blob: f2753dbafa631a60b3b2575d3a665b792b9ce5de [file] [log] [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <thread>
#include <vector>
#include "base/allocator/dispatcher/notification_data.h"
#include "base/allocator/dispatcher/subsystem.h"
#include "base/debug/allocation_trace.h"
#include "base/strings/stringprintf.h"
#include "base/timer/lap_timer.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_result_reporter.h"
namespace base {
namespace debug {
namespace {
// Change kTimeLimit to something higher if you need more time to capture a
// trace.
constexpr base::TimeDelta kTimeLimit = base::Seconds(3);
constexpr int kWarmupRuns = 100;
constexpr int kTimeCheckInterval = 1000;
constexpr char kMetricStackTraceDuration[] = ".duration_per_run";
constexpr char kMetricStackTraceThroughput[] = ".throughput";
enum class HandlerFunctionSelector { OnAllocation, OnFree };
// An executor to perform the actual notification of the recorder. The correct
// handler function is selected using template specialization based on the
// HandlerFunctionSelector.
template <HandlerFunctionSelector HandlerFunction>
struct HandlerFunctionExecutor {
void operator()(base::debug::tracer::AllocationTraceRecorder& recorder) const;
};
template <>
struct HandlerFunctionExecutor<HandlerFunctionSelector::OnAllocation> {
void operator()(
base::debug::tracer::AllocationTraceRecorder& recorder) const {
// Since the recorder just stores the value, we can use any value for
// address and size that we want.
recorder.OnAllocation(
base::allocator::dispatcher::AllocationNotificationData(
&recorder, sizeof(recorder), nullptr,
base::allocator::dispatcher::AllocationSubsystem::
kPartitionAllocator));
}
};
template <>
struct HandlerFunctionExecutor<HandlerFunctionSelector::OnFree> {
void operator()(
base::debug::tracer::AllocationTraceRecorder& recorder) const {
recorder.OnFree(base::allocator::dispatcher::FreeNotificationData(
&recorder,
base::allocator::dispatcher::AllocationSubsystem::kPartitionAllocator));
}
};
} // namespace
class AllocationTraceRecorderPerfTest
: public testing::TestWithParam<
std::tuple<HandlerFunctionSelector, size_t>> {
protected:
// The result data of a single thread. From the results of all the single
// threads the final results will be calculated.
struct ResultData {
TimeDelta time_per_lap;
float laps_per_second = 0.0;
int number_of_laps = 0;
};
// The data of a single test thread.
struct ThreadRunnerData {
std::thread thread;
ResultData result_data;
};
// Create and setup the result reporter.
const char* GetHandlerDescriptor(HandlerFunctionSelector handler_function);
perf_test::PerfResultReporter SetUpReporter(
HandlerFunctionSelector handler_function,
size_t number_of_allocating_threads);
// Select the correct test function which shall be used for the current test.
using TestFunction =
void (*)(base::debug::tracer::AllocationTraceRecorder& recorder,
ResultData& result_data);
static TestFunction GetTestFunction(HandlerFunctionSelector handler_function);
template <HandlerFunctionSelector HandlerFunction>
static void TestFunctionImplementation(
base::debug::tracer::AllocationTraceRecorder& recorder,
ResultData& result_data);
// The test management function. Using the the above auxiliary functions it is
// responsible to setup the result reporter, select the correct test function,
// spawn the specified number of worker threads and post process the results.
void PerformTest(HandlerFunctionSelector handler_function,
size_t number_of_allocating_threads);
};
const char* AllocationTraceRecorderPerfTest::GetHandlerDescriptor(
HandlerFunctionSelector handler_function) {
switch (handler_function) {
case HandlerFunctionSelector::OnAllocation:
return "OnAllocation";
case HandlerFunctionSelector::OnFree:
return "OnFree";
}
}
perf_test::PerfResultReporter AllocationTraceRecorderPerfTest::SetUpReporter(
HandlerFunctionSelector handler_function,
size_t number_of_allocating_threads) {
const std::string story_name = base::StringPrintf(
"(%s;%zu-threads)", GetHandlerDescriptor(handler_function),
number_of_allocating_threads);
perf_test::PerfResultReporter reporter("AllocationRecorderPerf", story_name);
reporter.RegisterImportantMetric(kMetricStackTraceDuration, "ns");
reporter.RegisterImportantMetric(kMetricStackTraceThroughput, "runs/s");
return reporter;
}
AllocationTraceRecorderPerfTest::TestFunction
AllocationTraceRecorderPerfTest::GetTestFunction(
HandlerFunctionSelector handler_function) {
switch (handler_function) {
case HandlerFunctionSelector::OnAllocation:
return TestFunctionImplementation<HandlerFunctionSelector::OnAllocation>;
case HandlerFunctionSelector::OnFree:
return TestFunctionImplementation<HandlerFunctionSelector::OnFree>;
}
}
void AllocationTraceRecorderPerfTest::PerformTest(
HandlerFunctionSelector handler_function,
size_t number_of_allocating_threads) {
perf_test::PerfResultReporter reporter =
SetUpReporter(handler_function, number_of_allocating_threads);
TestFunction test_function = GetTestFunction(handler_function);
base::debug::tracer::AllocationTraceRecorder the_recorder;
std::vector<ThreadRunnerData> notifying_threads;
notifying_threads.reserve(number_of_allocating_threads);
// Setup the threads. After creation, each thread immediately starts running.
// We expect the creation of the threads to be so quick that the delay from
// first to last thread is negligible.
for (size_t i = 0; i < number_of_allocating_threads; ++i) {
auto& last_item = notifying_threads.emplace_back();
last_item.thread = std::thread{test_function, std::ref(the_recorder),
std::ref(last_item.result_data)};
}
TimeDelta average_time_per_lap;
float average_laps_per_second = 0;
// Wait for each thread to finish and collect its result data.
for (auto& item : notifying_threads) {
item.thread.join();
// When finishing, each threads writes its results into result_data. So,
// from here we gather its performance statistics.
average_time_per_lap += item.result_data.time_per_lap;
average_laps_per_second += item.result_data.laps_per_second;
}
average_time_per_lap /= number_of_allocating_threads;
average_laps_per_second /= number_of_allocating_threads;
reporter.AddResult(kMetricStackTraceDuration, average_time_per_lap);
reporter.AddResult(kMetricStackTraceThroughput, average_laps_per_second);
}
template <HandlerFunctionSelector HandlerFunction>
void AllocationTraceRecorderPerfTest::TestFunctionImplementation(
base::debug::tracer::AllocationTraceRecorder& recorder,
ResultData& result_data) {
LapTimer timer(kWarmupRuns, kTimeLimit, kTimeCheckInterval,
LapTimer::TimerMethod::kUseTimeTicks);
HandlerFunctionExecutor<HandlerFunction> handler_executor;
timer.Start();
do {
handler_executor(recorder);
timer.NextLap();
} while (!timer.HasTimeLimitExpired());
result_data.time_per_lap = timer.TimePerLap();
result_data.laps_per_second = timer.LapsPerSecond();
result_data.number_of_laps = timer.NumLaps();
}
INSTANTIATE_TEST_SUITE_P(
,
AllocationTraceRecorderPerfTest,
::testing::Combine(::testing::Values(HandlerFunctionSelector::OnAllocation,
HandlerFunctionSelector::OnFree),
::testing::Values(1, 5, 10, 20, 40, 80)));
TEST_P(AllocationTraceRecorderPerfTest, TestNotification) {
const auto parameters = GetParam();
const HandlerFunctionSelector handler_function = std::get<0>(parameters);
const size_t number_of_threads = std::get<1>(parameters);
PerformTest(handler_function, number_of_threads);
}
} // namespace debug
} // namespace base