blob: a2f7348b8a092822d206b2f699d815db2c010cdd [file] [log] [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/big_endian.h"
#include <stdint.h>
#include <limits>
#include "base/strings/string_piece.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
TEST(BigEndianReaderTest, ReadsValues) {
std::array<uint8_t, 21u> data = {0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
uint8_t buf[2];
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
base::StringPiece piece;
{
BigEndianReader reader(data);
EXPECT_TRUE(reader.Skip(4));
EXPECT_EQ(reader.remaining_bytes().data(), &data[4u]);
EXPECT_EQ(reader.remaining(), sizeof(data) - 4);
EXPECT_TRUE(reader.ReadU8(&u8));
EXPECT_EQ(0x4, u8);
EXPECT_TRUE(reader.ReadU16(&u16));
EXPECT_EQ(0x0506, u16);
EXPECT_TRUE(reader.ReadU32(&u32));
EXPECT_EQ(0x0708090Au, u32);
EXPECT_TRUE(reader.ReadU64(&u64));
EXPECT_EQ(0x0B0C0D0E0F1A2B3Cllu, u64);
base::StringPiece expected(reinterpret_cast<const char*>(reader.ptr()), 2);
EXPECT_TRUE(reader.ReadPiece(&piece, 2));
EXPECT_EQ(2u, piece.size());
EXPECT_EQ(expected.data(), piece.data());
}
{
BigEndianReader reader(data);
// Fixed size span.
auto s1 = reader.ReadSpan<2u>().value();
static_assert(std::same_as<decltype(s1), base::span<const uint8_t, 2u>>);
EXPECT_EQ(s1.data(), &data[0u]);
EXPECT_EQ(s1.size(), 2u);
// Dynamic size span.
auto s2 = reader.ReadSpan(2u).value();
static_assert(std::same_as<decltype(s2), base::span<const uint8_t>>);
EXPECT_EQ(s2.data(), &data[2u]);
EXPECT_EQ(s2.size(), 2u);
buf[0] = buf[1] = uint8_t{0};
// Fixed size span.
EXPECT_TRUE(reader.ReadBytes(buf));
EXPECT_EQ(buf[0], 4u);
EXPECT_EQ(buf[1], 5u);
// Dynamic size span.
EXPECT_TRUE(reader.ReadBytes(span<uint8_t>(buf)));
EXPECT_EQ(buf[0], 6u);
EXPECT_EQ(buf[1], 7u);
EXPECT_EQ(reader.remaining_bytes().data(), &data[8u]);
}
}
TEST(BigEndianReaderTest, ReadsLengthPrefixedValues) {
{
uint8_t u8_prefixed_data[] = {8, 8, 9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(u8_prefixed_data, sizeof(u8_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU8LengthPrefixed(&piece));
// |reader| should skip both a u8 and the length-8 length-prefixed field.
EXPECT_EQ(reader.ptr(), u8_prefixed_data + 9);
EXPECT_EQ(piece.size(), 8u);
EXPECT_EQ(reinterpret_cast<const uint8_t*>(piece.data()),
u8_prefixed_data + 1);
}
{
uint8_t u16_prefixed_data[] = {0, 8, 0xD, 0xE, 0xF,
0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece));
// |reader| should skip both a u16 and the length-8 length-prefixed field.
EXPECT_EQ(reader.ptr(), u16_prefixed_data + 10);
EXPECT_EQ(piece.size(), 8u);
EXPECT_EQ(reinterpret_cast<const uint8_t*>(piece.data()),
u16_prefixed_data + 2);
// With no data left, we shouldn't be able to
// read another u8 length prefix (or a u16 length prefix,
// for that matter).
EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece));
EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece));
}
{
// Make sure there's no issue reading a zero-value length prefix.
uint8_t u16_prefixed_data[3] = {};
BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece));
EXPECT_EQ(reader.ptr(), u16_prefixed_data + 2);
EXPECT_EQ(reinterpret_cast<const uint8_t*>(piece.data()),
u16_prefixed_data + 2);
EXPECT_EQ(piece.size(), 0u);
}
}
TEST(BigEndianReaderTest, LengthPrefixedReadsFailGracefully) {
// We can't read 0xF (or, for that matter, 0xF8) bytes after the length
// prefix: there isn't enough data.
uint8_t data[] = {0xF, 8, 9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(data, sizeof(data));
base::StringPiece piece;
EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece));
EXPECT_EQ(data, reader.ptr());
EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece));
EXPECT_EQ(data, reader.ptr());
}
TEST(BigEndianReaderTest, RespectsLength) {
uint8_t data[8];
uint8_t buf[2];
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
base::StringPiece piece;
BigEndianReader reader(data, sizeof(data));
// 8 left
EXPECT_FALSE(reader.Skip(9));
EXPECT_TRUE(reader.Skip(1));
// 7 left
EXPECT_FALSE(reader.ReadU64(&u64));
EXPECT_TRUE(reader.Skip(4));
// 3 left
EXPECT_FALSE(reader.ReadU32(&u32));
EXPECT_FALSE(reader.ReadPiece(&piece, 4));
EXPECT_TRUE(reader.Skip(2));
// 1 left
EXPECT_FALSE(reader.ReadU16(&u16));
EXPECT_FALSE(reader.ReadBytes(span<uint8_t>(buf)));
EXPECT_FALSE(reader.ReadBytes(span<uint8_t, 2u>(buf)));
EXPECT_TRUE(reader.Skip(1));
// 0 left
EXPECT_FALSE(reader.ReadU8(&u8));
EXPECT_EQ(0u, reader.remaining());
}
TEST(BigEndianReaderTest, SafePointerMath) {
uint8_t data[3];
BigEndianReader reader(data);
// The test should fail without ever dereferencing the |dummy_buf| pointer.
uint8_t* dummy_buf = reinterpret_cast<uint8_t*>(0xdeadbeef);
// Craft an extreme length value that would cause |reader.data() + len| to
// overflow.
size_t extreme_length = std::numeric_limits<size_t>::max() - 1;
base::StringPiece piece;
EXPECT_FALSE(reader.Skip(extreme_length));
EXPECT_FALSE(reader.ReadBytes(
// SAFETY: This will create Undefined Behaviour if the invalid length is
// ever added to the pointer. However span() constructor does not do so,
// and ReadBytes() checks the size before using the pointer and returns
// false.
UNSAFE_BUFFERS(span(dummy_buf, extreme_length))));
EXPECT_FALSE(reader.ReadPiece(&piece, extreme_length));
}
TEST(BigEndianWriterTest, WritesValues) {
uint8_t expected[] = {0, 0, 2, 3, 4, 5, 6, 7, 8, 9,
0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x1A, 0x2B, 0x3C};
uint8_t data[sizeof(expected)];
uint8_t buf[] = {0x2, 0x3};
memset(data, 0, sizeof(data));
BigEndianWriter writer(data);
EXPECT_TRUE(writer.Skip(2));
EXPECT_TRUE(writer.WriteBytes(buf, sizeof(buf)));
EXPECT_TRUE(writer.WriteU8(0x4));
EXPECT_TRUE(writer.WriteU16(0x0506));
EXPECT_TRUE(writer.WriteU32(0x0708090A));
EXPECT_TRUE(writer.WriteU64(0x0B0C0D0E0F1A2B3Cllu));
EXPECT_EQ(0, memcmp(expected, data, sizeof(expected)));
}
TEST(BigEndianWriterTest, RespectsLength) {
uint8_t data[8];
uint8_t buf[2];
uint8_t u8 = 0;
uint16_t u16 = 0;
uint32_t u32 = 0;
uint64_t u64 = 0;
BigEndianWriter writer(data);
// 8 left
EXPECT_FALSE(writer.Skip(9));
EXPECT_TRUE(writer.Skip(1));
// 7 left
EXPECT_FALSE(writer.WriteU64(u64));
EXPECT_TRUE(writer.Skip(4));
// 3 left
EXPECT_FALSE(writer.WriteU32(u32));
EXPECT_TRUE(writer.Skip(2));
// 1 left
EXPECT_FALSE(writer.WriteU16(u16));
EXPECT_FALSE(writer.WriteBytes(buf, 2));
EXPECT_TRUE(writer.Skip(1));
// 0 left
EXPECT_FALSE(writer.WriteU8(u8));
EXPECT_EQ(0u, writer.remaining());
}
TEST(BigEndianWriterTest, SafePointerMath) {
uint8_t data[3];
BigEndianWriter writer(data);
// The test should fail without ever dereferencing the |dummy_buf| pointer.
const uint8_t* dummy_buf = reinterpret_cast<const uint8_t*>(0xdeadbeef);
// Craft an extreme length value that would cause |reader.data() + len| to
// overflow.
size_t extreme_length = std::numeric_limits<size_t>::max() - 1;
EXPECT_FALSE(writer.Skip(extreme_length));
EXPECT_FALSE(writer.WriteBytes(dummy_buf, extreme_length));
}
} // namespace base