack1);
// Should not ack an ack filling a missing packet.
EXPECT_EQ(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketSequenceNumber original;
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<2>(&original), SaveArg<3>(&packet_size),
Return(true)));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
QuicAckFrame frame = InitAckFrame(original);
NackPacket(original, &frame);
// First nack triggers early retransmit.
SequenceNumberSet lost_packets;
lost_packets.insert(1);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicPacketSequenceNumber retransmission;
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _))
.WillOnce(DoAll(SaveArg<2>(&retransmission), Return(true)));
ProcessAckPacket(&frame);
QuicAckFrame frame2 = InitAckFrame(retransmission);
NackPacket(original, &frame2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(SequenceNumberSet()));
ProcessAckPacket(&frame2);
// Now if the peer sends an ack which still reports the retransmitted packet
// as missing, that will bundle an ack with data after two acks in a row
// indicate the high water mark needs to be raised.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _,
HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr);
// No ack sent.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
// No more packet loss for the rest of the test.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillRepeatedly(Return(SequenceNumberSet()));
ProcessAckPacket(&frame2);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _,
HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr);
// Ack bundled.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_FALSE(writer_->ack_frames().empty());
// But an ack with no missing packets will not send an ack.
AckPacket(original, &frame2);
ProcessAckPacket(&frame2);
ProcessAckPacket(&frame2);
}
TEST_P(QuicConnectionTest, 20AcksCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
// But an ack with no missing packets will not send an ack.
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillRepeatedly(Return(SequenceNumberSet()));
for (int i = 0; i < 20; ++i) {
EXPECT_FALSE(ack_alarm->IsSet());
ProcessAckPacket(&frame);
}
EXPECT_TRUE(ack_alarm->IsSet());
}
TEST_P(QuicConnectionTest, LeastUnackedLower) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr);
SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr);
// Start out saying the least unacked is 2.
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 5);
QuicStopWaitingFrame frame = InitStopWaitingFrame(2);
ProcessStopWaitingPacket(&frame);
// Change it to 1, but lower the sequence number to fake out-of-order packets.
// This should be fine.
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 1);
// The scheduler will not process out of order acks, but all packet processing
// causes the connection to try to write.
EXPECT_CALL(visitor_, OnCanWrite());
QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1);
ProcessStopWaitingPacket(&frame2);
// Now claim it's one, but set the ordering so it was sent "after" the first
// one. This should cause a connection error.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 7);
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, false));
QuicStopWaitingFrame frame3 = InitStopWaitingFrame(1);
ProcessStopWaitingPacket(&frame3);
}
TEST_P(QuicConnectionTest, TooManySentPackets) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
const int num_packets = kMaxTrackedPackets + 100;
for (int i = 0; i < num_packets; ++i) {
SendStreamDataToPeer(1, "foo", 3 * i, !kFin, nullptr);
}
// Ack packet 1, which leaves more than the limit outstanding.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(visitor_, OnConnectionClosed(
QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS, false));
// We're receive buffer limited, so the connection won't try to write more.
EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
// Nack the first packet and ack the rest, leaving a huge gap.
QuicAckFrame frame1 = InitAckFrame(num_packets);
NackPacket(1, &frame1);
ProcessAckPacket(&frame1);
}
TEST_P(QuicConnectionTest, TooManyReceivedPackets) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnConnectionClosed(
QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS, false));
// Miss 99 of every 100 packets for 5500 packets.
for (QuicPacketSequenceNumber i = 1; i < kMaxTrackedPackets + 500; i += 100) {
ProcessPacket(i);
if (!connection_.connected()) {
break;
}
}
}
TEST_P(QuicConnectionTest, LargestObservedLower) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr);
SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Start out saying the largest observed is 2.
QuicAckFrame frame1 = InitAckFrame(1);
QuicAckFrame frame2 = InitAckFrame(2);
ProcessAckPacket(&frame2);
// Now change it to 1, and it should cause a connection error.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false));
EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
ProcessAckPacket(&frame1);
}
TEST_P(QuicConnectionTest, AckUnsentData) {
// Ack a packet which has not been sent.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
QuicAckFrame frame(MakeAckFrame(1));
EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, AckAll) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 1);
QuicAckFrame frame1 = InitAckFrame(0);
ProcessAckPacket(&frame1);
}
TEST_P(QuicConnectionTest, SendingDifferentSequenceNumberLengthsBandwidth) {
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);
EXPECT_EQ(1u, last_packet);
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(kMaxPacketSize * 256));
SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet);
EXPECT_EQ(2u, last_packet);
EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
// The 1 packet lag is due to the sequence number length being recalculated in
// QuicConnection after a packet is sent.
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(kMaxPacketSize * 256 * 256));
SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet);
EXPECT_EQ(3u, last_packet);
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(kMaxPacketSize * 256 * 256 * 256));
SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet);
EXPECT_EQ(4u, last_packet);
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(kMaxPacketSize * 256 * 256 * 256 * 256));
SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet);
EXPECT_EQ(5u, last_packet);
EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
}
// TODO(ianswett): Re-enable this test by finding a good way to test different
// sequence number lengths without sending packets with giant gaps.
TEST_P(QuicConnectionTest,
DISABLED_SendingDifferentSequenceNumberLengthsUnackedDelta) {
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);
EXPECT_EQ(1u, last_packet);
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 100);
SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet);
EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 100 * 256);
SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet);
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 100 * 256 * 256);
SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet);
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_,
100 * 256 * 256 * 256);
SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet);
EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER,
QuicPacketCreatorPeer::NextSequenceNumberLength(creator_));
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
}
TEST_P(QuicConnectionTest, BasicSending) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
EXPECT_EQ(1u, last_packet);
SendAckPacketToPeer(); // Packet 2
EXPECT_EQ(1u, least_unacked());
SendAckPacketToPeer(); // Packet 3
EXPECT_EQ(1u, least_unacked());
SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); // Packet 4
EXPECT_EQ(4u, last_packet);
SendAckPacketToPeer(); // Packet 5
EXPECT_EQ(1u, least_unacked());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Peer acks up to packet 3.
QuicAckFrame frame = InitAckFrame(3);
ProcessAckPacket(&frame);
SendAckPacketToPeer(); // Packet 6
// As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
// ack for 4.
EXPECT_EQ(4u, least_unacked());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Peer acks up to packet 4, the last packet.
QuicAckFrame frame2 = InitAckFrame(6);
ProcessAckPacket(&frame2); // Acks don't instigate acks.
// Verify that we did not send an ack.
EXPECT_EQ(6u, writer_->header().packet_sequence_number);
// So the last ack has not changed.
EXPECT_EQ(4u, least_unacked());
// If we force an ack, we shouldn't change our retransmit state.
SendAckPacketToPeer(); // Packet 7
EXPECT_EQ(7u, least_unacked());
// But if we send more data it should.
SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8
EXPECT_EQ(8u, last_packet);
SendAckPacketToPeer(); // Packet 9
EXPECT_EQ(7u, least_unacked());
}
// QuicConnection should record the the packet sent-time prior to sending the
// packet.
TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) {
// We're using a MockClock for the tests, so we have complete control over the
// time.
// Our recorded timestamp for the last packet sent time will be passed in to
// the send_algorithm. Make sure that it is set to the correct value.
QuicTime actual_recorded_send_time = QuicTime::Zero();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true)));
// First send without any pause and check the result.
QuicTime expected_recorded_send_time = clock_.Now();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
<< "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
<< ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
// Now pause during the write, and check the results.
actual_recorded_send_time = QuicTime::Zero();
const QuicTime::Delta write_pause_time_delta =
QuicTime::Delta::FromMilliseconds(5000);
SetWritePauseTimeDelta(write_pause_time_delta);
expected_recorded_send_time = clock_.Now();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true)));
connection_.SendStreamDataWithString(2, "baz", 0, !kFin, nullptr);
EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
<< "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
<< ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
}
TEST_P(QuicConnectionTest, FECSending) {
// All packets carry version info till version is negotiated.
size_t payload_length;
// GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
// packet length. The size of the offset field in a stream frame is 0 for
// offset 0, and 2 for non-zero offsets up through 64K. Increase
// max_packet_length by 2 so that subsequent packets containing subsequent
// stream frames with non-zero offets will fit within the packet length.
size_t length = 2 + GetPacketLengthForOneStream(
connection_.version(), kIncludeVersion,
PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER,
IN_FEC_GROUP, &payload_length);
connection_.set_max_packet_length(length);
if (generator_->fec_send_policy() == FEC_ALARM_TRIGGER) {
// Send 4 protected data packets. FEC packet is not sent.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(4);
} else {
// Send 4 protected data packets, which should also trigger 1 FEC packet.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(5);
}
// The first stream frame will have 2 fewer overhead bytes than the other 3.
const string payload(payload_length * 4 + 2, 'a');
connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, nullptr);
// Expect the FEC group to be closed after SendStreamDataWithString.
EXPECT_FALSE(creator_->IsFecGroupOpen());
EXPECT_FALSE(creator_->IsFecProtected());
}
TEST_P(QuicConnectionTest, FECQueueing) {
// All packets carry version info till version is negotiated.
size_t payload_length;
size_t length = GetPacketLengthForOneStream(
connection_.version(), kIncludeVersion,
PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER,
IN_FEC_GROUP, &payload_length);
connection_.set_max_packet_length(length);
EXPECT_TRUE(creator_->IsFecEnabled());
EXPECT_EQ(0u, connection_.NumQueuedPackets());
BlockOnNextWrite();
const string payload(payload_length, 'a');
connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, nullptr);
EXPECT_FALSE(creator_->IsFecGroupOpen());
EXPECT_FALSE(creator_->IsFecProtected());
if (generator_->fec_send_policy() == FEC_ALARM_TRIGGER) {
// Expect the first data packet to be queued and not the FEC packet.
EXPECT_EQ(1u, connection_.NumQueuedPackets());
} else {
// Expect the first data packet and the fec packet to be queued.
EXPECT_EQ(2u, connection_.NumQueuedPackets());
}
}
TEST_P(QuicConnectionTest, FECAlarmStoppedWhenFECPacketSent) {
EXPECT_TRUE(creator_->IsFecEnabled());
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
creator_->set_max_packets_per_fec_group(2);
// 1 Data packet. FEC alarm should be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, true, nullptr);
EXPECT_TRUE(connection_.GetFecAlarm()->IsSet());
if (generator_->fec_send_policy() == FEC_ALARM_TRIGGER) {
// If FEC send policy is FEC_ALARM_TRIGGER, FEC packet is not sent.
// FEC alarm should not be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
} else {
// Second data packet triggers FEC packet out. FEC alarm should not be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(2);
}
connection_.SendStreamDataWithStringWithFec(5, "foo", 0, true, nullptr);
if (generator_->fec_send_policy() == FEC_ANY_TRIGGER) {
EXPECT_TRUE(writer_->header().fec_flag);
}
EXPECT_FALSE(creator_->IsFecGroupOpen());
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, FECAlarmStoppedOnConnectionClose) {
EXPECT_TRUE(creator_->IsFecEnabled());
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
creator_->set_max_packets_per_fec_group(100);
// 1 Data packet. FEC alarm should be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, kFin, nullptr);
EXPECT_TRUE(connection_.GetFecAlarm()->IsSet());
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NO_ERROR, false));
// Closing connection should stop the FEC alarm.
connection_.CloseConnection(QUIC_NO_ERROR, /*from_peer=*/false);
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, RemoveFECFromInflightOnRetransmissionTimeout) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(creator_->IsFecEnabled());
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
// 1 Data packet. FEC alarm should be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, nullptr);
EXPECT_TRUE(connection_.GetFecAlarm()->IsSet());
size_t protected_packet =
QuicSentPacketManagerPeer::GetBytesInFlight(manager_);
// Force FEC timeout to send FEC packet out.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 2u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.GetFecAlarm()->Fire();
EXPECT_TRUE(writer_->header().fec_flag);
size_t fec_packet = protected_packet;
EXPECT_EQ(protected_packet + fec_packet,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
clock_.AdvanceTime(DefaultRetransmissionTime());
// On RTO, both data and FEC packets are removed from inflight, only the data
// packet is retransmitted, and this retransmission (but not FEC) gets added
// back into the inflight.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
// The retransmission of packet 1 will be 3 bytes smaller than packet 1, since
// the first transmission will have 1 byte for FEC group number and 2 bytes of
// stream frame size, which are absent in the retransmission.
size_t retransmitted_packet = protected_packet - 3;
EXPECT_EQ(protected_packet + retransmitted_packet,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
// Receive ack for the retransmission. No data should be outstanding.
QuicAckFrame ack = InitAckFrame(3);
NackPacket(1, &ack);
NackPacket(2, &ack);
SequenceNumberSet lost_packets;
lost_packets.insert(1);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
// Ensure the alarm is not set since all packets have been acked or abandoned.
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
}
TEST_P(QuicConnectionTest, RemoveFECFromInflightOnLossRetransmission) {
EXPECT_TRUE(creator_->IsFecEnabled());
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
// 1 FEC-protected data packet. FEC alarm should be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, kFin, nullptr);
EXPECT_TRUE(connection_.GetFecAlarm()->IsSet());
size_t protected_packet =
QuicSentPacketManagerPeer::GetBytesInFlight(manager_);
// Force FEC timeout to send FEC packet out.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.GetFecAlarm()->Fire();
EXPECT_TRUE(writer_->header().fec_flag);
size_t fec_packet = protected_packet;
EXPECT_EQ(protected_packet + fec_packet,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
// Send more data to trigger NACKs. Note that all data starts at stream offset
// 0 to ensure the same packet size, for ease of testing.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(4);
connection_.SendStreamDataWithString(5, "foo", 0, kFin, nullptr);
connection_.SendStreamDataWithString(7, "foo", 0, kFin, nullptr);
connection_.SendStreamDataWithString(9, "foo", 0, kFin, nullptr);
connection_.SendStreamDataWithString(11, "foo", 0, kFin, nullptr);
// An unprotected packet will be 3 bytes smaller than an FEC-protected packet,
// since the protected packet will have 1 byte for FEC group number and
// 2 bytes of stream frame size, which are absent in the unprotected packet.
size_t unprotected_packet = protected_packet - 3;
EXPECT_EQ(protected_packet + fec_packet + 4 * unprotected_packet,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
// Ack data packets, and NACK FEC packet and one data packet. Triggers
// NACK-based loss detection of both packets, but only data packet is
// retransmitted and considered oustanding.
QuicAckFrame ack = InitAckFrame(6);
NackPacket(2, &ack);
NackPacket(3, &ack);
SequenceNumberSet lost_packets;
lost_packets.insert(2);
lost_packets.insert(3);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessAckPacket(&ack);
// On receiving this ack from the server, the client will no longer send
// version number in subsequent packets, including in this retransmission.
size_t unprotected_packet_no_version = unprotected_packet - 4;
EXPECT_EQ(unprotected_packet_no_version,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
// Receive ack for the retransmission. No data should be outstanding.
QuicAckFrame ack2 = InitAckFrame(7);
NackPacket(2, &ack2);
NackPacket(3, &ack2);
SequenceNumberSet lost_packets2;
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets2));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack2);
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
}
TEST_P(QuicConnectionTest, FECRemainsInflightOnTLPOfEarlierData) {
// This test checks if TLP is sent correctly when a data and an FEC packet
// are outstanding. TLP should be sent for the data packet when the
// retransmission alarm fires.
// Turn on TLP for this test.
QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 1);
EXPECT_TRUE(creator_->IsFecEnabled());
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
// 1 Data packet. FEC alarm should be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, kFin, nullptr);
EXPECT_TRUE(connection_.GetFecAlarm()->IsSet());
size_t protected_packet =
QuicSentPacketManagerPeer::GetBytesInFlight(manager_);
EXPECT_LT(0u, protected_packet);
// Force FEC timeout to send FEC packet out.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 2u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.GetFecAlarm()->Fire();
EXPECT_TRUE(writer_->header().fec_flag);
size_t fec_packet = protected_packet;
EXPECT_EQ(protected_packet + fec_packet,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
// TLP alarm should be set.
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
// Simulate the retransmission alarm firing and sending a TLP, so send
// algorithm's OnRetransmissionTimeout is not called.
clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now()));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 3u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
// The TLP retransmission of packet 1 will be 3 bytes smaller than packet 1,
// since packet 1 will have 1 byte for FEC group number and 2 bytes of stream
// frame size, which are absent in the the TLP retransmission.
size_t tlp_packet = protected_packet - 3;
EXPECT_EQ(protected_packet + fec_packet + tlp_packet,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
}
TEST_P(QuicConnectionTest, FECRemainsInflightOnTLPOfLaterData) {
// Tests if TLP is sent correctly when data packet 1 and an FEC packet are
// sent followed by data packet 2, and data packet 1 is acked. TLP should be
// sent for data packet 2 when the retransmission alarm fires. Turn on TLP for
// this test.
QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 1);
EXPECT_TRUE(creator_->IsFecEnabled());
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
// 1 Data packet. FEC alarm should be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, kFin, nullptr);
EXPECT_TRUE(connection_.GetFecAlarm()->IsSet());
size_t protected_packet =
QuicSentPacketManagerPeer::GetBytesInFlight(manager_);
EXPECT_LT(0u, protected_packet);
// Force FEC timeout to send FEC packet out.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 2u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.GetFecAlarm()->Fire();
EXPECT_TRUE(writer_->header().fec_flag);
// Protected data packet and FEC packet oustanding.
size_t fec_packet = protected_packet;
EXPECT_EQ(protected_packet + fec_packet,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
// Send 1 unprotected data packet. No FEC alarm should be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 3u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.SendStreamDataWithString(5, "foo", 0, kFin, nullptr);
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
// Protected data packet, FEC packet, and unprotected data packet oustanding.
// An unprotected packet will be 3 bytes smaller than an FEC-protected packet,
// since the protected packet will have 1 byte for FEC group number and
// 2 bytes of stream frame size, which are absent in the unprotected packet.
size_t unprotected_packet = protected_packet - 3;
EXPECT_EQ(protected_packet + fec_packet + unprotected_packet,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
// Receive ack for first data packet. FEC and second data packet are still
// outstanding.
QuicAckFrame ack = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessAckPacket(&ack);
// FEC packet and unprotected data packet oustanding.
EXPECT_EQ(fec_packet + unprotected_packet,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
// TLP alarm should be set.
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
// Simulate the retransmission alarm firing and sending a TLP, so send
// algorithm's OnRetransmissionTimeout is not called.
clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now()));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, 4u, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
// Having received an ack from the server, the client will no longer send
// version number in subsequent packets, including in this retransmission.
size_t tlp_packet_no_version = unprotected_packet - 4;
EXPECT_EQ(fec_packet + unprotected_packet + tlp_packet_no_version,
QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
}
TEST_P(QuicConnectionTest, NoTLPForFECPacket) {
// Turn on TLP for this test.
QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 1);
EXPECT_TRUE(creator_->IsFecEnabled());
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Send 1 FEC-protected data packet. FEC alarm should be set.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, nullptr);
EXPECT_TRUE(connection_.GetFecAlarm()->IsSet());
// Force FEC timeout to send FEC packet out.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1);
connection_.GetFecAlarm()->Fire();
EXPECT_TRUE(writer_->header().fec_flag);
// Ack data packet, but not FEC packet.
QuicAckFrame ack = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
// No TLP alarm for FEC, but retransmission alarm should be set for an RTO.
EXPECT_LT(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
QuicTime rto_time = connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), rto_time);
// Simulate the retransmission alarm firing. FEC packet is no longer
// outstanding.
clock_.AdvanceTime(rto_time.Subtract(clock_.Now()));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
}
TEST_P(QuicConnectionTest, FramePacking) {
CongestionBlockWrites();
// Send an ack and two stream frames in 1 packet by queueing them.
connection_.SendAck();
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData5))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
CongestionUnblockWrites();
connection_.GetSendAlarm()->Fire();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's an ack and two stream frames from
// two different streams.
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
ASSERT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id);
}
TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) {
CongestionBlockWrites();
// Send an ack and two stream frames (one non-crypto, then one crypto) in 2
// packets by queueing them.
connection_.SendAck();
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendCryptoStreamData))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
CongestionUnblockWrites();
connection_.GetSendAlarm()->Fire();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's the crypto stream frame.
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0].stream_id);
}
TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) {
CongestionBlockWrites();
// Send an ack and two stream frames (one crypto, then one non-crypto) in 2
// packets by queueing them.
connection_.SendAck();
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendCryptoStreamData)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
CongestionUnblockWrites();
connection_.GetSendAlarm()->Fire();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's the stream frame from stream 3.
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
}
TEST_P(QuicConnectionTest, FramePackingFEC) {
EXPECT_TRUE(creator_->IsFecEnabled());
CongestionBlockWrites();
// Queue an ack and two stream frames. Ack gets flushed when FEC is turned on
// for sending protected data; two stream frames are packed in 1 packet.
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData3WithFec)),
IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData5WithFec))));
connection_.SendAck();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
CongestionUnblockWrites();
connection_.GetSendAlarm()->Fire();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's in an fec group.
EXPECT_EQ(2u, writer_->header().fec_group);
EXPECT_EQ(2u, writer_->frame_count());
// FEC alarm should be set.
EXPECT_TRUE(connection_.GetFecAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, FramePackingAckResponse) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Process a data packet to queue up a pending ack.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(1, 1, kEntropyFlag);
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData5))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
// Process an ack to cause the visitor's OnCanWrite to be invoked.
QuicAckFrame ack_one = InitAckFrame(0);
ProcessAckPacket(3, &ack_one);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's an ack and two stream frames from
// two different streams.
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
ASSERT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id);
}
TEST_P(QuicConnectionTest, FramePackingSendv) {
// Send data in 1 packet by writing multiple blocks in a single iovector
// using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
char data[] = "ABCD";
struct iovec iov[2];
iov[0].iov_base = data;
iov[0].iov_len = 2;
iov[1].iov_base = data + 2;
iov[1].iov_len = 2;
connection_.SendStreamData(1, QuicIOVector(iov, 2, 4), 0, !kFin,
MAY_FEC_PROTECT, nullptr);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure multiple iovector blocks have
// been packed into a single stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
QuicStreamFrame frame = writer_->stream_frames()[0];
EXPECT_EQ(1u, frame.stream_id);
EXPECT_EQ("ABCD", frame.data);
}
TEST_P(QuicConnectionTest, FramePackingSendvQueued) {
// Try to send two stream frames in 1 packet by using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
BlockOnNextWrite();
char data[] = "ABCD";
struct iovec iov[2];
iov[0].iov_base = data;
iov[0].iov_len = 2;
iov[1].iov_base = data + 2;
iov[1].iov_len = 2;
connection_.SendStreamData(1, QuicIOVector(iov, 2, 4), 0, !kFin,
MAY_FEC_PROTECT, nullptr);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_TRUE(connection_.HasQueuedData());
// Unblock the writes and actually send.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Parse the last packet and ensure it's one stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id);
}
TEST_P(QuicConnectionTest, SendingZeroBytes) {
// Send a zero byte write with a fin using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
QuicIOVector empty_iov(nullptr, 0, 0);
connection_.SendStreamData(1, empty_iov, 0, kFin, MAY_FEC_PROTECT, nullptr);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's one stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id);
EXPECT_TRUE(writer_->stream_frames()[0].fin);
}
TEST_P(QuicConnectionTest, OnCanWrite) {
// Visitor's OnCanWrite will send data, but will have more pending writes.
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData5))));
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true));
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
connection_.OnCanWrite();
// Parse the last packet and ensure it's the two stream frames from
// two different streams.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id);
}
TEST_P(QuicConnectionTest, RetransmitOnNack) {
QuicPacketSequenceNumber last_packet;
QuicByteCount second_packet_size;
SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 1
second_packet_size =
SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet); // Packet 2
SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet); // Packet 3
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Don't lose a packet on an ack, and nothing is retransmitted.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame ack_one = InitAckFrame(1);
ProcessAckPacket(&ack_one);
// Lose a packet and ensure it triggers retransmission.
QuicAckFrame nack_two = InitAckFrame(3);
NackPacket(2, &nack_two);
SequenceNumberSet lost_packets;
lost_packets.insert(2);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, second_packet_size - kQuicVersionSize, _)).
Times(1);
ProcessAckPacket(&nack_two);
}
TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) {
// Block the connection to queue the packet.
BlockOnNextWrite();
QuicStreamId stream_id = 2;
connection_.SendStreamDataWithString(stream_id, "foo", 0, !kFin, nullptr);
// Now that there is a queued packet, reset the stream.
connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14);
// Unblock the connection and verify that only the RST_STREAM is sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
}
TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) {
QuicStreamId stream_id = 2;
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet);
SendStreamDataToPeer(stream_id, "fooos", 7, !kFin, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14);
// Lose a packet and ensure it does not trigger retransmission.
QuicAckFrame nack_two = InitAckFrame(last_packet);
NackPacket(last_packet - 1, &nack_two);
SequenceNumberSet lost_packets;
lost_packets.insert(last_packet - 1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessAckPacket(&nack_two);
}
TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) {
QuicStreamId stream_id = 2;
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14);
// Fire the RTO and verify that the RST_STREAM is resent, not stream data.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
}
TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) {
QuicStreamId stream_id = 2;
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet);
BlockOnNextWrite();
connection_.SendStreamDataWithString(stream_id, "fooos", 7, !kFin, nullptr);
// Lose a packet which will trigger a pending retransmission.
QuicAckFrame ack = InitAckFrame(last_packet);
NackPacket(last_packet - 1, &ack);
SequenceNumberSet lost_packets;
lost_packets.insert(last_packet - 1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessAckPacket(&ack);
connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14);
// Unblock the connection and verify that the RST_STREAM is sent but not the
// second data packet nor a retransmit.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
}
TEST_P(QuicConnectionTest, DiscardRetransmit) {
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2
SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Instigate a loss with an ack.
QuicAckFrame nack_two = InitAckFrame(3);
NackPacket(2, &nack_two);
// The first nack should trigger a fast retransmission, but we'll be
// write blocked, so the packet will be queued.
BlockOnNextWrite();
SequenceNumberSet lost_packets;
lost_packets.insert(2);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&nack_two);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Now, ack the previous transmission.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(SequenceNumberSet()));
QuicAckFrame ack_all = InitAckFrame(3);
ProcessAckPacket(&ack_all);
// Unblock the socket and attempt to send the queued packets. However,
// since the previous transmission has been acked, we will not
// send the retransmission.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, _)).Times(0);
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketSequenceNumber largest_observed;
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<2>(&largest_observed), SaveArg<3>(&packet_size),
Return(true)));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
QuicAckFrame frame = InitAckFrame(1);
NackPacket(largest_observed, &frame);
// The first nack should retransmit the largest observed packet.
SequenceNumberSet lost_packets;
lost_packets.insert(1);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _));
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) {
for (int i = 0; i < 10; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, "foo", i * 3, !kFin, nullptr);
}
// Block the writer and ensure they're queued.
BlockOnNextWrite();
clock_.AdvanceTime(DefaultRetransmissionTime());
// Only one packet should be retransmitted.
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_TRUE(connection_.HasQueuedData());
// Unblock the writer.
writer_->SetWritable();
clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
2 * DefaultRetransmissionTime().ToMicroseconds()));
// Retransmit already retransmitted packets event though the sequence number
// greater than the largest observed.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.GetRetransmissionAlarm()->Fire();
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, WriteBlockedThenSent) {
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Ack the sent packet before the callback returns, which happens in
// rare circumstances with write blocked sockets.
QuicAckFrame ack = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
writer_->SetWritable();
connection_.OnCanWrite();
// There is now a pending packet, but with no retransmittable frames.
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.sent_packet_manager().HasRetransmittableFrames(2));
}
TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) {
// Block the connection.
BlockOnNextWrite();
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
// Set the send and resumption alarms. Fire the alarms and ensure they don't
// attempt to write.
connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow());
connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
connection_.GetResumeWritesAlarm()->Fire();
connection_.GetSendAlarm()->Fire();
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_EQ(1u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
int offset = 0;
// Send packets 1 to 15.
for (int i = 0; i < 15; ++i) {
SendStreamDataToPeer(1, "foo", offset, !kFin, nullptr);
offset += 3;
}
// Ack 15, nack 1-14.
SequenceNumberSet lost_packets;
QuicAckFrame nack = InitAckFrame(15);
for (int i = 1; i < 15; ++i) {
NackPacket(i, &nack);
lost_packets.insert(i);
}
// 14 packets have been NACK'd and lost. In TCP cubic, PRR limits
// the retransmission rate in the case of burst losses.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14);
ProcessAckPacket(&nack);
}
// Test sending multiple acks from the connection to the session.
TEST_P(QuicConnectionTest, MultipleAcks) {
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
EXPECT_EQ(1u, last_packet);
SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 2
EXPECT_EQ(2u, last_packet);
SendAckPacketToPeer(); // Packet 3
SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet); // Packet 4
EXPECT_EQ(4u, last_packet);
SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet); // Packet 5
EXPECT_EQ(5u, last_packet);
SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet); // Packet 6
EXPECT_EQ(6u, last_packet);
// Client will ack packets 1, 2, [!3], 4, 5.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame1 = InitAckFrame(5);
NackPacket(3, &frame1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessAckPacket(&frame1);
// Now the client implicitly acks 3, and explicitly acks 6.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame2 = InitAckFrame(6);
ProcessAckPacket(&frame2);
}
TEST_P(QuicConnectionTest, DontLatchUnackedPacket) {
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); // Packet 1;
// From now on, we send acks, so the send algorithm won't mark them pending.
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(false));
SendAckPacketToPeer(); // Packet 2
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame = InitAckFrame(1);
ProcessAckPacket(&frame);
// Verify that our internal state has least-unacked as 2, because we're still
// waiting for a potential ack for 2.
EXPECT_EQ(2u, stop_waiting()->least_unacked);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
frame = InitAckFrame(2);
ProcessAckPacket(&frame);
EXPECT_EQ(3u, stop_waiting()->least_unacked);
// When we send an ack, we make sure our least-unacked makes sense. In this
// case since we're not waiting on an ack for 2 and all packets are acked, we
// set it to 3.
SendAckPacketToPeer(); // Packet 3
// Least_unacked remains at 3 until another ack is received.
EXPECT_EQ(3u, stop_waiting()->least_unacked);
// Check that the outgoing ack had its sequence number as least_unacked.
EXPECT_EQ(3u, least_unacked());
// Ack the ack, which updates the rtt and raises the least unacked.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
frame = InitAckFrame(3);
ProcessAckPacket(&frame);
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(true));
SendStreamDataToPeer(1, "bar", 3, false, nullptr); // Packet 4
EXPECT_EQ(4u, stop_waiting()->least_unacked);
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(false));
SendAckPacketToPeer(); // Packet 5
EXPECT_EQ(4u, least_unacked());
// Send two data packets at the end, and ensure if the last one is acked,
// the least unacked is raised above the ack packets.
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(true));
SendStreamDataToPeer(1, "bar", 6, false, nullptr); // Packet 6
SendStreamDataToPeer(1, "bar", 9, false, nullptr); // Packet 7
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
frame = InitAckFrame(7);
NackPacket(5, &frame);
NackPacket(6, &frame);
ProcessAckPacket(&frame);
EXPECT_EQ(6u, stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterFecPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Don't send missing packet 1.
ProcessFecPacket(2, 1, true, !kEntropyFlag, nullptr);
// Entropy flag should be false, so entropy should be 0.
EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
}
TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingSeqNumLengths) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Set up a debug visitor to the connection.
scoped_ptr<FecQuicConnectionDebugVisitor> fec_visitor(
new FecQuicConnectionDebugVisitor());
connection_.set_debug_visitor(fec_visitor.get());
QuicPacketSequenceNumber fec_packet = 0;
QuicSequenceNumberLength lengths[] = {PACKET_6BYTE_SEQUENCE_NUMBER,
PACKET_4BYTE_SEQUENCE_NUMBER,
PACKET_2BYTE_SEQUENCE_NUMBER,
PACKET_1BYTE_SEQUENCE_NUMBER};
// For each sequence number length size, revive a packet and check sequence
// number length in the revived packet.
for (size_t i = 0; i < arraysize(lengths); ++i) {
// Set sequence_number_length_ (for data and FEC packets).
sequence_number_length_ = lengths[i];
fec_packet += 2;
// Don't send missing packet, but send fec packet right after it.
ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, nullptr);
// Sequence number length in the revived header should be the same as
// in the original data/fec packet headers.
EXPECT_EQ(sequence_number_length_, fec_visitor->revived_header().
public_header.sequence_number_length);
}
}
TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingConnectionIdLengths) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Set up a debug visitor to the connection.
scoped_ptr<FecQuicConnectionDebugVisitor> fec_visitor(
new FecQuicConnectionDebugVisitor());
connection_.set_debug_visitor(fec_visitor.get());
QuicPacketSequenceNumber fec_packet = 0;
QuicConnectionIdLength lengths[] = {PACKET_8BYTE_CONNECTION_ID,
PACKET_4BYTE_CONNECTION_ID,
PACKET_1BYTE_CONNECTION_ID,
PACKET_0BYTE_CONNECTION_ID};
// For each connection id length size, revive a packet and check connection
// id length in the revived packet.
for (size_t i = 0; i < arraysize(lengths); ++i) {
// Set connection id length (for data and FEC packets).
connection_id_length_ = lengths[i];
fec_packet += 2;
// Don't send missing packet, but send fec packet right after it.
ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, nullptr);
// Connection id length in the revived header should be the same as
// in the original data/fec packet headers.
EXPECT_EQ(connection_id_length_,
fec_visitor->revived_header().public_header.connection_id_length);
}
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketThenFecPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessFecProtectedPacket(1, false, kEntropyFlag);
// Don't send missing packet 2.
ProcessFecPacket(3, 1, true, !kEntropyFlag, nullptr);
// Entropy flag should be true, so entropy should not be 0.
EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketsThenFecPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessFecProtectedPacket(1, false, !kEntropyFlag);
// Don't send missing packet 2.
ProcessFecProtectedPacket(3, false, !kEntropyFlag);
ProcessFecPacket(4, 1, true, kEntropyFlag, nullptr);
// Ensure QUIC no longer revives entropy for lost packets.
EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 4));
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Don't send missing packet 1.
ProcessFecPacket(3, 1, false, !kEntropyFlag, nullptr);
// Out of order.
ProcessFecProtectedPacket(2, true, !kEntropyFlag);
// Entropy flag should be false, so entropy should be 0.
EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPackets) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessFecProtectedPacket(1, false, !kEntropyFlag);
// Don't send missing packet 2.
ProcessFecPacket(6, 1, false, kEntropyFlag, nullptr);
ProcessFecProtectedPacket(3, false, kEntropyFlag);
ProcessFecProtectedPacket(4, false, kEntropyFlag);
ProcessFecProtectedPacket(5, true, !kEntropyFlag);
// Ensure entropy is not revived for the missing packet.
EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 3));
}
TEST_P(QuicConnectionTest, TLP) {
QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 1);
SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, stop_waiting()->least_unacked);
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
EXPECT_EQ(1u, writer_->header().packet_sequence_number);
// Simulate the retransmission alarm firing and sending a tlp,
// so send algorithm's OnRetransmissionTimeout is not called.
clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now()));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(2u, writer_->header().packet_sequence_number);
// We do not raise the high water mark yet.
EXPECT_EQ(1u, stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, RTO) {
QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
DefaultRetransmissionTime());
SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, stop_waiting()->least_unacked);
EXPECT_EQ(1u, writer_->header().packet_sequence_number);
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(2u, writer_->header().packet_sequence_number);
// We do not raise the high water mark yet.
EXPECT_EQ(1u, stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, RTOWithSameEncryptionLevel) {
QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
DefaultRetransmissionTime());
use_tagging_decrypter();
// A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
// the end of the packet. We can test this to check which encrypter was used.
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
{
InSequence s;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 3, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _));
}
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Packet should have been sent with ENCRYPTION_NONE.
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet());
// Packet should have been sent with ENCRYPTION_INITIAL.
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest, SendHandshakeMessages) {
use_tagging_decrypter();
// A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
// the end of the packet. We can test this to check which encrypter was used.
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
// Attempt to send a handshake message and have the socket block.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
// The packet should be serialized, but not queued.
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Switch to the new encrypter.
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
// Now become writeable and flush the packets.
writer_->SetWritable();
EXPECT_CALL(visitor_, OnCanWrite());
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Verify that the handshake packet went out at the null encryption.
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest,
DropRetransmitsForNullEncryptedPacketAfterForwardSecure) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
QuicPacketSequenceNumber sequence_number;
SendStreamDataToPeer(3, "foo", 0, !kFin, &sequence_number);
// Simulate the retransmission alarm firing and the socket blocking.
BlockOnNextWrite();
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Go forward secure.
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
connection_.NeuterUnencryptedPackets();
EXPECT_EQ(QuicTime::Zero(),
connection_.GetRetransmissionAlarm()->deadline());
// Unblock the socket and ensure that no packets are sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
writer_->SetWritable();
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE);
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendStreamDataToPeer(2, "bar", 0, !kFin, nullptr);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION);
}
TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilClientIsReady) {
// A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
// the end of the packet. We can test this to check which encrypter was used.
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendAckPacketToPeer();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Set a forward-secure encrypter but do not make it the default, and verify
// that it is not yet used.
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
new TaggingEncrypter(0x03));
SendAckPacketToPeer();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Now simulate receipt of a forward-secure packet and verify that the
// forward-secure encrypter is now used.
connection_.OnDecryptedPacket(ENCRYPTION_FORWARD_SECURE);
SendAckPacketToPeer();
EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilManyPacketSent) {
// Set a congestion window of 10 packets.
QuicPacketCount congestion_window = 10;
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(congestion_window * kDefaultMaxPacketSize));
// A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
// the end of the packet. We can test this to check which encrypter was used.
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendAckPacketToPeer();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Set a forward-secure encrypter but do not make it the default, and
// verify that it is not yet used.
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
new TaggingEncrypter(0x03));
SendAckPacketToPeer();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Now send a packet "Far enough" after the encrypter was set and verify that
// the forward-secure encrypter is now used.
for (uint64 i = 0; i < 3 * congestion_window - 1; ++i) {
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
SendAckPacketToPeer();
}
EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) {
// SetFromConfig is always called after construction from InitializeSession.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
use_tagging_decrypter();
const uint8 tag = 0x07;
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process an encrypted packet which can not yet be decrypted which should
// result in the packet being buffered.
ProcessDataPacketAtLevel(1, 0, kEntropyFlag, ENCRYPTION_INITIAL);
// Transition to the new encryption state and process another encrypted packet
// which should result in the original packet being processed.
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2);
ProcessDataPacketAtLevel(2, 0, kEntropyFlag, ENCRYPTION_INITIAL);
// Finally, process a third packet and note that we do not reprocess the
// buffered packet.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(3, 0, kEntropyFlag, ENCRYPTION_INITIAL);
}
TEST_P(QuicConnectionTest, Buffer100NonDecryptablePackets) {
// SetFromConfig is always called after construction from InitializeSession.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
config.set_max_undecryptable_packets(100);
connection_.SetFromConfig(config);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
use_tagging_decrypter();
const uint8 tag = 0x07;
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process an encrypted packet which can not yet be decrypted which should
// result in the packet being buffered.
for (QuicPacketSequenceNumber i = 1; i <= 100; ++i) {
ProcessDataPacketAtLevel(i, 0, kEntropyFlag, ENCRYPTION_INITIAL);
}
// Transition to the new encryption state and process another encrypted packet
// which should result in the original packets being processed.
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(101);
ProcessDataPacketAtLevel(101, 0, kEntropyFlag, ENCRYPTION_INITIAL);
// Finally, process a third packet and note that we do not reprocess the
// buffered packet.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(102, 0, kEntropyFlag, ENCRYPTION_INITIAL);
}
TEST_P(QuicConnectionTest, TestRetransmitOrder) {
QuicByteCount first_packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce(
DoAll(SaveArg<3>(&first_packet_size), Return(true)));
connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, nullptr);
QuicByteCount second_packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce(
DoAll(SaveArg<3>(&second_packet_size), Return(true)));
connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, nullptr);
EXPECT_NE(first_packet_size, second_packet_size);
// Advance the clock by huge time to make sure packets will be retransmitted.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
{
InSequence s;
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, first_packet_size, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, second_packet_size, _));
}
connection_.GetRetransmissionAlarm()->Fire();
// Advance again and expect the packets to be sent again in the same order.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20));
{
InSequence s;
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, first_packet_size, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, second_packet_size, _));
}
connection_.GetRetransmissionAlarm()->Fire();
}
TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) {
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
// Make sure that RTO is not started when the packet is queued.
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
// Test that RTO is started once we write to the socket.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(2);
connection_.SendStreamDataWithString(2, "foo", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "bar", 0, !kFin, nullptr);
QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm();
EXPECT_TRUE(retransmission_alarm->IsSet());
EXPECT_EQ(clock_.Now().Add(DefaultRetransmissionTime()),
retransmission_alarm->deadline());
// Advance the time right before the RTO, then receive an ack for the first
// packet to delay the RTO.
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame ack = InitAckFrame(1);
ProcessAckPacket(&ack);
EXPECT_TRUE(retransmission_alarm->IsSet());
EXPECT_GT(retransmission_alarm->deadline(), clock_.Now());
// Move forward past the original RTO and ensure the RTO is still pending.
clock_.AdvanceTime(DefaultRetransmissionTime().Multiply(2));
// Ensure the second packet gets retransmitted when it finally fires.
EXPECT_TRUE(retransmission_alarm->IsSet());
EXPECT_LT(retransmission_alarm->deadline(), clock_.ApproximateNow());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
// Manually cancel the alarm to simulate a real test.
connection_.GetRetransmissionAlarm()->Fire();
// The new retransmitted sequence number should set the RTO to a larger value
// than previously.
EXPECT_TRUE(retransmission_alarm->IsSet());
QuicTime next_rto_time = retransmission_alarm->deadline();
QuicTime expected_rto_time =
connection_.sent_packet_manager().GetRetransmissionTime();
EXPECT_EQ(next_rto_time, expected_rto_time);
}
TEST_P(QuicConnectionTest, TestQueued) {
EXPECT_EQ(0u, connection_.NumQueuedPackets());
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Unblock the writes and actually send.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, CloseFecGroup) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Don't send missing packet 1.
// Don't send missing packet 2.
ProcessFecProtectedPacket(3, false, !kEntropyFlag);
// Don't send missing FEC packet 3.
ASSERT_EQ(1u, connection_.NumFecGroups());
// Now send non-fec protected ack packet and close the group.
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 4);
QuicStopWaitingFrame frame = InitStopWaitingFrame(5);
ProcessStopWaitingPacket(&frame);
ASSERT_EQ(0u, connection_.NumFecGroups());
}
TEST_P(QuicConnectionTest, InitialTimeout) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
// SetFromConfig sets the initial timeouts before negotiation.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
// Subtract a second from the idle timeout on the client side.
QuicTime default_timeout = clock_.ApproximateNow().Add(
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1));
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false));
// Simulate the timeout alarm firing.
clock_.AdvanceTime(
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1));
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet());
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, OverallTimeout) {
// Use a shorter overall connection timeout than idle timeout for this test.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
connection_.SetNetworkTimeouts(timeout, timeout);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
QuicTime overall_timeout = clock_.ApproximateNow().Add(timeout).Subtract(
QuicTime::Delta::FromSeconds(1));
EXPECT_EQ(overall_timeout, connection_.GetTimeoutAlarm()->deadline());
EXPECT_TRUE(connection_.connected());
// Send and ack new data 3 seconds later to lengthen the idle timeout.
SendStreamDataToPeer(1, "GET /", 0, kFin, nullptr);
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3));
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
// Fire early to verify it wouldn't timeout yet.
connection_.GetTimeoutAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
clock_.AdvanceTime(timeout.Subtract(QuicTime::Delta::FromSeconds(2)));
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_CONNECTION_OVERALL_TIMED_OUT, false));
// Simulate the timeout alarm firing.
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
EXPECT_FALSE(connection_.GetFecAlarm()->IsSet());
EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet());
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, PingAfterSend) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(true));
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
// Advance to 5ms, and send a packet to the peer, which will set
// the ping alarm.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
SendStreamDataToPeer(1, "GET /", 0, kFin, nullptr);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)),
connection_.GetPingAlarm()->deadline());
// Now recevie and ACK of the previous packet, which will move the
// ping alarm forward.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
// The ping timer is set slightly less than 15 seconds in the future, because
// of the 1s ping timer alarm granularity.
EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15))
.Subtract(QuicTime::Delta::FromMilliseconds(5)),
connection_.GetPingAlarm()->deadline());
writer_->Reset();
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15));
connection_.GetPingAlarm()->Fire();
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->ping_frames().size());
writer_->Reset();
EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(false));
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
SendAckPacketToPeer();
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
}
// Tests whether sending an MTU discovery packet to peer successfully causes the
// maximum packet size to increase.
TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) {
EXPECT_TRUE(connection_.connected());
// Send an MTU probe.
const size_t new_mtu = kDefaultMaxPacketSize + 100;
QuicByteCount mtu_probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&mtu_probe_size), Return(true)));
connection_.SendMtuDiscoveryPacket(new_mtu);
EXPECT_EQ(new_mtu, mtu_probe_size);
EXPECT_EQ(1u, creator_->sequence_number());
// Send more than MTU worth of data. No acknowledgement was received so far,
// so the MTU should be at its old value.
const string data(kDefaultMaxPacketSize + 1, '.');
QuicByteCount size_before_mtu_change;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&size_before_mtu_change), Return(true)))
.WillOnce(Return(true));
connection_.SendStreamDataWithString(3, data, 0, kFin, nullptr);
EXPECT_EQ(3u, creator_->sequence_number());
EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change);
// Acknowledge all packets so far.
QuicAckFrame probe_ack = InitAckFrame(3);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&probe_ack);
EXPECT_EQ(new_mtu, connection_.max_packet_length());
// Send the same data again. Check that it fits into a single packet now.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, data, 0, kFin, nullptr);
EXPECT_EQ(4u, creator_->sequence_number());
}
// Tests whether MTU discovery does not happen when it is not explicitly enabled
// by the connection options.
TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) {
EXPECT_TRUE(connection_.connected());
// Restore the current value FLAGS_quic_do_path_mtu_discovery after the test.
ValueRestore<bool> old_flag(&FLAGS_quic_do_path_mtu_discovery, true);
const QuicPacketCount number_of_packets = kPacketsBetweenMtuProbesBase * 2;
for (QuicPacketCount i = 0; i < number_of_packets; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_EQ(0u, connection_.mtu_probe_count());
}
}
// Tests whether MTU discovery works when the probe gets acknowledged on the
// first try.
TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) {
EXPECT_TRUE(connection_.connected());
// Restore the current value FLAGS_quic_do_path_mtu_discovery after the test.
ValueRestore<bool> old_flag(&FLAGS_quic_do_path_mtu_discovery, true);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the probe.
SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase,
/*fin=*/false, nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&probe_size), Return(true)));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, probe_size);
const QuicPacketCount probe_sequence_number =
kPacketsBetweenMtuProbesBase + 1;
ASSERT_EQ(probe_sequence_number, creator_->sequence_number());
// Acknowledge all packets sent so far.
QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&probe_ack);
EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, connection_.max_packet_length());
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
// Send more packets, and ensure that none of them sets the alarm.
for (QuicPacketCount i = 0; i < 4 * kPacketsBetweenMtuProbesBase; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
EXPECT_EQ(1u, connection_.mtu_probe_count());
}
// Tests whether MTU discovery works correctly when the probes never get
// acknowledged.
TEST_P(QuicConnectionTest, MtuDiscoveryFailed) {
EXPECT_TRUE(connection_.connected());
// Restore the current value FLAGS_quic_do_path_mtu_discovery after the test.
ValueRestore<bool> old_flag(&FLAGS_quic_do_path_mtu_discovery, true);
connection_.EnablePathMtuDiscovery(send_algorithm_);
const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100);
EXPECT_EQ(kPacketsBetweenMtuProbesBase,
QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_));
// Lower the number of probes between packets in order to make the test go
// much faster.
const QuicPacketCount packets_between_probes_base = 10;
QuicConnectionPeer::SetPacketsBetweenMtuProbes(&connection_,
packets_between_probes_base);
QuicConnectionPeer::SetNextMtuProbeAt(&connection_,
packets_between_probes_base);
// This tests sends more packets than strictly necessary to make sure that if
// the connection was to send more discovery packets than needed, those would
// get caught as well.
const QuicPacketCount number_of_packets =
packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1));
vector<QuicPacketSequenceNumber> mtu_discovery_packets;
// Called by the first ack.
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Called on many acks.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _))
.Times(AnyNumber());
for (QuicPacketCount i = 0; i < number_of_packets; i++) {
SendStreamDataToPeer(3, "!", i, /*fin=*/false, nullptr);
clock_.AdvanceTime(rtt);
// Receive an ACK, which marks all data packets as received, and all MTU
// discovery packets as missing.
QuicAckFrame ack = InitAckFrame(creator_->sequence_number());
for (QuicPacketSequenceNumber& packet : mtu_discovery_packets) {
NackPacket(packet, &ack);
}
ProcessAckPacket(&ack);
// Trigger MTU probe if it would be scheduled now.
if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) {
continue;
}
// Fire the alarm. The alarm should cause a packet to be sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(Return(true));
connection_.GetMtuDiscoveryAlarm()->Fire();
// Record the sequence number of the MTU discovery packet in order to
// mark it as NACK'd.
mtu_discovery_packets.push_back(creator_->sequence_number());
}
// Ensure the number of packets between probes grows exponentially by checking
// it against the closed-form expression for the sequence number.
ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size());
for (QuicPacketSequenceNumber i = 0; i < kMtuDiscoveryAttempts; i++) {
// 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1
const QuicPacketCount packets_between_probes =
packets_between_probes_base * ((1 << (i + 1)) - 1);
EXPECT_EQ(packets_between_probes + (i + 1), mtu_discovery_packets[i]);
}
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length());
EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count());
}
TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) {
EXPECT_TRUE(connection_.connected());
// Restore the current value FLAGS_quic_do_path_mtu_discovery after the test.
ValueRestore<bool> old_flag(&FLAGS_quic_do_path_mtu_discovery, true);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase,
/*fin=*/false, nullptr);
EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
connection_.CloseConnection(QUIC_INTERNAL_ERROR, /*from_peer=*/false);
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, TimeoutAfterSend) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
const QuicTime::Delta initial_idle_timeout =
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow().Add(initial_idle_timeout);
// When we send a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
clock_.AdvanceTime(five_ms);
// Send an ack so we don't set the retransmission alarm.
SendAckPacketToPeer();
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(initial_idle_timeout.Subtract(five_ms));
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
EXPECT_EQ(default_timeout.Add(five_ms),
connection_.GetTimeoutAlarm()->deadline());
// This time, we should time out.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
clock_.AdvanceTime(five_ms);
EXPECT_EQ(default_timeout.Add(five_ms), clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, TimeoutAfterSendSilentClose) {
// Same test as above, but complete a handshake which enables silent close,
// causing no connection close packet to be sent.
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
// Create a handshake message that also enables silent close.
CryptoHandshakeMessage msg;
string error_details;
QuicConfig client_config;
client_config.SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
client_config.SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
client_config.SetIdleConnectionStateLifetime(
QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs),
QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs));
client_config.ToHandshakeMessage(&msg);
const QuicErrorCode error =
config.ProcessPeerHello(msg, CLIENT, &error_details);
EXPECT_EQ(QUIC_NO_ERROR, error);
connection_.SetFromConfig(config);
EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
const QuicTime::Delta default_idle_timeout =
QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow().Add(default_idle_timeout);
// When we send a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
clock_.AdvanceTime(five_ms);
// Send an ack so we don't set the retransmission alarm.
SendAckPacketToPeer();
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(default_idle_timeout.Subtract(five_ms));
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
EXPECT_EQ(default_timeout.Add(five_ms),
connection_.GetTimeoutAlarm()->deadline());
// This time, we should time out.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false));
clock_.AdvanceTime(five_ms);
EXPECT_EQ(default_timeout.Add(five_ms), clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, SendScheduler) {
// Test that if we send a packet without delay, it is not queued.
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendPacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) {
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
BlockOnNextWrite();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0);
connection_.SendPacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) {
// All packets carry version info till version is negotiated.
size_t payload_length;
size_t length = GetPacketLengthForOneStream(
connection_.version(), kIncludeVersion,
PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER,
NOT_IN_FEC_GROUP, &payload_length);
connection_.set_max_packet_length(length);
// Queue the first packet.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(10)));
const string payload(payload_length, 'a');
EXPECT_EQ(0u, connection_.SendStreamDataWithString(3, payload, 0, !kFin,
nullptr).bytes_consumed);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, LoopThroughSendingPackets) {
// All packets carry version info till version is negotiated.
size_t payload_length;
// GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
// packet length. The size of the offset field in a stream frame is 0 for
// offset 0, and 2 for non-zero offsets up through 16K. Increase
// max_packet_length by 2 so that subsequent packets containing subsequent
// stream frames with non-zero offets will fit within the packet length.
size_t length = 2 + GetPacketLengthForOneStream(
connection_.version(), kIncludeVersion,
PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER,
NOT_IN_FEC_GROUP, &payload_length);
connection_.set_max_packet_length(length);
// Queue the first packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7);
// The first stream frame will have 2 fewer overhead bytes than the other six.
const string payload(payload_length * 7 + 2, 'a');
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(1, payload, 0, !kFin, nullptr)
.bytes_consumed);
}
TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) {
// Set up a larger payload than will fit in one packet.
const string payload(connection_.max_packet_length(), 'a');
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
// Now send some packets with no truncation.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(
3, payload, 0, !kFin, nullptr).bytes_consumed);
// Track the size of the second packet here. The overhead will be the largest
// we see in this test, due to the non-truncated connection id.
size_t non_truncated_packet_size = writer_->last_packet_size();
// Change to a 4 byte connection id.
QuicConfig config;
QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 4);
connection_.SetFromConfig(config);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(
3, payload, 0, !kFin, nullptr).bytes_consumed);
// Verify that we have 8 fewer bytes than in the non-truncated case. The
// first packet got 4 bytes of extra payload due to the truncation, and the
// headers here are also 4 byte smaller.
EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8);
// Change to a 1 byte connection id.
QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 1);
connection_.SetFromConfig(config);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(
3, payload, 0, !kFin, nullptr).bytes_consumed);
// Just like above, we save 7 bytes on payload, and 7 on truncation.
EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 7 * 2);
// Change to a 0 byte connection id.
QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
connection_.SetFromConfig(config);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(
3, payload, 0, !kFin, nullptr).bytes_consumed);
// Just like above, we save 8 bytes on payload, and 8 on truncation.
EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8 * 2);
}
TEST_P(QuicConnectionTest, SendDelayedAck) {
QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime());
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
const uint8 tag = 0x07;
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
// instead of ENCRYPTION_NONE.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1, 0, !kEntropyFlag, ENCRYPTION_INITIAL);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Simulate delayed ack alarm firing.
connection_.GetAckAlarm()->Fire();
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
// Check that ack is sent and that delayed ack alarm is set.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Completing the handshake as the server does nothing.
QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER);
connection_.OnHandshakeComplete();
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Complete the handshake as the client decreases the delayed ack time to 0ms.
QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT);
connection_.OnHandshakeComplete();
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
ProcessPacket(2);
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, NoAckOnOldNacks) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Drop one packet, triggering a sequence of acks.
ProcessPacket(2);
size_t frames_per_ack = 2;
EXPECT_EQ(frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
ProcessPacket(3);
EXPECT_EQ(frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
ProcessPacket(4);
EXPECT_EQ(frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
ProcessPacket(5);
EXPECT_EQ(frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
// Now only set the timer on the 6th packet, instead of sending another ack.
ProcessPacket(6);
EXPECT_EQ(0u, writer_->frame_count());
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin,
nullptr);
// Check that ack is bundled with outgoing data and that delayed ack
// alarm is reset.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin,
nullptr);
// Check that ack is bundled with outgoing crypto data.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin,
nullptr);
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_FALSE(connection_.HasQueuedData());
connection_.SendStreamDataWithString(kCryptoStreamId, "bar", 3, !kFin,
nullptr);
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_TRUE(connection_.HasQueuedData());
}
TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendCryptoStreamData)));
// Process a packet from the crypto stream, which is frame1_'s default.
// Receiving the CHLO as packet 2 first will cause the connection to
// immediately send an ack, due to the packet gap.
ProcessPacket(2);
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin,
nullptr);
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin,
nullptr);
// Ack the second packet, which will retransmit the first packet.
QuicAckFrame ack = InitAckFrame(2);
NackPacket(1, &ack);
SequenceNumberSet lost_packets;
lost_packets.insert(1);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
writer_->Reset();
// Now ack the retransmission, which will both raise the high water mark
// and see if there is more data to send.
ack = InitAckFrame(3);
NackPacket(1, &ack);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(SequenceNumberSet()));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
// Check that no packet is sent and the ack alarm isn't set.
EXPECT_EQ(0u, writer_->frame_count());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
writer_->Reset();
// Send the same ack, but send both data and an ack together.
ack = InitAckFrame(3);
NackPacket(1, &ack);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(SequenceNumberSet()));
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(
IgnoreResult(InvokeWithoutArgs(
&connection_,
&TestConnection::EnsureWritableAndSendStreamData5)));
ProcessAckPacket(&ack);
// Check that ack is bundled with outgoing data and the delayed ack
// alarm is reset.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, NoAckSentForClose) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessClosePacket(2, 0);
}
TEST_P(QuicConnectionTest, SendWhenDisconnected) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, false));
connection_.CloseConnection(QUIC_PEER_GOING_AWAY, false);
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.CanWriteStreamData());
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0);
connection_.SendPacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
}
TEST_P(QuicConnectionTest, PublicReset) {
QuicPublicResetPacket header;
header.public_header.connection_id = connection_id_;
header.public_header.reset_flag = true;
header.public_header.version_flag = false;
header.rejected_sequence_number = 10101;
scoped_ptr<QuicEncryptedPacket> packet(
framer_.BuildPublicResetPacket(header));
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, true));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet);
}
TEST_P(QuicConnectionTest, GoAway) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicGoAwayFrame goaway;
goaway.last_good_stream_id = 1;
goaway.error_code = QUIC_PEER_GOING_AWAY;
goaway.reason_phrase = "Going away.";
EXPECT_CALL(visitor_, OnGoAway(_));
ProcessGoAwayPacket(&goaway);
}
TEST_P(QuicConnectionTest, WindowUpdate) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicWindowUpdateFrame window_update;
window_update.stream_id = 3;
window_update.byte_offset = 1234;
EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
ProcessFramePacket(QuicFrame(&window_update));
}
TEST_P(QuicConnectionTest, Blocked) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicBlockedFrame blocked;
blocked.stream_id = 3;
EXPECT_CALL(visitor_, OnBlockedFrame(_));
ProcessFramePacket(QuicFrame(&blocked));
}
TEST_P(QuicConnectionTest, ZeroBytePacket) {
// Don't close the connection for zero byte packets.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
QuicEncryptedPacket encrypted(nullptr, 0);
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), encrypted);
}
TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) {
// Set the sequence number of the ack packet to be least unacked (4).
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 3);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicStopWaitingFrame frame = InitStopWaitingFrame(4);
ProcessStopWaitingPacket(&frame);
EXPECT_TRUE(outgoing_ack()->missing_packets.empty());
}
TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculation) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessDataPacket(1, 1, kEntropyFlag);
ProcessDataPacket(4, 1, kEntropyFlag);
ProcessDataPacket(3, 1, !kEntropyFlag);
ProcessDataPacket(7, 1, kEntropyFlag);
EXPECT_EQ(146u, outgoing_ack()->entropy_hash);
}
TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculationHalfFEC) {
// FEC packets should not change the entropy hash calculation.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessDataPacket(1, 1, kEntropyFlag);
ProcessFecPacket(4, 1, false, kEntropyFlag, nullptr);
ProcessDataPacket(3, 3, !kEntropyFlag);
ProcessFecPacket(7, 3, false, kEntropyFlag, nullptr);
EXPECT_EQ(146u, outgoing_ack()->entropy_hash);
}
TEST_P(QuicConnectionTest, UpdateEntropyForReceivedPackets) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessDataPacket(1, 1, kEntropyFlag);
ProcessDataPacket(5, 1, kEntropyFlag);
ProcessDataPacket(4, 1, !kEntropyFlag);
EXPECT_EQ(34u, outgoing_ack()->entropy_hash);
// Make 4th packet my least unacked, and update entropy for 2, 3 packets.
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 5);
QuicPacketEntropyHash six_packet_entropy_hash = 0;
QuicPacketEntropyHash random_entropy_hash = 129u;
QuicStopWaitingFrame frame = InitStopWaitingFrame(4);
frame.entropy_hash = random_entropy_hash;
if (ProcessStopWaitingPacket(&frame)) {
six_packet_entropy_hash = 1 << 6;
}
EXPECT_EQ((random_entropy_hash + (1 << 5) + six_packet_entropy_hash),
outgoing_ack()->entropy_hash);
}
TEST_P(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessDataPacket(1, 1, kEntropyFlag);
ProcessDataPacket(5, 1, !kEntropyFlag);
ProcessDataPacket(22, 1, kEntropyFlag);
EXPECT_EQ(66u, outgoing_ack()->entropy_hash);
QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_, 22);
QuicPacketEntropyHash random_entropy_hash = 85u;
// Current packet is the least unacked packet.
QuicPacketEntropyHash ack_entropy_hash;
QuicStopWaitingFrame frame = InitStopWaitingFrame(23);
frame.entropy_hash = random_entropy_hash;
ack_entropy_hash = ProcessStopWaitingPacket(&frame);
EXPECT_EQ((random_entropy_hash + ack_entropy_hash),
outgoing_ack()->entropy_hash);
ProcessDataPacket(25, 1, kEntropyFlag);
EXPECT_EQ((random_entropy_hash + ack_entropy_hash + (1 << (25 % 8))),
outgoing_ack()->entropy_hash);
}
TEST_P(QuicConnectionTest, EntropyCalculationForTruncatedAck) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketEntropyHash entropy[51];
entropy[0] = 0;
for (int i = 1; i < 51; ++i) {
bool should_send = i % 10 != 1;
bool entropy_flag = (i & (i - 1)) != 0;
if (!should_send) {
entropy[i] = entropy[i - 1];
continue;
}
if (entropy_flag) {
entropy[i] = entropy[i - 1] ^ (1 << (i % 8));
} else {
entropy[i] = entropy[i - 1];
}
ProcessDataPacket(i, 1, entropy_flag);
}
for (int i = 1; i < 50; ++i) {
EXPECT_EQ(entropy[i], QuicConnectionPeer::ReceivedEntropyHash(
&connection_, i));
}
}
TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacket) {
connection_.SetSupportedVersions(QuicSupportedVersions());
framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.packet_sequence_number = 12;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
scoped_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPayload(
ENCRYPTION_NONE, 12, *packet, buffer, kMaxPacketSize));
framer_.set_version(version());
connection_.set_perspective(Perspective::IS_SERVER);
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr);
size_t num_versions = arraysize(kSupportedQuicVersions);
ASSERT_EQ(num_versions,
writer_->version_negotiation_packet()->versions.size());
// We expect all versions in kSupportedQuicVersions to be
// included in the packet.
for (size_t i = 0; i < num_versions; ++i) {
EXPECT_EQ(kSupportedQuicVersions[i],
writer_->version_negotiation_packet()->versions[i]);
}
}
TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) {
connection_.SetSupportedVersions(QuicSupportedVersions());
framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.packet_sequence_number = 12;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
scoped_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPayload(
ENCRYPTION_NONE, 12, *packet, buffer, kMaxPacketSize));
framer_.set_version(version());
connection_.set_perspective(Perspective::IS_SERVER);
BlockOnNextWrite();
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
EXPECT_EQ(0u, writer_->last_packet_size());
EXPECT_TRUE(connection_.HasQueuedData());
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr);
size_t num_versions = arraysize(kSupportedQuicVersions);
ASSERT_EQ(num_versions,
writer_->version_negotiation_packet()->versions.size());
// We expect all versions in kSupportedQuicVersions to be
// included in the packet.
for (size_t i = 0; i < num_versions; ++i) {
EXPECT_EQ(kSupportedQuicVersions[i],
writer_->version_negotiation_packet()->versions[i]);
}
}
TEST_P(QuicConnectionTest,
ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) {
connection_.SetSupportedVersions(QuicSupportedVersions());
framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.packet_sequence_number = 12;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
scoped_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPayload(
ENCRYPTION_NONE, 12, *packet, buffer, kMaxPacketSize));
framer_.set_version(version());
connection_.set_perspective(Perspective::IS_SERVER);
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
EXPECT_EQ(0u, writer_->last_packet_size());
EXPECT_FALSE(connection_.HasQueuedData());
}
TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) {
// Start out with some unsupported version.
QuicConnectionPeer::GetFramer(&connection_)->set_version_for_tests(
QUIC_VERSION_UNSUPPORTED);
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.packet_sequence_number = 12;
QuicVersionVector supported_versions;
for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) {
supported_versions.push_back(kSupportedQuicVersions[i]);
}
// Send a version negotiation packet.
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.BuildVersionNegotiationPacket(
header.public_header, supported_versions));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
// Now force another packet. The connection should transition into
// NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion.
header.public_header.version_flag = false;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
scoped_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
encrypted.reset(framer_.EncryptPayload(ENCRYPTION_NONE, 12, *packet, buffer,
kMaxPacketSize));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_));
}
TEST_P(QuicConnectionTest, BadVersionNegotiation) {
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.packet_sequence_number = 12;
QuicVersionVector supported_versions;
for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) {
supported_versions.push_back(kSupportedQuicVersions[i]);
}
// Send a version negotiation packet with the version the client started with.
// It should be rejected.
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET,
false));
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.BuildVersionNegotiationPacket(
header.public_header, supported_versions));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
}
TEST_P(QuicConnectionTest, CheckSendStats) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(3, "first", 0, !kFin, nullptr);
size_t first_packet_size = writer_->last_packet_size();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(5, "second", 0, !kFin, nullptr);
size_t second_packet_size = writer_->last_packet_size();
// 2 retransmissions due to rto, 1 due to explicit nack.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
// Retransmit due to RTO.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
connection_.GetRetransmissionAlarm()->Fire();
// Retransmit due to explicit nacks.
QuicAckFrame nack_three = InitAckFrame(4);
NackPacket(3, &nack_three);
NackPacket(1, &nack_three);
SequenceNumberSet lost_packets;
lost_packets.insert(1);
lost_packets.insert(3);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(visitor_, OnCanWrite());
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessAckPacket(&nack_three);
EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(
Return(QuicBandwidth::Zero()));
const QuicConnectionStats& stats = connection_.GetStats();
EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize,
stats.bytes_sent);
EXPECT_EQ(5u, stats.packets_sent);
EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize,
stats.bytes_retransmitted);
EXPECT_EQ(3u, stats.packets_retransmitted);
EXPECT_EQ(1u, stats.rto_count);
EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size);
}
TEST_P(QuicConnectionTest, CheckReceiveStats) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
size_t received_bytes = 0;
received_bytes += ProcessFecProtectedPacket(1, false, !kEntropyFlag);
received_bytes += ProcessFecProtectedPacket(3, false, !kEntropyFlag);
// Should be counted against dropped packets.
received_bytes += ProcessDataPacket(3, 1, !kEntropyFlag);
received_bytes += ProcessFecPacket(4, 1, true, !kEntropyFlag, nullptr);
EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(
Return(QuicBandwidth::Zero()));
const QuicConnectionStats& stats = connection_.GetStats();
EXPECT_EQ(received_bytes, stats.bytes_received);
EXPECT_EQ(4u, stats.packets_received);
EXPECT_EQ(1u, stats.packets_revived);
EXPECT_EQ(1u, stats.packets_dropped);
}
TEST_P(QuicConnectionTest, TestFecGroupLimits) {
// Create and return a group for 1.
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) != nullptr);
// Create and return a group for 2.
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != nullptr);
// Create and return a group for 4. This should remove 1 but not 2.
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != nullptr);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) == nullptr);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != nullptr);
// Create and return a group for 3. This will kill off 2.
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) != nullptr);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) == nullptr);
// Verify that adding 5 kills off 3, despite 4 being created before 3.
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 5) != nullptr);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != nullptr);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) == nullptr);
}
TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) {
// Construct a packet with stream frame and connection close frame.
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.packet_sequence_number = 1;
header.public_header.version_flag = false;
QuicConnectionCloseFrame qccf;
qccf.error_code = QUIC_PEER_GOING_AWAY;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
frames.push_back(QuicFrame(&qccf));
scoped_ptr<QuicPacket> packet(ConstructPacket(header, frames));
EXPECT_TRUE(nullptr != packet.get());
char buffer[kMaxPacketSize];
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPayload(
ENCRYPTION_NONE, 1, *packet, buffer, kMaxPacketSize));
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
}
TEST_P(QuicConnectionTest, SelectMutualVersion) {
connection_.SetSupportedVersions(QuicSupportedVersions());
// Set the connection to speak the lowest quic version.
connection_.set_version(QuicVersionMin());
EXPECT_EQ(QuicVersionMin(), connection_.version());
// Pass in available versions which includes a higher mutually supported
// version. The higher mutually supported version should be selected.
QuicVersionVector supported_versions;
for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) {
supported_versions.push_back(kSupportedQuicVersions[i]);
}
EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions));
EXPECT_EQ(QuicVersionMax(), connection_.version());
// Expect that the lowest version is selected.
// Ensure the lowest supported version is less than the max, unless they're
// the same.
EXPECT_LE(QuicVersionMin(), QuicVersionMax());
QuicVersionVector lowest_version_vector;
lowest_version_vector.push_back(QuicVersionMin());
EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector));
EXPECT_EQ(QuicVersionMin(), connection_.version());
// Shouldn't be able to find a mutually supported version.
QuicVersionVector unsupported_version;
unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED);
EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version));
}
TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) {
EXPECT_FALSE(writer_->IsWriteBlocked());
// Send a packet.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_EQ(1u, writer_->packets_write_attempts());
TriggerConnectionClose();
EXPECT_EQ(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) {
BlockOnNextWrite();
TriggerConnectionClose();
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
}
TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) {
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
TriggerConnectionClose();
EXPECT_EQ(1u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, AckNotifierTriggerCallback) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Create a delegate which we expect to be called.
scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate);
EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(1);
// Send some data, which will register the delegate to be notified.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get());
// Process an ACK from the server which should trigger the callback.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame = InitAckFrame(1);
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, AckNotifierFailToTriggerCallback) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Create a delegate which we don't expect to be called.
scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate);
EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(0);
// Send some data, which will register the delegate to be notified. This will
// not be ACKed and so the delegate should never be called.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get());
// Send some other data which we will ACK.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(1, "bar", 0, !kFin, nullptr);
// Now we receive ACK for packets 2 and 3, but importantly missing packet 1
// which we registered to be notified about.
QuicAckFrame frame = InitAckFrame(3);
NackPacket(1, &frame);
SequenceNumberSet lost_packets;
lost_packets.insert(1);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Create a delegate which we expect to be called.
scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate);
EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(1);
// Send four packets, and register to be notified on ACK of packet 2.
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get());
connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr);
// Now we receive ACK for packets 1, 3, and 4 and lose 2.
QuicAckFrame frame = InitAckFrame(4);
NackPacket(2, &frame);
SequenceNumberSet lost_packets;
lost_packets.insert(2);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
ProcessAckPacket(&frame);
// Now we get an ACK for packet 5 (retransmitted packet 2), which should
// trigger the callback.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillRepeatedly(Return(SequenceNumberSet()));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame second_ack_frame = InitAckFrame(5);
ProcessAckPacket(&second_ack_frame);
}
// AckNotifierCallback is triggered by the ack of a packet that timed
// out and was retransmitted, even though the retransmission has a
// different sequence number.
TEST_P(QuicConnectionTest, AckNotifierCallbackForAckAfterRTO) {
InSequence s;
// Create a delegate which we expect to be called.
scoped_refptr<MockAckNotifierDelegate> delegate(
new StrictMock<MockAckNotifierDelegate>);
QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
DefaultRetransmissionTime());
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, delegate.get());
EXPECT_EQ(1u, stop_waiting()->least_unacked);
EXPECT_EQ(1u, writer_->header().packet_sequence_number);
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(2u, writer_->header().packet_sequence_number);
// We do not raise the high water mark yet.
EXPECT_EQ(1u, stop_waiting()->least_unacked);
// Ack the original packet, which will revert the RTO.
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*delegate, OnAckNotification(1, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame ack_frame = InitAckFrame(1);
ProcessAckPacket(&ack_frame);
// Delegate is not notified again when the retransmit is acked.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame second_ack_frame = InitAckFrame(2);
ProcessAckPacket(&second_ack_frame);
}
// AckNotifierCallback is triggered by the ack of a packet that was
// previously nacked, even though the retransmission has a different
// sequence number.
TEST_P(QuicConnectionTest, AckNotifierCallbackForAckOfNackedPacket) {
InSequence s;
// Create a delegate which we expect to be called.
scoped_refptr<MockAckNotifierDelegate> delegate(
new StrictMock<MockAckNotifierDelegate>);
// Send four packets, and register to be notified on ACK of packet 2.
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get());
connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr);
// Now we receive ACK for packets 1, 3, and 4 and lose 2.
QuicAckFrame frame = InitAckFrame(4);
NackPacket(2, &frame);
SequenceNumberSet lost_packets;
lost_packets.insert(2);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
ProcessAckPacket(&frame);
// Now we get an ACK for packet 2, which was previously nacked.
SequenceNumberSet no_lost_packets;
EXPECT_CALL(*delegate.get(), OnAckNotification(1, _, _));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(no_lost_packets));
QuicAckFrame second_ack_frame = InitAckFrame(4);
ProcessAckPacket(&second_ack_frame);
// Verify that the delegate is not notified again when the
// retransmit is acked.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(no_lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame third_ack_frame = InitAckFrame(5);
ProcessAckPacket(&third_ack_frame);
}
TEST_P(QuicConnectionTest, AckNotifierFECTriggerCallback) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Create a delegate which we expect to be called.
scoped_refptr<MockAckNotifierDelegate> delegate(
new MockAckNotifierDelegate);
EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(1);
// Send some data, which will register the delegate to be notified.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get());
connection_.SendStreamDataWithString(2, "bar", 0, !kFin, nullptr);
// Process an ACK from the server with a revived packet, which should trigger
// the callback.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame = InitAckFrame(2);
NackPacket(1, &frame);
frame.revived_packets.insert(1);
ProcessAckPacket(&frame);
// If the ack is processed again, the notifier should not be called again.
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, AckNotifierCallbackAfterFECRecovery) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnCanWrite());
// Create a delegate which we expect to be called.
scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate);
EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(1);
// Expect ACKs for 1 packet.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Send one packet, and register to be notified on ACK.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get());
// Ack packet gets dropped, but we receive an FEC packet that covers it.
// Should recover the Ack packet and trigger the notification callback.
QuicFrames frames;
QuicAckFrame ack_frame = InitAckFrame(1);
frames.push_back(QuicFrame(&ack_frame));
// Dummy stream frame to satisfy expectations set elsewhere.
frames.push_back(QuicFrame(&frame1_));
QuicPacketHeader ack_header;
ack_header.public_header.connection_id = connection_id_;
ack_header.public_header.reset_flag = false;
ack_header.public_header.version_flag = false;
ack_header.entropy_flag = !kEntropyFlag;
ack_header.fec_flag = true;
ack_header.packet_sequence_number = 1;
ack_header.is_in_fec_group = IN_FEC_GROUP;
ack_header.fec_group = 1;
QuicPacket* packet = BuildUnsizedDataPacket(&framer_, ack_header, frames);
// Take the packet which contains the ACK frame, and construct and deliver an
// FEC packet which allows the ACK packet to be recovered.
ProcessFecPacket(2, 1, true, !kEntropyFlag, packet);
}
TEST_P(QuicConnectionTest, NetworkChangeVisitorCwndCallbackChangesFecState) {
size_t max_packets_per_fec_group = creator_->max_packets_per_fec_group();
QuicSentPacketManager::NetworkChangeVisitor* visitor =
QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_);
EXPECT_TRUE(visitor);
// Increase FEC group size by increasing congestion window to a large number.
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(1000 * kDefaultTCPMSS));
visitor->OnCongestionWindowChange();
EXPECT_LT(max_packets_per_fec_group, creator_->max_packets_per_fec_group());
}
TEST_P(QuicConnectionTest, NetworkChangeVisitorConfigCallbackChangesFecState) {
QuicSentPacketManager::NetworkChangeVisitor* visitor =
QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_);
EXPECT_TRUE(visitor);
EXPECT_EQ(QuicTime::Delta::Zero(),
QuicPacketGeneratorPeer::GetFecTimeout(generator_));
// Verify that sending a config with a new initial rtt changes fec timeout.
// Create and process a config with a non-zero initial RTT.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
config.SetInitialRoundTripTimeUsToSend(300000);
connection_.SetFromConfig(config);
EXPECT_LT(QuicTime::Delta::Zero(),
QuicPacketGeneratorPeer::GetFecTimeout(generator_));
}
TEST_P(QuicConnectionTest, NetworkChangeVisitorRttCallbackChangesFecState) {
// Verify that sending a config with a new initial rtt changes fec timeout.
QuicSentPacketManager::NetworkChangeVisitor* visitor =
QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_);
EXPECT_TRUE(visitor);
EXPECT_EQ(QuicTime::Delta::Zero(),
QuicPacketGeneratorPeer::GetFecTimeout(generator_));
// Increase FEC timeout by increasing RTT.
RttStats* rtt_stats = QuicSentPacketManagerPeer::GetRttStats(manager_);
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(300),
QuicTime::Delta::Zero(), QuicTime::Zero());
visitor->OnRttChange();
EXPECT_LT(QuicTime::Delta::Zero(),
QuicPacketGeneratorPeer::GetFecTimeout(generator_));
}
TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) {
QuicPacketHeader header;
scoped_ptr<MockQuicConnectionDebugVisitor> debug_visitor(
new MockQuicConnectionDebugVisitor());
connection_.set_debug_visitor(debug_visitor.get());
EXPECT_CALL(*debug_visitor, OnPacketHeader(Ref(header))).Times(1);
connection_.OnPacketHeader(header);
}
TEST_P(QuicConnectionTest, Pacing) {
TestConnection server(connection_id_, IPEndPoint(), helper_.get(), factory_,
Perspective::IS_SERVER, version());
TestConnection client(connection_id_, IPEndPoint(), helper_.get(), factory_,
Perspective::IS_CLIENT, version());
EXPECT_FALSE(client.sent_packet_manager().using_pacing());
EXPECT_FALSE(server.sent_packet_manager().using_pacing());
}
TEST_P(QuicConnectionTest, ControlFramesInstigateAcks) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Send a WINDOW_UPDATE frame.
QuicWindowUpdateFrame window_update;
window_update.stream_id = 3;
window_update.byte_offset = 1234;
EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
ProcessFramePacket(QuicFrame(&window_update));
// Ensure that this has caused the ACK alarm to be set.
QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
EXPECT_TRUE(ack_alarm->IsSet());
// Cancel alarm, and try again with BLOCKED frame.
ack_alarm->Cancel();
QuicBlockedFrame blocked;
blocked.stream_id = 3;
EXPECT_CALL(visitor_, OnBlockedFrame(_));
ProcessFramePacket(QuicFrame(&blocked));
EXPECT_TRUE(ack_alarm->IsSet());
}
TEST_P(QuicConnectionTest, NoDataNoFin) {
// Make sure that a call to SendStreamWithData, with no data and no FIN, does
// not result in a QuicAckNotifier being used-after-free (fail under ASAN).
// Regression test for b/18594622
scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate);
EXPECT_DFATAL(
connection_.SendStreamDataWithString(3, "", 0, !kFin, delegate.get()),
"Attempt to send empty stream frame");
}
TEST_P(QuicConnectionTest, FecSendPolicyReceivedConnectionOption) {
// Test sending SetReceivedConnectionOptions when FEC send policy is
// FEC_ANY_TRIGGER.
if (GetParam().fec_send_policy == FEC_ALARM_TRIGGER) {
return;
}
connection_.set_perspective(Perspective::IS_SERVER);
// Test ReceivedConnectionOptions.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
QuicTagVector copt;
copt.push_back(kFSPA);
QuicConfigPeer::SetReceivedConnectionOptions(&config, copt);
EXPECT_EQ(FEC_ANY_TRIGGER, generator_->fec_send_policy());
connection_.SetFromConfig(config);
EXPECT_EQ(FEC_ALARM_TRIGGER, generator_->fec_send_policy());
}
// TODO(rtenneti): Delete this code after the 0.25 RTT FEC experiment.
TEST_P(QuicConnectionTest, FecRTTMultiplierReceivedConnectionOption) {
connection_.set_perspective(Perspective::IS_SERVER);
// Test ReceivedConnectionOptions.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
QuicTagVector copt;
copt.push_back(kFRTT);
QuicConfigPeer::SetReceivedConnectionOptions(&config, copt);
float rtt_multiplier_for_fec_timeout =
generator_->rtt_multiplier_for_fec_timeout();
connection_.SetFromConfig(config);
// New RTT multiplier is half of the old RTT multiplier.
EXPECT_EQ(rtt_multiplier_for_fec_timeout,
generator_->rtt_multiplier_for_fec_timeout() * 2);
}
} // namespace
} // namespace test
} // namespace net