blob: 885789109623fb93695f4482af4c8806564387b7 [file] [log] [blame]
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "sql/sandboxed_vfs_file_impl.h"
#include "base/notreached.h"
#include "sql/sandboxed_vfs.h"
namespace sql {
SandboxedVfsFileImpl::SandboxedVfsFileImpl(base::File file,
base::FilePath file_path,
SandboxedVfsFileType file_type,
SandboxedVfs* vfs)
: SandboxedVfsFile(),
file_(std::move(file)),
sqlite_lock_mode_(SQLITE_LOCK_NONE),
vfs_(vfs),
file_type_(file_type),
file_path_(std::move(file_path)) {}
SandboxedVfsFileImpl::~SandboxedVfsFileImpl() = default;
int SandboxedVfsFileImpl::Close() {
file_.Close();
delete this;
return SQLITE_OK;
}
int SandboxedVfsFileImpl::Read(void* buffer, int size, sqlite3_int64 offset) {
DCHECK(buffer);
DCHECK_GE(size, 0);
DCHECK_GE(offset, 0);
// See http://www.sqlite.org/fileformat2.html#database_header
constexpr int kSqliteDatabaseHeaderOffset = 0;
constexpr int kSqliteDatabaseHeaderSize = 100;
// SQLite's locking protocol only acquires locks on the database file. The
// journal and the WAL file are always unlocked. Also, as an optimization,
// SQLite first reads the database header without locking the file.
DCHECK(sqlite_lock_mode_ > SQLITE_LOCK_NONE ||
file_type_ != SandboxedVfsFileType::kDatabase ||
(offset == kSqliteDatabaseHeaderOffset &&
size == kSqliteDatabaseHeaderSize))
<< "Read from database file with lock mode " << sqlite_lock_mode_
<< "of size" << size << " at offset " << offset;
char* data = reinterpret_cast<char*>(buffer);
// If we supported mmap()ed files, we'd check for a memory mapping here,
// and try to fill as much of the request as possible from the mmap()ed
// region.
int bytes_read = file_.Read(offset, data, size);
DCHECK_LE(bytes_read, size);
if (bytes_read == size) {
return SQLITE_OK;
}
if (bytes_read < 0) {
// SQLite first reads the database header without locking the file. On
// Windows, this read will fail if there is an exclusive lock on the file,
// even if the current process owns that lock.
if (sqlite_lock_mode_ == SQLITE_LOCK_NONE) {
// The unlocked read is considered an optimization. SQLite can continue
// even if the read fails, as long as failure is communicated by zeroing
// out the output buffer.
std::memset(data, 0, size);
return SQLITE_OK;
}
vfs_->SetLastError(base::File::GetLastFileError());
return SQLITE_IOERR_READ;
}
// SQLite requires that we fill the unread bytes in the buffer with zeros.
std::memset(data + bytes_read, 0, size - bytes_read);
return SQLITE_IOERR_SHORT_READ;
}
int SandboxedVfsFileImpl::Write(const void* buffer,
int size,
sqlite3_int64 offset) {
DCHECK(buffer);
DCHECK_GE(size, 0);
DCHECK_GE(offset, 0);
// SQLite's locking protocol only acquires locks on the database file. The
// journal and the WAL file are always unlocked.
DCHECK(sqlite_lock_mode_ == SQLITE_LOCK_EXCLUSIVE ||
file_type_ != SandboxedVfsFileType::kDatabase)
<< "Write to database file with lock mode " << sqlite_lock_mode_;
const char* data = reinterpret_cast<const char*>(buffer);
// If we supported mmap()ed files, we'd check for a memory mapping here,
// and try to fill as much of the request as possible by copying to the
// mmap()ed region.
int bytes_written = file_.Write(offset, data, size);
DCHECK_LE(bytes_written, size);
if (bytes_written >= size) {
return SQLITE_OK;
}
base::File::Error last_error = base::File::GetLastFileError();
vfs_->SetLastError(last_error);
if (last_error == base::File::Error::FILE_ERROR_NO_SPACE) {
return SQLITE_FULL;
}
return SQLITE_IOERR_WRITE;
}
int SandboxedVfsFileImpl::Truncate(sqlite3_int64 size) {
if (file_.SetLength(size)) {
return SQLITE_OK;
}
return SQLITE_IOERR_TRUNCATE;
}
int SandboxedVfsFileImpl::Sync(int flags) {
// NOTE: SQLite passes in (SQLITE_SYNC_NORMAL or SQLITE_SYNC_FULL),
// potentially OR-ed with SQLITE_SYNC_DATAONLY. Implementing these could
// lead to better performance.
if (!file_.Flush()) {
vfs_->SetLastError(base::File::GetLastFileError());
return SQLITE_IOERR_FSYNC;
}
// The unix VFS also syncs the file's directory on the first xSync() call.
// Chrome's LevelDB Env implementation does the same for specific files
// (database manifests).
//
// For WebSQL, we would want to sync the directory at file open time, when the
// file is opened for writing.
return SQLITE_OK;
}
int SandboxedVfsFileImpl::FileSize(sqlite3_int64* result_size) {
int64_t length = file_.GetLength();
if (length < 0) {
vfs_->SetLastError(base::File::GetLastFileError());
return SQLITE_IOERR_FSTAT;
}
// SQLite's unix VFS reports 1-byte files as empty. This is documented as a
// workaround for a fairly obscure bug. See unixFileSize() in os_unix.c.
if (length == 1) {
length = 0;
}
*result_size = length;
return SQLITE_OK;
}
namespace {
// True if our simplified implementation uses an exclusive lock for a mode.
bool IsExclusiveLockMode(int sqlite_lock_mode) {
switch (sqlite_lock_mode) {
case SQLITE_LOCK_NONE:
case SQLITE_LOCK_SHARED:
return false;
case SQLITE_LOCK_RESERVED:
case SQLITE_LOCK_PENDING:
case SQLITE_LOCK_EXCLUSIVE:
return true;
}
NOTREACHED() << "Unsupported mode: " << sqlite_lock_mode;
}
} // namespace
int SandboxedVfsFileImpl::Lock(int mode) {
DCHECK_GE(mode, sqlite_lock_mode_)
<< "SQLite asked the VFS to lock the file up to mode " << mode
<< " but the file is already locked at mode " << sqlite_lock_mode_;
#if BUILDFLAG(IS_FUCHSIA)
return SQLITE_IOERR_LOCK;
#else
base::File::LockMode file_lock_mode = base::File::LockMode::kExclusive;
switch (mode) {
case SQLITE_LOCK_NONE:
return SQLITE_OK;
case SQLITE_LOCK_SHARED:
if (sqlite_lock_mode_ != SQLITE_LOCK_NONE) {
return SQLITE_OK;
}
file_lock_mode = base::File::LockMode::kShared;
break;
case SQLITE_LOCK_RESERVED:
// A SHARED lock is required before a RESERVED lock is acquired.
DCHECK_EQ(sqlite_lock_mode_, SQLITE_LOCK_SHARED);
file_lock_mode = base::File::LockMode::kExclusive;
break;
case SQLITE_LOCK_PENDING:
NOTREACHED() << "SQLite never directly asks for PENDING locks";
case SQLITE_LOCK_EXCLUSIVE:
// A SHARED lock is required before an EXCLUSIVE lock is acquired.
//
// No higher level is required. In fact, SQLite upgrades the lock directly
// from SHARED to EXCLUSIVE when rolling back a transaction, to avoid
// having other readers queue up in the RESERVED state.
DCHECK_GE(sqlite_lock_mode_, SQLITE_LOCK_SHARED);
if (IsExclusiveLockMode(sqlite_lock_mode_)) {
sqlite_lock_mode_ = mode;
return SQLITE_OK;
}
file_lock_mode = base::File::LockMode::kExclusive;
break;
default:
NOTREACHED() << "Unimplemented xLock() mode: " << mode;
}
DCHECK_EQ(IsExclusiveLockMode(mode),
file_lock_mode == base::File::LockMode::kExclusive)
<< "Incorrect file_lock_mode logic for SQLite mode: " << mode;
// On POSIX, it would be possible to upgrade atomically from a shared lock to
// an exclusive lock. This implementation prioritizes the simplicity of no
// platform-specific code over being faster in high contention cases.
if (sqlite_lock_mode_ != SQLITE_LOCK_NONE) {
base::File::Error error = file_.Unlock();
if (error != base::File::FILE_OK) {
vfs_->SetLastError(base::File::GetLastFileError());
return SQLITE_IOERR_LOCK;
}
sqlite_lock_mode_ = SQLITE_LOCK_NONE;
}
base::File::Error error = file_.Lock(file_lock_mode);
if (error != base::File::FILE_OK) {
vfs_->SetLastError(base::File::GetLastFileError());
return SQLITE_IOERR_LOCK;
}
sqlite_lock_mode_ = mode;
return SQLITE_OK;
#endif // BUILDFLAG(IS_FUCHSIA)
}
int SandboxedVfsFileImpl::Unlock(int mode) {
// The 2nd term in the DCHECK predicate is there because SQLite occasionally
// attempts to unlock (to SQLITE_LOCK_NONE) a file that was already unlocked.
// We're not aware of any other case of no-op VFS unlock calls.
DCHECK(mode < sqlite_lock_mode_ ||
(mode == sqlite_lock_mode_ && mode == SQLITE_LOCK_NONE))
<< "SQLite asked the VFS to unlock the file down to mode " << mode
<< " but the file is already at mode " << sqlite_lock_mode_;
// No-op if we're already unlocked or at the requested mode.
if (sqlite_lock_mode_ == mode || sqlite_lock_mode_ == SQLITE_LOCK_NONE) {
return SQLITE_OK;
}
#if BUILDFLAG(IS_FUCHSIA)
return SQLITE_IOERR_UNLOCK;
#else
// On POSIX, it is possible to downgrade atomically from an exclusive lock to
// a shared lock. SQLite's unix VFS takes advantage of this. This
// implementation prioritizes the simplicity of no platform-specific code over
// being faster in high contention cases.
base::File::Error error = file_.Unlock();
if (error != base::File::FILE_OK) {
vfs_->SetLastError(base::File::GetLastFileError());
return SQLITE_IOERR_UNLOCK;
}
if (mode == SQLITE_LOCK_NONE) {
sqlite_lock_mode_ = mode;
return SQLITE_OK;
}
DCHECK_EQ(mode, SQLITE_LOCK_SHARED);
error = file_.Lock(base::File::LockMode::kShared);
if (error == base::File::FILE_OK) {
sqlite_lock_mode_ = mode;
return SQLITE_OK;
}
// Gave up the exclusive lock, but failed to get a shared lock.
vfs_->SetLastError(base::File::GetLastFileError());
sqlite_lock_mode_ = SQLITE_LOCK_NONE;
return SQLITE_IOERR_UNLOCK;
#endif // BUILDFLAG(IS_FUCHSIA)
}
int SandboxedVfsFileImpl::CheckReservedLock(int* has_reserved_lock) {
if (IsExclusiveLockMode(sqlite_lock_mode_)) {
*has_reserved_lock = 1;
return SQLITE_OK;
}
if (sqlite_lock_mode_ == SQLITE_LOCK_SHARED) {
// Lock modes at or above RESERVED map to exclusive locks in our simplified
// implementation. If this process has a shared lock, no other process can
// have an exclusive lock.
*has_reserved_lock = 0;
return SQLITE_OK;
}
#if BUILDFLAG(IS_FUCHSIA)
return SQLITE_IOERR_CHECKRESERVEDLOCK;
#else
// On POSIX, it's possible to query the existing lock state of a file. The
// SQLite unix VFS takes advantage of this. On Windows, this isn't the case.
// Follow the strategy of the Windows VFS, which checks by trying to get an
// exclusive lock on the file.
base::File::Error error = file_.Lock(base::File::LockMode::kShared);
if (error != base::File::FILE_OK) {
*has_reserved_lock = 1;
return SQLITE_OK;
}
*has_reserved_lock = 0;
if (file_.Unlock() == base::File::FILE_OK) {
return SQLITE_OK;
}
// We acquired a shared lock that we can't get rid of.
sqlite_lock_mode_ = SQLITE_LOCK_SHARED;
return SQLITE_IOERR_CHECKRESERVEDLOCK;
#endif // BUILDFLAG(IS_FUCHSIA)
}
int SandboxedVfsFileImpl::FileControl(int opcode, void* data) {
switch (opcode) {
case SQLITE_FCNTL_MMAP_SIZE:
// Implementing memory-mapping will require handling this correctly.
return SQLITE_NOTFOUND;
default:
return SQLITE_NOTFOUND;
}
}
int SandboxedVfsFileImpl::SectorSize() {
return 0;
}
int SandboxedVfsFileImpl::DeviceCharacteristics() {
// TODO(pwnall): Figure out if we can get away with returning 0 on Windows.
#if BUILDFLAG(IS_WIN)
return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN;
#else
// NOTE: SQLite's unix VFS attempts to detect the underlying filesystem and
// sets some flags based on the result.
return 0;
#endif // BUILDFLAG(IS_WIN)
}
int SandboxedVfsFileImpl::ShmMap(int page_index,
int page_size,
int extend_file_if_needed,
void volatile** result) {
DCHECK_GE(page_index, 0);
DCHECK_GE(page_size, 0);
DCHECK(result);
// https://www.sqlite.org/wal.html#use_of_wal_without_shared_memory states
// that SQLite only attempts to use shared memory "-shm" files for databases
// in WAL mode that may be accessed by multiple processes (are not EXCLUSIVE).
//
// Chrome will not only use WAL mode on EXCLUSIVE databases.
NOTREACHED() << "SQLite should not attempt to use shared memory";
}
int SandboxedVfsFileImpl::ShmLock(int offset, int size, int flags) {
DCHECK_GE(offset, 0);
DCHECK_GE(size, 0);
// https://www.sqlite.org/wal.html#use_of_wal_without_shared_memory states
// that SQLite only attempts to use shared memory "-shm" files for databases
// in WAL mode that may be accessed by multiple processes (are not EXCLUSIVE).
//
// Chrome will not only use WAL mode on EXCLUSIVE databases.
NOTREACHED() << "SQLite should not attempt to use shared memory";
}
void SandboxedVfsFileImpl::ShmBarrier() {
// https://www.sqlite.org/wal.html#use_of_wal_without_shared_memory states
// that SQLite only attempts to use shared memory "-shm" files for databases
// in WAL mode that may be accessed by multiple processes (are not EXCLUSIVE).
//
// Chrome will not only use WAL mode on EXCLUSIVE databases.
NOTREACHED() << "SQLite should not attempt to use shared memory";
}
int SandboxedVfsFileImpl::ShmUnmap(int also_delete_file) {
// https://www.sqlite.org/wal.html#use_of_wal_without_shared_memory states
// that SQLite only attempts to use shared memory "-shm" files for databases
// in WAL mode that may be accessed by multiple processes (are not EXCLUSIVE).
//
// Chrome will not only use WAL mode on EXCLUSIVE databases.
NOTREACHED() << "SQLite should not attempt to use shared memory";
}
int SandboxedVfsFileImpl::Fetch(sqlite3_int64 offset, int size, void** result) {
DCHECK_GE(offset, 0);
DCHECK_GE(size, 0);
DCHECK(result);
// NOTE: This would be needed for mmap()ed file support.
*result = nullptr;
return SQLITE_IOERR;
}
int SandboxedVfsFileImpl::Unfetch(sqlite3_int64 offset, void* fetch_result) {
DCHECK_GE(offset, 0);
DCHECK(fetch_result);
// NOTE: This would be needed for mmap()ed file support.
return SQLITE_IOERR;
}
} // namespace sql