blob: ef3b966e90b8fe56b6b94c44129976ab670cb8a8 [file] [log] [blame]
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#include "third_party/blink/renderer/platform/audio/audio_delay_dsp_kernel.h"
#include <cmath>
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
namespace blink {
AudioDelayDSPKernel::AudioDelayDSPKernel(AudioDSPKernelProcessor* processor,
size_t processing_size_in_frames)
: AudioDSPKernel(processor),
write_index_(0),
delay_times_(processing_size_in_frames) {}
AudioDelayDSPKernel::AudioDelayDSPKernel(double max_delay_time,
float sample_rate)
: AudioDSPKernel(sample_rate),
max_delay_time_(max_delay_time),
write_index_(0) {
DCHECK_GT(max_delay_time, 0.0);
DCHECK(!std::isnan(max_delay_time));
size_t buffer_length = BufferLengthForDelay(max_delay_time, sample_rate);
DCHECK(buffer_length);
buffer_.Allocate(buffer_length);
buffer_.Zero();
}
size_t AudioDelayDSPKernel::BufferLengthForDelay(double max_delay_time,
double sample_rate) const {
// Compute the length of the buffer needed to handle a max delay of
// |maxDelayTime|. One is added to handle the case where the actual delay
// equals the maximum delay.
return 1 + audio_utilities::TimeToSampleFrame(max_delay_time, sample_rate);
}
bool AudioDelayDSPKernel::HasSampleAccurateValues() {
return false;
}
void AudioDelayDSPKernel::CalculateSampleAccurateValues(float*, uint32_t) {
NOTREACHED();
}
double AudioDelayDSPKernel::DelayTime(float sample_rate) {
return desired_delay_frames_ / sample_rate;
}
void AudioDelayDSPKernel::Process(const float* source,
float* destination,
uint32_t frames_to_process) {
size_t buffer_length = buffer_.size();
float* buffer = buffer_.Data();
DCHECK(buffer_length);
DCHECK(source);
DCHECK(destination);
float sample_rate = this->SampleRate();
double max_time = MaxDelayTime();
if (HasSampleAccurateValues()) {
float* delay_times = delay_times_.Data();
CalculateSampleAccurateValues(delay_times, frames_to_process);
for (unsigned i = 0; i < frames_to_process; ++i) {
double delay_time = delay_times[i];
if (std::isnan(delay_time))
delay_time = max_time;
else
delay_time = clampTo(delay_time, 0.0, max_time);
double desired_delay_frames = delay_time * sample_rate;
double read_position =
write_index_ + buffer_length - desired_delay_frames;
if (read_position >= buffer_length)
read_position -= buffer_length;
// Linearly interpolate in-between delay times.
int read_index1 = static_cast<int>(read_position);
int read_index2 = (read_index1 + 1) % buffer_length;
double interpolation_factor = read_position - read_index1;
double input = static_cast<float>(*source++);
buffer[write_index_] = static_cast<float>(input);
write_index_ = (write_index_ + 1) % buffer_length;
double sample1 = buffer[read_index1];
double sample2 = buffer[read_index2];
double output = (1.0 - interpolation_factor) * sample1 +
interpolation_factor * sample2;
*destination++ = static_cast<float>(output);
}
} else {
double delay_time = this->DelayTime(sample_rate);
// Make sure the delay time is in a valid range.
delay_time = clampTo(delay_time, 0.0, max_time);
for (unsigned i = 0; i < frames_to_process; ++i) {
double desired_delay_frames = delay_time * sample_rate;
double read_position =
write_index_ + buffer_length - desired_delay_frames;
if (read_position >= buffer_length)
read_position -= buffer_length;
// Linearly interpolate in-between delay times.
int read_index1 = static_cast<int>(read_position);
int read_index2 = (read_index1 + 1) % buffer_length;
double interpolation_factor = read_position - read_index1;
double input = static_cast<float>(*source++);
buffer[write_index_] = static_cast<float>(input);
write_index_ = (write_index_ + 1) % buffer_length;
double sample1 = buffer[read_index1];
double sample2 = buffer[read_index2];
double output = (1.0 - interpolation_factor) * sample1 +
interpolation_factor * sample2;
*destination++ = static_cast<float>(output);
}
}
}
void AudioDelayDSPKernel::Reset() {
buffer_.Zero();
}
bool AudioDelayDSPKernel::RequiresTailProcessing() const {
// Always return true even if the tail time and latency might both
// be zero. This is for simplicity; most interesting delay nodes
// have non-zero delay times anyway. And it's ok to return true. It
// just means the node lives a little longer than strictly
// necessary.
return true;
}
double AudioDelayDSPKernel::TailTime() const {
// Account for worst case delay.
// Don't try to track actual delay time which can change dynamically.
return max_delay_time_;
}
double AudioDelayDSPKernel::LatencyTime() const {
return 0;
}
} // namespace blink