blob: 96dcd37c1d91cf590973d01783f89b9d1b05fa2b [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <vector>
#include "cc/base/region.h"
#include "cc/playback/display_list_raster_source.h"
#include "cc/test/fake_content_layer_client.h"
#include "cc/test/fake_display_list_recording_source.h"
#include "cc/test/skia_common.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cc {
namespace {
scoped_ptr<FakeDisplayListRecordingSource> CreateRecordingSource(
const gfx::Rect& viewport,
const gfx::Size& grid_cell_size) {
gfx::Rect layer_rect(viewport.right(), viewport.bottom());
scoped_ptr<FakeDisplayListRecordingSource> recording_source =
FakeDisplayListRecordingSource::CreateRecordingSource(viewport,
layer_rect.size());
recording_source->SetGridCellSize(grid_cell_size);
return recording_source.Pass();
}
scoped_refptr<RasterSource> CreateRasterSource(
FakeDisplayListRecordingSource* recording_source) {
bool can_use_lcd_text = true;
return DisplayListRasterSource::CreateFromDisplayListRecordingSource(
recording_source, can_use_lcd_text);
}
TEST(DisplayListRecordingSourceTest, DiscardableImagesWithTransform) {
gfx::Size grid_cell_size(128, 128);
gfx::Rect recorded_viewport(256, 256);
scoped_ptr<FakeDisplayListRecordingSource> recording_source =
FakeDisplayListRecordingSource::CreateFilledRecordingSource(
recorded_viewport.size());
recording_source->SetGridCellSize(grid_cell_size);
skia::RefPtr<SkImage> discardable_image[2][2];
gfx::Transform identity_transform;
discardable_image[0][0] = CreateDiscardableImage(gfx::Size(32, 32));
// Translate transform is equivalent to moving using point.
gfx::Transform translate_transform;
translate_transform.Translate(0, 130);
discardable_image[1][0] = CreateDiscardableImage(gfx::Size(32, 32));
// This moves the bitmap to center of viewport and rotate, this would make
// this bitmap in all four tile grids.
gfx::Transform rotate_transform;
rotate_transform.Translate(112, 112);
rotate_transform.Rotate(45);
discardable_image[1][1] = CreateDiscardableImage(gfx::Size(32, 32));
gfx::RectF rect(0, 0, 32, 32);
gfx::RectF translate_rect = rect;
translate_transform.TransformRect(&translate_rect);
gfx::RectF rotate_rect = rect;
rotate_transform.TransformRect(&rotate_rect);
recording_source->add_draw_image_with_transform(discardable_image[0][0].get(),
identity_transform);
recording_source->add_draw_image_with_transform(discardable_image[1][0].get(),
translate_transform);
recording_source->add_draw_image_with_transform(discardable_image[1][1].get(),
rotate_transform);
recording_source->SetGatherDiscardableImages(true);
recording_source->Rerecord();
bool can_use_lcd_text = true;
scoped_refptr<DisplayListRasterSource> raster_source =
DisplayListRasterSource::CreateFromDisplayListRecordingSource(
recording_source.get(), can_use_lcd_text);
// Tile sized iterators. These should find only one pixel ref.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 128, 128), &images);
EXPECT_EQ(2u, images.size());
EXPECT_TRUE(images[0].image == discardable_image[0][0].get());
EXPECT_TRUE(images[1].image == discardable_image[1][1].get());
EXPECT_EQ(rect.ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
EXPECT_EQ(rotate_rect.ToString(),
gfx::SkRectToRectF(images[1].image_rect).ToString());
}
// Shifted tile sized iterators. These should find only one pixel ref.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(140, 140, 128, 128),
&images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image == discardable_image[1][1].get());
EXPECT_EQ(rotate_rect.ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
}
// The rotated bitmap would still be in the top right tile.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(140, 0, 128, 128),
&images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image == discardable_image[1][1].get());
EXPECT_EQ(rotate_rect.ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
}
// Layer sized iterators. These should find all 6 pixel refs, including 1
// pixel ref bitmap[0][0], 1 pixel ref for bitmap[1][0], and 4 pixel refs for
// bitmap[1][1].
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 256, 256), &images);
EXPECT_EQ(6u, images.size());
// Top left tile with bitmap[0][0] and bitmap[1][1].
EXPECT_TRUE(images[0].image == discardable_image[0][0].get());
EXPECT_TRUE(images[1].image == discardable_image[1][1].get());
// Top right tile with bitmap[1][1].
EXPECT_TRUE(images[2].image == discardable_image[1][1].get());
// Bottom left tile with bitmap[1][0] and bitmap[1][1].
EXPECT_TRUE(images[3].image == discardable_image[1][0].get());
EXPECT_TRUE(images[4].image == discardable_image[1][1].get());
// Bottom right tile with bitmap[1][1].
EXPECT_TRUE(images[5].image == discardable_image[1][1].get());
EXPECT_EQ(rect.ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
EXPECT_EQ(rotate_rect.ToString(),
gfx::SkRectToRectF(images[1].image_rect).ToString());
EXPECT_EQ(rotate_rect.ToString(),
gfx::SkRectToRectF(images[2].image_rect).ToString());
EXPECT_EQ(translate_rect.ToString(),
gfx::SkRectToRectF(images[3].image_rect).ToString());
EXPECT_EQ(rotate_rect.ToString(),
gfx::SkRectToRectF(images[4].image_rect).ToString());
EXPECT_EQ(rotate_rect.ToString(),
gfx::SkRectToRectF(images[5].image_rect).ToString());
}
}
TEST(DisplayListRecordingSourceTest, ExposesEnoughNewAreaEmpty) {
gfx::Size layer_size(1000, 1000);
// Both empty means there is nothing to do.
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
gfx::Rect(), gfx::Rect(), layer_size));
// Going from empty to non-empty means we must re-record because it could be
// the first frame after construction or Clear.
EXPECT_TRUE(DisplayListRecordingSource::ExposesEnoughNewArea(
gfx::Rect(), gfx::Rect(1, 1), layer_size));
// Going from non-empty to empty is not special-cased.
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
gfx::Rect(1, 1), gfx::Rect(), layer_size));
}
TEST(DisplayListRecordingSourceTest, ExposesEnoughNewAreaNotBigEnough) {
gfx::Size layer_size(1000, 1000);
gfx::Rect current_recorded_viewport(100, 100, 100, 100);
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, gfx::Rect(100, 100, 90, 90), layer_size));
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, gfx::Rect(100, 100, 100, 100), layer_size));
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, gfx::Rect(1, 1, 200, 200), layer_size));
}
TEST(DisplayListRecordingSourceTest,
ExposesEnoughNewAreaNotBigEnoughButNewAreaTouchesEdge) {
gfx::Size layer_size(500, 500);
gfx::Rect current_recorded_viewport(100, 100, 100, 100);
// Top edge.
EXPECT_TRUE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, gfx::Rect(100, 0, 100, 200), layer_size));
// Left edge.
EXPECT_TRUE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, gfx::Rect(0, 100, 200, 100), layer_size));
// Bottom edge.
EXPECT_TRUE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, gfx::Rect(100, 100, 100, 400), layer_size));
// Right edge.
EXPECT_TRUE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, gfx::Rect(100, 100, 400, 100), layer_size));
}
// Verifies that having a current viewport that touches a layer edge does not
// force re-recording.
TEST(DisplayListRecordingSourceTest,
ExposesEnoughNewAreaCurrentViewportTouchesEdge) {
gfx::Size layer_size(500, 500);
gfx::Rect potential_new_viewport(100, 100, 300, 300);
// Top edge.
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
gfx::Rect(100, 0, 100, 100), potential_new_viewport, layer_size));
// Left edge.
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
gfx::Rect(0, 100, 100, 100), potential_new_viewport, layer_size));
// Bottom edge.
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
gfx::Rect(300, 400, 100, 100), potential_new_viewport, layer_size));
// Right edge.
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
gfx::Rect(400, 300, 100, 100), potential_new_viewport, layer_size));
}
TEST(DisplayListRecordingSourceTest, ExposesEnoughNewAreaScrollScenarios) {
gfx::Size layer_size(1000, 1000);
gfx::Rect current_recorded_viewport(100, 100, 100, 100);
gfx::Rect new_recorded_viewport(current_recorded_viewport);
new_recorded_viewport.Offset(512, 0);
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, new_recorded_viewport, layer_size));
new_recorded_viewport.Offset(0, 512);
EXPECT_FALSE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, new_recorded_viewport, layer_size));
new_recorded_viewport.Offset(1, 0);
EXPECT_TRUE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, new_recorded_viewport, layer_size));
new_recorded_viewport.Offset(-1, 1);
EXPECT_TRUE(DisplayListRecordingSource::ExposesEnoughNewArea(
current_recorded_viewport, new_recorded_viewport, layer_size));
}
// Verifies that UpdateAndExpandInvalidation calls ExposesEnoughNewArea with the
// right arguments.
TEST(DisplayListRecordingSourceTest,
ExposesEnoughNewAreaCalledWithCorrectArguments) {
gfx::Size grid_cell_size(128, 128);
DisplayListRecordingSource recording_source(grid_cell_size);
FakeContentLayerClient client;
Region invalidation;
gfx::Size layer_size(9000, 9000);
gfx::Rect visible_rect(0, 0, 256, 256);
recording_source.UpdateAndExpandInvalidation(
&client, &invalidation, layer_size, visible_rect, 0,
RecordingSource::RECORD_NORMALLY);
EXPECT_EQ(gfx::Rect(0, 0, 4256, 4256), recording_source.recorded_viewport());
visible_rect.Offset(0, 512);
recording_source.UpdateAndExpandInvalidation(
&client, &invalidation, layer_size, visible_rect, 0,
RecordingSource::RECORD_NORMALLY);
EXPECT_EQ(gfx::Rect(0, 0, 4256, 4256), recording_source.recorded_viewport());
// Move past the threshold for enough exposed new area.
visible_rect.Offset(0, 1);
recording_source.UpdateAndExpandInvalidation(
&client, &invalidation, layer_size, visible_rect, 0,
RecordingSource::RECORD_NORMALLY);
EXPECT_EQ(gfx::Rect(0, 0, 4256, 4769), recording_source.recorded_viewport());
// Make the bottom of the potential new recorded viewport coincide with the
// layer's bottom edge.
visible_rect.Offset(0, 231);
recording_source.UpdateAndExpandInvalidation(
&client, &invalidation, layer_size, visible_rect, 0,
RecordingSource::RECORD_NORMALLY);
EXPECT_EQ(gfx::Rect(0, 0, 4256, 4769), recording_source.recorded_viewport());
}
TEST(DisplayListRecordingSourceTest, NoGatherImageEmptyImages) {
gfx::Size grid_cell_size(128, 128);
gfx::Rect recorded_viewport(0, 0, 256, 256);
scoped_ptr<FakeDisplayListRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport, grid_cell_size);
recording_source->SetGatherDiscardableImages(false);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// If recording source do not gather images, raster source is not going to
// get images.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(recorded_viewport, &images);
EXPECT_TRUE(images.empty());
}
}
TEST(DisplayListRecordingSourceTest, EmptyImages) {
gfx::Size grid_cell_size(128, 128);
gfx::Rect recorded_viewport(0, 0, 256, 256);
scoped_ptr<FakeDisplayListRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport, grid_cell_size);
recording_source->SetGatherDiscardableImages(true);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// Tile sized iterators.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 128, 128), &images);
EXPECT_TRUE(images.empty());
}
// Shifted tile sized iterators.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(140, 140, 128, 128),
&images);
EXPECT_TRUE(images.empty());
}
// Layer sized iterators.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 256, 256), &images);
EXPECT_TRUE(images.empty());
}
}
TEST(DisplayListRecordingSourceTest, NoDiscardableImages) {
gfx::Size grid_cell_size(128, 128);
gfx::Rect recorded_viewport(0, 0, 256, 256);
scoped_ptr<FakeDisplayListRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport, grid_cell_size);
SkPaint simple_paint;
simple_paint.setColor(SkColorSetARGB(255, 12, 23, 34));
SkBitmap non_discardable_bitmap;
non_discardable_bitmap.allocN32Pixels(128, 128);
non_discardable_bitmap.setImmutable();
skia::RefPtr<SkImage> non_discardable_image =
skia::AdoptRef(SkImage::NewFromBitmap(non_discardable_bitmap));
recording_source->add_draw_rect_with_paint(gfx::Rect(0, 0, 256, 256),
simple_paint);
recording_source->add_draw_rect_with_paint(gfx::Rect(128, 128, 512, 512),
simple_paint);
recording_source->add_draw_rect_with_paint(gfx::Rect(512, 0, 256, 256),
simple_paint);
recording_source->add_draw_rect_with_paint(gfx::Rect(0, 512, 256, 256),
simple_paint);
recording_source->add_draw_image(non_discardable_image.get(),
gfx::Point(128, 0));
recording_source->add_draw_image(non_discardable_image.get(),
gfx::Point(0, 128));
recording_source->add_draw_image(non_discardable_image.get(),
gfx::Point(150, 150));
recording_source->SetGatherDiscardableImages(true);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// Tile sized iterators.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 128, 128), &images);
EXPECT_TRUE(images.empty());
}
// Shifted tile sized iterators.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(140, 140, 128, 128),
&images);
EXPECT_TRUE(images.empty());
}
// Layer sized iterators.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 256, 256), &images);
EXPECT_TRUE(images.empty());
}
}
TEST(DisplayListRecordingSourceTest, DiscardableImages) {
gfx::Size grid_cell_size(128, 128);
gfx::Rect recorded_viewport(0, 0, 256, 256);
scoped_ptr<FakeDisplayListRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport, grid_cell_size);
skia::RefPtr<SkImage> discardable_image[2][2];
discardable_image[0][0] = CreateDiscardableImage(gfx::Size(32, 32));
discardable_image[1][0] = CreateDiscardableImage(gfx::Size(32, 32));
discardable_image[1][1] = CreateDiscardableImage(gfx::Size(32, 32));
// Discardable images are found in the following cells:
// |---|---|
// | x | |
// |---|---|
// | x | x |
// |---|---|
recording_source->add_draw_image(discardable_image[0][0].get(),
gfx::Point(0, 0));
recording_source->add_draw_image(discardable_image[1][0].get(),
gfx::Point(0, 130));
recording_source->add_draw_image(discardable_image[1][1].get(),
gfx::Point(140, 140));
recording_source->SetGatherDiscardableImages(true);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// Tile sized iterators. These should find only one image.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 128, 128), &images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image == discardable_image[0][0].get());
EXPECT_EQ(gfx::RectF(32, 32).ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
}
// Shifted tile sized iterators. These should find only one image.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(140, 140, 128, 128),
&images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image == discardable_image[1][1].get());
EXPECT_EQ(gfx::RectF(140, 140, 32, 32).ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
}
// Ensure there's no discardable images in the empty cell
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(140, 0, 128, 128),
&images);
EXPECT_TRUE(images.empty());
}
// Layer sized iterators. These should find all 3 images.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 256, 256), &images);
EXPECT_EQ(3u, images.size());
EXPECT_TRUE(images[0].image == discardable_image[0][0].get());
EXPECT_TRUE(images[1].image == discardable_image[1][0].get());
EXPECT_TRUE(images[2].image == discardable_image[1][1].get());
EXPECT_EQ(gfx::RectF(32, 32).ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
EXPECT_EQ(gfx::RectF(0, 130, 32, 32).ToString(),
gfx::SkRectToRectF(images[1].image_rect).ToString());
EXPECT_EQ(gfx::RectF(140, 140, 32, 32).ToString(),
gfx::SkRectToRectF(images[2].image_rect).ToString());
}
}
TEST(DisplayListRecordingSourceTest, DiscardableImagesBaseNonDiscardable) {
gfx::Size grid_cell_size(256, 256);
gfx::Rect recorded_viewport(0, 0, 512, 512);
scoped_ptr<FakeDisplayListRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport, grid_cell_size);
SkBitmap non_discardable_bitmap;
non_discardable_bitmap.allocN32Pixels(512, 512);
non_discardable_bitmap.setImmutable();
skia::RefPtr<SkImage> non_discardable_image =
skia::AdoptRef(SkImage::NewFromBitmap(non_discardable_bitmap));
skia::RefPtr<SkImage> discardable_image[2][2];
discardable_image[0][0] = CreateDiscardableImage(gfx::Size(128, 128));
discardable_image[0][1] = CreateDiscardableImage(gfx::Size(128, 128));
discardable_image[1][1] = CreateDiscardableImage(gfx::Size(128, 128));
// One large non-discardable image covers the whole grid.
// Discardable images are found in the following cells:
// |---|---|
// | x | x |
// |---|---|
// | | x |
// |---|---|
recording_source->add_draw_image(non_discardable_image.get(),
gfx::Point(0, 0));
recording_source->add_draw_image(discardable_image[0][0].get(),
gfx::Point(0, 0));
recording_source->add_draw_image(discardable_image[0][1].get(),
gfx::Point(260, 0));
recording_source->add_draw_image(discardable_image[1][1].get(),
gfx::Point(260, 260));
recording_source->SetGatherDiscardableImages(true);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// Tile sized iterators. These should find only one image.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 256, 256), &images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image == discardable_image[0][0].get());
EXPECT_EQ(gfx::RectF(128, 128).ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
}
// Shifted tile sized iterators. These should find only one image.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(260, 260, 256, 256),
&images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image == discardable_image[1][1].get());
EXPECT_EQ(gfx::RectF(260, 260, 128, 128).ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
}
// Ensure there's no discardable images in the empty cell
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 256, 256, 256),
&images);
EXPECT_TRUE(images.empty());
}
// Layer sized iterators. These should find three images.
{
std::vector<skia::PositionImage> images;
raster_source->GatherDiscardableImages(gfx::Rect(0, 0, 512, 512), &images);
EXPECT_EQ(3u, images.size());
EXPECT_TRUE(images[0].image == discardable_image[0][0].get());
EXPECT_TRUE(images[1].image == discardable_image[0][1].get());
EXPECT_TRUE(images[2].image == discardable_image[1][1].get());
EXPECT_EQ(gfx::RectF(128, 128).ToString(),
gfx::SkRectToRectF(images[0].image_rect).ToString());
EXPECT_EQ(gfx::RectF(260, 0, 128, 128).ToString(),
gfx::SkRectToRectF(images[1].image_rect).ToString());
EXPECT_EQ(gfx::RectF(260, 260, 128, 128).ToString(),
gfx::SkRectToRectF(images[2].image_rect).ToString());
}
}
} // namespace
} // namespace cc