blob: 83f8051b063a49582534880e8965f7d8b9eaf57f [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/address_tracker_linux.h"
#include <linux/if.h>
#include <sched.h>
#include <memory>
#include <unordered_set>
#include <vector>
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/command_line.h"
#include "base/files/file_util.h"
#include "base/memory/raw_ptr.h"
#include "base/strings/string_number_conversions.h"
#include "base/synchronization/waitable_event.h"
#include "base/test/multiprocess_test.h"
#include "base/test/spin_wait.h"
#include "base/test/task_environment.h"
#include "base/test/test_simple_task_runner.h"
#include "base/threading/simple_thread.h"
#include "build/build_config.h"
#include "net/base/ip_address.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/multiprocess_func_list.h"
#if BUILDFLAG(IS_ANDROID)
#include "base/android/build_info.h"
#endif
#ifndef IFA_F_HOMEADDRESS
#define IFA_F_HOMEADDRESS 0x10
#endif
namespace net::internal {
namespace {
const int kTestInterfaceEth = 1;
const int kTestInterfaceWifi = 2;
const int kTestInterfaceTun = 123;
const int kTestInterfaceAp = 456;
const char kIgnoredInterfaceName[] = "uap0";
char* TestGetInterfaceName(int interface_index, char* buf) {
if (interface_index == kTestInterfaceEth) {
snprintf(buf, IFNAMSIZ, "%s", "eth0");
} else if (interface_index == kTestInterfaceTun) {
snprintf(buf, IFNAMSIZ, "%s", "tun0");
} else if (interface_index == kTestInterfaceAp) {
snprintf(buf, IFNAMSIZ, "%s", kIgnoredInterfaceName);
} else {
snprintf(buf, IFNAMSIZ, "%s", "");
}
return buf;
}
} // namespace
typedef std::vector<char> Buffer;
class AddressTrackerLinuxTest : public testing::Test {
protected:
AddressTrackerLinuxTest() = default;
void InitializeAddressTracker(bool tracking) {
if (tracking) {
tracker_ = std::make_unique<AddressTrackerLinux>(
base::DoNothing(), base::DoNothing(), base::DoNothing(),
ignored_interfaces_);
} else {
tracker_ = std::make_unique<AddressTrackerLinux>();
}
original_get_interface_name_ = tracker_->get_interface_name_;
tracker_->get_interface_name_ = TestGetInterfaceName;
}
bool HandleAddressMessage(const Buffer& buf) {
Buffer writable_buf = buf;
bool address_changed = false;
bool link_changed = false;
bool tunnel_changed = false;
tracker_->HandleMessage(&writable_buf[0], buf.size(),
&address_changed, &link_changed, &tunnel_changed);
EXPECT_FALSE(link_changed);
return address_changed;
}
bool HandleLinkMessage(const Buffer& buf) {
Buffer writable_buf = buf;
bool address_changed = false;
bool link_changed = false;
bool tunnel_changed = false;
tracker_->HandleMessage(&writable_buf[0], buf.size(),
&address_changed, &link_changed, &tunnel_changed);
EXPECT_FALSE(address_changed);
return link_changed;
}
bool HandleTunnelMessage(const Buffer& buf) {
Buffer writable_buf = buf;
bool address_changed = false;
bool link_changed = false;
bool tunnel_changed = false;
tracker_->HandleMessage(&writable_buf[0], buf.size(),
&address_changed, &link_changed, &tunnel_changed);
EXPECT_FALSE(address_changed);
return tunnel_changed;
}
AddressTrackerLinux::AddressMap GetAddressMap() {
return tracker_->GetAddressMap();
}
const std::unordered_set<int> GetOnlineLinks() const {
return tracker_->GetOnlineLinks();
}
void IgnoreInterface(const std::string& interface_name) {
ignored_interfaces_.insert(interface_name);
}
int GetThreadsWaitingForConnectionTypeInit() {
return tracker_->GetThreadsWaitingForConnectionTypeInitForTesting();
}
std::unordered_set<std::string> ignored_interfaces_;
std::unique_ptr<AddressTrackerLinux> tracker_;
AddressTrackerLinux::GetInterfaceNameFunction original_get_interface_name_;
};
namespace {
class NetlinkMessage {
public:
explicit NetlinkMessage(uint16_t type) : buffer_(NLMSG_HDRLEN) {
header()->nlmsg_type = type;
Align();
}
void AddPayload(const void* data, size_t length) {
CHECK_EQ(static_cast<size_t>(NLMSG_HDRLEN),
buffer_.size()) << "Payload must be added first";
Append(data, length);
Align();
}
void AddAttribute(uint16_t type, const void* data, size_t length) {
struct nlattr attr;
attr.nla_len = NLA_HDRLEN + length;
attr.nla_type = type;
Append(&attr, sizeof(attr));
Align();
Append(data, length);
Align();
}
void AppendTo(Buffer* output) const {
CHECK_EQ(NLMSG_ALIGN(output->size()), output->size());
output->reserve(output->size() + NLMSG_LENGTH(buffer_.size()));
output->insert(output->end(), buffer_.begin(), buffer_.end());
}
private:
void Append(const void* data, size_t length) {
const char* chardata = reinterpret_cast<const char*>(data);
buffer_.insert(buffer_.end(), chardata, chardata + length);
}
void Align() {
header()->nlmsg_len = buffer_.size();
buffer_.insert(buffer_.end(), NLMSG_ALIGN(buffer_.size()) - buffer_.size(),
0);
CHECK(NLMSG_OK(header(), buffer_.size()));
}
struct nlmsghdr* header() {
return reinterpret_cast<struct nlmsghdr*>(&buffer_[0]);
}
Buffer buffer_;
};
#define INFINITY_LIFE_TIME 0xFFFFFFFF
void MakeAddrMessageWithCacheInfo(uint16_t type,
uint8_t flags,
uint8_t family,
int index,
const IPAddress& address,
const IPAddress& local,
uint32_t preferred_lifetime,
Buffer* output) {
NetlinkMessage nlmsg(type);
struct ifaddrmsg msg = {};
msg.ifa_family = family;
msg.ifa_flags = flags;
msg.ifa_index = index;
nlmsg.AddPayload(&msg, sizeof(msg));
if (address.size())
nlmsg.AddAttribute(IFA_ADDRESS, address.bytes().data(), address.size());
if (local.size())
nlmsg.AddAttribute(IFA_LOCAL, local.bytes().data(), local.size());
struct ifa_cacheinfo cache_info = {};
cache_info.ifa_prefered = preferred_lifetime;
cache_info.ifa_valid = INFINITY_LIFE_TIME;
nlmsg.AddAttribute(IFA_CACHEINFO, &cache_info, sizeof(cache_info));
nlmsg.AppendTo(output);
}
void MakeAddrMessage(uint16_t type,
uint8_t flags,
uint8_t family,
int index,
const IPAddress& address,
const IPAddress& local,
Buffer* output) {
MakeAddrMessageWithCacheInfo(type, flags, family, index, address, local,
INFINITY_LIFE_TIME, output);
}
void MakeLinkMessage(uint16_t type,
uint32_t flags,
uint32_t index,
Buffer* output) {
NetlinkMessage nlmsg(type);
struct ifinfomsg msg = {};
msg.ifi_index = index;
msg.ifi_flags = flags;
nlmsg.AddPayload(&msg, sizeof(msg));
output->clear();
nlmsg.AppendTo(output);
}
// Creates a netlink message generated by wireless_send_event. These events
// should be ignored.
void MakeWirelessLinkMessage(uint16_t type,
uint32_t flags,
uint32_t index,
Buffer* output) {
NetlinkMessage nlmsg(type);
struct ifinfomsg msg = {};
msg.ifi_index = index;
msg.ifi_flags = flags;
msg.ifi_change = 0;
nlmsg.AddPayload(&msg, sizeof(msg));
char data[8] = {0};
nlmsg.AddAttribute(IFLA_WIRELESS, data, sizeof(data));
output->clear();
nlmsg.AppendTo(output);
}
const unsigned char kAddress0[] = { 127, 0, 0, 1 };
const unsigned char kAddress1[] = { 10, 0, 0, 1 };
const unsigned char kAddress2[] = { 192, 168, 0, 1 };
const unsigned char kAddress3[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1 };
TEST_F(AddressTrackerLinuxTest, NewAddress) {
InitializeAddressTracker(true);
const IPAddress kEmpty;
const IPAddress kAddr0(kAddress0);
const IPAddress kAddr1(kAddress1);
const IPAddress kAddr2(kAddress2);
const IPAddress kAddr3(kAddress3);
Buffer buffer;
MakeAddrMessage(RTM_NEWADDR, IFA_F_TEMPORARY, AF_INET, kTestInterfaceEth,
kAddr0, kEmpty, &buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
AddressTrackerLinux::AddressMap map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(1u, map.count(kAddr0));
EXPECT_EQ(IFA_F_TEMPORARY, map[kAddr0].ifa_flags);
buffer.clear();
MakeAddrMessage(RTM_NEWADDR, IFA_F_HOMEADDRESS, AF_INET, kTestInterfaceEth,
kAddr1, kAddr2, &buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(2u, map.size());
EXPECT_EQ(1u, map.count(kAddr0));
EXPECT_EQ(1u, map.count(kAddr2));
EXPECT_EQ(IFA_F_HOMEADDRESS, map[kAddr2].ifa_flags);
buffer.clear();
MakeAddrMessage(RTM_NEWADDR, 0, AF_INET6, kTestInterfaceEth, kEmpty, kAddr3,
&buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(3u, map.size());
EXPECT_EQ(1u, map.count(kAddr3));
}
TEST_F(AddressTrackerLinuxTest, NewAddressChange) {
InitializeAddressTracker(true);
const IPAddress kEmpty;
const IPAddress kAddr0(kAddress0);
Buffer buffer;
MakeAddrMessage(RTM_NEWADDR, IFA_F_TEMPORARY, AF_INET, kTestInterfaceEth,
kAddr0, kEmpty, &buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
AddressTrackerLinux::AddressMap map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(1u, map.count(kAddr0));
EXPECT_EQ(IFA_F_TEMPORARY, map[kAddr0].ifa_flags);
buffer.clear();
MakeAddrMessage(RTM_NEWADDR, IFA_F_HOMEADDRESS, AF_INET, kTestInterfaceEth,
kAddr0, kEmpty, &buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(1u, map.count(kAddr0));
EXPECT_EQ(IFA_F_HOMEADDRESS, map[kAddr0].ifa_flags);
// Both messages in one buffer.
buffer.clear();
MakeAddrMessage(RTM_NEWADDR, IFA_F_TEMPORARY, AF_INET, kTestInterfaceEth,
kAddr0, kEmpty, &buffer);
MakeAddrMessage(RTM_NEWADDR, IFA_F_HOMEADDRESS, AF_INET, kTestInterfaceEth,
kAddr0, kEmpty, &buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(IFA_F_HOMEADDRESS, map[kAddr0].ifa_flags);
}
TEST_F(AddressTrackerLinuxTest, NewAddressDuplicate) {
InitializeAddressTracker(true);
const IPAddress kAddr0(kAddress0);
Buffer buffer;
MakeAddrMessage(RTM_NEWADDR, IFA_F_TEMPORARY, AF_INET, kTestInterfaceEth,
kAddr0, kAddr0, &buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
AddressTrackerLinux::AddressMap map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(1u, map.count(kAddr0));
EXPECT_EQ(IFA_F_TEMPORARY, map[kAddr0].ifa_flags);
EXPECT_FALSE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(IFA_F_TEMPORARY, map[kAddr0].ifa_flags);
}
TEST_F(AddressTrackerLinuxTest, DeleteAddress) {
InitializeAddressTracker(true);
const IPAddress kEmpty;
const IPAddress kAddr0(kAddress0);
const IPAddress kAddr1(kAddress1);
const IPAddress kAddr2(kAddress2);
Buffer buffer;
MakeAddrMessage(RTM_NEWADDR, 0, AF_INET, kTestInterfaceEth, kAddr0, kEmpty,
&buffer);
MakeAddrMessage(RTM_NEWADDR, 0, AF_INET, kTestInterfaceEth, kAddr1, kAddr2,
&buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
AddressTrackerLinux::AddressMap map = GetAddressMap();
EXPECT_EQ(2u, map.size());
buffer.clear();
MakeAddrMessage(RTM_DELADDR, 0, AF_INET, kTestInterfaceEth, kEmpty, kAddr0,
&buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(0u, map.count(kAddr0));
EXPECT_EQ(1u, map.count(kAddr2));
buffer.clear();
MakeAddrMessage(RTM_DELADDR, 0, AF_INET, kTestInterfaceEth, kAddr2, kAddr1,
&buffer);
// kAddr1 does not exist in the map.
EXPECT_FALSE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(1u, map.size());
buffer.clear();
MakeAddrMessage(RTM_DELADDR, 0, AF_INET, kTestInterfaceEth, kAddr2, kEmpty,
&buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(0u, map.size());
}
TEST_F(AddressTrackerLinuxTest, DeprecatedLifetime) {
InitializeAddressTracker(true);
const IPAddress kEmpty;
const IPAddress kAddr3(kAddress3);
Buffer buffer;
MakeAddrMessage(RTM_NEWADDR, 0, AF_INET6, kTestInterfaceEth, kEmpty, kAddr3,
&buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
AddressTrackerLinux::AddressMap map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(1u, map.count(kAddr3));
EXPECT_EQ(0, map[kAddr3].ifa_flags);
// Verify 0 preferred lifetime implies deprecated.
buffer.clear();
MakeAddrMessageWithCacheInfo(RTM_NEWADDR, 0, AF_INET6, kTestInterfaceEth,
kEmpty, kAddr3, 0, &buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(IFA_F_DEPRECATED, map[kAddr3].ifa_flags);
// Verify properly flagged message doesn't imply change.
buffer.clear();
MakeAddrMessageWithCacheInfo(RTM_NEWADDR, IFA_F_DEPRECATED, AF_INET6,
kTestInterfaceEth, kEmpty, kAddr3, 0, &buffer);
EXPECT_FALSE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(IFA_F_DEPRECATED, map[kAddr3].ifa_flags);
// Verify implied deprecated doesn't imply change.
buffer.clear();
MakeAddrMessageWithCacheInfo(RTM_NEWADDR, 0, AF_INET6, kTestInterfaceEth,
kEmpty, kAddr3, 0, &buffer);
EXPECT_FALSE(HandleAddressMessage(buffer));
map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(IFA_F_DEPRECATED, map[kAddr3].ifa_flags);
}
TEST_F(AddressTrackerLinuxTest, IgnoredMessage) {
InitializeAddressTracker(true);
const IPAddress kEmpty;
const IPAddress kAddr0(kAddress0);
const IPAddress kAddr3(kAddress3);
Buffer buffer;
// Ignored family.
MakeAddrMessage(RTM_NEWADDR, 0, AF_UNSPEC, kTestInterfaceEth, kAddr3, kAddr0,
&buffer);
// No address.
MakeAddrMessage(RTM_NEWADDR, 0, AF_INET, kTestInterfaceEth, kEmpty, kEmpty,
&buffer);
// Ignored type.
MakeAddrMessage(RTM_DELROUTE, 0, AF_INET6, kTestInterfaceEth, kAddr3, kEmpty,
&buffer);
EXPECT_FALSE(HandleAddressMessage(buffer));
EXPECT_TRUE(GetAddressMap().empty());
// Valid message after ignored messages.
NetlinkMessage nlmsg(RTM_NEWADDR);
struct ifaddrmsg msg = {};
msg.ifa_family = AF_INET;
nlmsg.AddPayload(&msg, sizeof(msg));
// Ignored attribute.
struct ifa_cacheinfo cache_info = {};
nlmsg.AddAttribute(IFA_CACHEINFO, &cache_info, sizeof(cache_info));
nlmsg.AddAttribute(IFA_ADDRESS, kAddr0.bytes().data(), kAddr0.size());
nlmsg.AppendTo(&buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
EXPECT_EQ(1u, GetAddressMap().size());
}
TEST_F(AddressTrackerLinuxTest, AddInterface) {
InitializeAddressTracker(true);
Buffer buffer;
// Ignores loopback.
MakeLinkMessage(RTM_NEWLINK,
IFF_LOOPBACK | IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceEth, &buffer);
EXPECT_FALSE(HandleLinkMessage(buffer));
EXPECT_TRUE(GetOnlineLinks().empty());
// Ignores not IFF_LOWER_UP.
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_RUNNING, kTestInterfaceEth,
&buffer);
EXPECT_FALSE(HandleLinkMessage(buffer));
EXPECT_TRUE(GetOnlineLinks().empty());
// Ignores deletion.
MakeLinkMessage(RTM_DELLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceEth, &buffer);
EXPECT_FALSE(HandleLinkMessage(buffer));
EXPECT_TRUE(GetOnlineLinks().empty());
// Verify success.
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceEth, &buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_EQ(1u, GetOnlineLinks().count(kTestInterfaceEth));
EXPECT_EQ(1u, GetOnlineLinks().size());
// Ignores redundant enables.
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceEth, &buffer);
EXPECT_FALSE(HandleLinkMessage(buffer));
EXPECT_EQ(1u, GetOnlineLinks().count(kTestInterfaceEth));
EXPECT_EQ(1u, GetOnlineLinks().size());
// Ignores messages from wireless_send_event.
MakeWirelessLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceWifi, &buffer);
EXPECT_FALSE(HandleLinkMessage(buffer));
EXPECT_EQ(0u, GetOnlineLinks().count(kTestInterfaceWifi));
EXPECT_EQ(1u, GetOnlineLinks().size());
// Verify adding another online device (e.g. VPN) is considered a change.
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING, 2, &buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_EQ(1u, GetOnlineLinks().count(kTestInterfaceEth));
EXPECT_EQ(1u, GetOnlineLinks().count(2));
EXPECT_EQ(2u, GetOnlineLinks().size());
}
TEST_F(AddressTrackerLinuxTest, RemoveInterface) {
InitializeAddressTracker(true);
Buffer buffer;
// Should disappear when not IFF_LOWER_UP.
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceEth, &buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_FALSE(GetOnlineLinks().empty());
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_RUNNING, kTestInterfaceEth,
&buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_TRUE(GetOnlineLinks().empty());
// Ignores redundant disables.
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_RUNNING, kTestInterfaceEth,
&buffer);
EXPECT_FALSE(HandleLinkMessage(buffer));
EXPECT_TRUE(GetOnlineLinks().empty());
// Ignores deleting down interfaces.
MakeLinkMessage(RTM_DELLINK, IFF_UP | IFF_RUNNING, kTestInterfaceEth,
&buffer);
EXPECT_FALSE(HandleLinkMessage(buffer));
EXPECT_TRUE(GetOnlineLinks().empty());
// Should disappear when deleted.
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceEth, &buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_FALSE(GetOnlineLinks().empty());
MakeLinkMessage(RTM_DELLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceEth, &buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_TRUE(GetOnlineLinks().empty());
// Ignores messages from wireless_send_event.
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceWifi, &buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_FALSE(GetOnlineLinks().empty());
MakeWirelessLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP,
kTestInterfaceWifi, &buffer);
EXPECT_FALSE(HandleLinkMessage(buffer));
EXPECT_FALSE(GetOnlineLinks().empty());
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_RUNNING, kTestInterfaceWifi,
&buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_TRUE(GetOnlineLinks().empty());
}
TEST_F(AddressTrackerLinuxTest, IgnoreInterface) {
IgnoreInterface(kIgnoredInterfaceName);
InitializeAddressTracker(true);
Buffer buffer;
const IPAddress kEmpty;
const IPAddress kAddr0(kAddress0);
// Verify online links and address map has been not been updated
MakeAddrMessage(RTM_NEWADDR, IFA_F_TEMPORARY, AF_INET, kTestInterfaceAp,
kAddr0, kEmpty, &buffer);
EXPECT_FALSE(HandleAddressMessage(buffer));
AddressTrackerLinux::AddressMap map = GetAddressMap();
EXPECT_EQ(0u, map.size());
EXPECT_EQ(0u, map.count(kAddr0));
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceAp, &buffer);
EXPECT_FALSE(HandleLinkMessage(buffer));
EXPECT_EQ(0u, GetOnlineLinks().count(kTestInterfaceAp));
EXPECT_EQ(0u, GetOnlineLinks().size());
}
TEST_F(AddressTrackerLinuxTest, IgnoreInterface_NonIgnoredInterface) {
IgnoreInterface(kIgnoredInterfaceName);
InitializeAddressTracker(true);
Buffer buffer;
const IPAddress kEmpty;
const IPAddress kAddr0(kAddress0);
// Verify eth0 is not ignored when only uap0 is ignored
MakeAddrMessage(RTM_NEWADDR, IFA_F_TEMPORARY, AF_INET, kTestInterfaceEth,
kAddr0, kEmpty, &buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
AddressTrackerLinux::AddressMap map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(1u, map.count(kAddr0));
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING,
kTestInterfaceEth, &buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_EQ(1u, GetOnlineLinks().count(kTestInterfaceEth));
EXPECT_EQ(1u, GetOnlineLinks().size());
}
TEST_F(AddressTrackerLinuxTest, TunnelInterface) {
InitializeAddressTracker(true);
Buffer buffer;
// Ignores without "tun" prefixed name.
MakeLinkMessage(RTM_NEWLINK,
IFF_UP | IFF_LOWER_UP | IFF_RUNNING | IFF_POINTOPOINT,
kTestInterfaceEth, &buffer);
EXPECT_FALSE(HandleTunnelMessage(buffer));
// Verify success.
MakeLinkMessage(RTM_NEWLINK,
IFF_UP | IFF_LOWER_UP | IFF_RUNNING | IFF_POINTOPOINT,
kTestInterfaceTun, &buffer);
EXPECT_TRUE(HandleTunnelMessage(buffer));
// Ignores redundant enables.
MakeLinkMessage(RTM_NEWLINK,
IFF_UP | IFF_LOWER_UP | IFF_RUNNING | IFF_POINTOPOINT,
kTestInterfaceTun, &buffer);
EXPECT_FALSE(HandleTunnelMessage(buffer));
// Ignores deleting without "tun" prefixed name.
MakeLinkMessage(RTM_DELLINK,
IFF_UP | IFF_LOWER_UP | IFF_RUNNING | IFF_POINTOPOINT,
0, &buffer);
EXPECT_FALSE(HandleTunnelMessage(buffer));
// Verify successful deletion
MakeLinkMessage(RTM_DELLINK,
IFF_UP | IFF_LOWER_UP | IFF_RUNNING | IFF_POINTOPOINT,
kTestInterfaceTun, &buffer);
EXPECT_TRUE(HandleTunnelMessage(buffer));
// Ignores redundant deletions.
MakeLinkMessage(RTM_DELLINK,
IFF_UP | IFF_LOWER_UP | IFF_RUNNING | IFF_POINTOPOINT,
kTestInterfaceTun, &buffer);
EXPECT_FALSE(HandleTunnelMessage(buffer));
}
// Check AddressTrackerLinux::get_interface_name_ original implementation
// doesn't crash or return NULL.
TEST_F(AddressTrackerLinuxTest, GetInterfaceName) {
InitializeAddressTracker(true);
for (int i = 0; i < 10; i++) {
char buf[IFNAMSIZ] = {0};
EXPECT_NE((const char*)nullptr, original_get_interface_name_(i, buf));
}
}
TEST_F(AddressTrackerLinuxTest, NonTrackingMode) {
InitializeAddressTracker(false);
const IPAddress kEmpty;
const IPAddress kAddr0(kAddress0);
Buffer buffer;
MakeAddrMessage(RTM_NEWADDR, IFA_F_TEMPORARY, AF_INET, kTestInterfaceEth,
kAddr0, kEmpty, &buffer);
EXPECT_TRUE(HandleAddressMessage(buffer));
AddressTrackerLinux::AddressMap map = GetAddressMap();
EXPECT_EQ(1u, map.size());
EXPECT_EQ(1u, map.count(kAddr0));
EXPECT_EQ(IFA_F_TEMPORARY, map[kAddr0].ifa_flags);
MakeLinkMessage(RTM_NEWLINK, IFF_UP | IFF_LOWER_UP | IFF_RUNNING, 1, &buffer);
EXPECT_TRUE(HandleLinkMessage(buffer));
EXPECT_EQ(1u, GetOnlineLinks().count(1));
EXPECT_EQ(1u, GetOnlineLinks().size());
}
TEST_F(AddressTrackerLinuxTest, NonTrackingModeInit) {
#if BUILDFLAG(IS_ANDROID)
// Calling Init() on Android P+ isn't supported.
if (base::android::BuildInfo::GetInstance()->sdk_int() >=
base::android::SDK_VERSION_P)
return;
#endif
AddressTrackerLinux tracker;
tracker.Init();
}
class GetCurrentConnectionTypeRunner
: public base::DelegateSimpleThread::Delegate {
public:
explicit GetCurrentConnectionTypeRunner(AddressTrackerLinux* tracker,
const std::string& thread_name)
: tracker_(tracker),
done_(base::WaitableEvent::ResetPolicy::MANUAL,
base::WaitableEvent::InitialState::NOT_SIGNALED),
thread_(this, thread_name) {}
~GetCurrentConnectionTypeRunner() override = default;
void Run() override {
tracker_->GetCurrentConnectionType();
done_.Signal();
}
void Start() {
thread_.Start();
}
void VerifyCompletes() {
EXPECT_TRUE(done_.TimedWait(base::Seconds(5)));
thread_.Join();
}
private:
const raw_ptr<AddressTrackerLinux> tracker_;
base::WaitableEvent done_;
base::DelegateSimpleThread thread_;
};
TEST_F(AddressTrackerLinuxTest, BroadcastInit) {
#if BUILDFLAG(IS_ANDROID)
// Calling Init() on Android P+ isn't supported.
if (base::android::BuildInfo::GetInstance()->sdk_int() >=
base::android::SDK_VERSION_P)
return;
#endif
base::test::TaskEnvironment task_environment(
base::test::TaskEnvironment::MainThreadType::IO);
InitializeAddressTracker(true);
GetCurrentConnectionTypeRunner runner1(tracker_.get(), "waiter_thread_1");
GetCurrentConnectionTypeRunner runner2(tracker_.get(), "waiter_thread_2");
runner1.Start();
runner2.Start();
SPIN_FOR_1_SECOND_OR_UNTIL_TRUE(
GetThreadsWaitingForConnectionTypeInit() == 2);
tracker_->Init();
runner1.VerifyCompletes();
runner2.VerifyCompletes();
}
TEST_F(AddressTrackerLinuxTest, TunnelInterfaceName) {
EXPECT_TRUE(AddressTrackerLinux::IsTunnelInterfaceName("tun0"));
EXPECT_FALSE(AddressTrackerLinux::IsTunnelInterfaceName("wlan0"));
}
} // namespace
// This is a regression test for https://crbug.com/1224428.
//
// This test initializes two instances of `AddressTrackerLinux` in the same
// process. The test will fail if the implementation reuses the value of
// `sockaddr_nl::nl_pid`.
//
// Note: consumers generally should not need to create two tracking instances of
// `AddressTrackerLinux` in the same process.
TEST(AddressTrackerLinuxNetlinkTest, TestInitializeTwoTrackers) {
#if BUILDFLAG(IS_ANDROID)
// Calling Init() on Android P+ isn't supported.
if (base::android::BuildInfo::GetInstance()->sdk_int() >=
base::android::SDK_VERSION_P)
return;
#endif
base::test::TaskEnvironment task_env(
base::test::TaskEnvironment::MainThreadType::IO);
AddressTrackerLinux tracker1(base::DoNothing(), base::DoNothing(),
base::DoNothing(), {});
AddressTrackerLinux tracker2(base::DoNothing(), base::DoNothing(),
base::DoNothing(), {});
tracker1.Init();
tracker2.Init();
EXPECT_TRUE(tracker1.DidTrackingInitSucceedForTesting());
EXPECT_TRUE(tracker2.DidTrackingInitSucceedForTesting());
}
// These tests use `base::LaunchOptions::clone_flags` for fine-grained control
// over the clone syscall, but the field is only defined on Linux and ChromeOS.
// Unfortunately, this means these tests do not have coverage on Android.
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
// These tests require specific flag values defined in <sched.h>.
#if defined(CLONE_NEWUSER) && defined(CLONE_NEWPID)
namespace {
const char* const kSwitchParentWriteFd = "addresstrackerlinux_parent_write_fd";
const char* const kSwitchReadFd = "addresstrackerlinux_read_fd";
enum IPCMessage {
// Sent from child to parent once the child has initialized its tracker.
kChildInitializedAndWaiting,
// Sent from child to parent when it was unable to initialize its tracker.
kChildFailed,
// Sent from parent to child when all children are permitted to exit.
kChildMayExit,
};
base::File GetSwitchValueFile(const base::CommandLine* command_line,
base::StringPiece name) {
std::string value = command_line->GetSwitchValueASCII(name);
int fd;
CHECK(base::StringToInt(value, &fd));
return base::File(fd);
}
} // namespace
// This is a regression test for https://crbug.com/1224428.
//
// This test creates multiple concurrent `AddressTrackerLinux` instances in
// separate processes, each in their own PID namespaces.
TEST(AddressTrackerLinuxNetlinkTest, TestInitializeTwoTrackersInPidNamespaces) {
// This test initializes `kNumChildren` instances of `AddressTrackerLinux` in
// tracking mode, each in their own child process running in a PID namespace.
// The test will fail if the implementation reuses the value of
// `sockaddr_nl::nl_pid`.
//
// The child processes use pipes to synchronize. Each child initializes a
// tracker, sends a message to the parent, and waits for the parent to
// respond, indicating that all children are done setting up. This ensures
// that the tracker objects have overlapping lifetimes, and thus that the
// underlying netlink sockets have overlapping lifetimes. This coexistence is
// necessary, but not sufficient, for a `sockaddr_nl::nl_pid` value collision.
constexpr size_t kNumChildren = 2;
base::ScopedFD parent_read_fd, parent_write_fd;
ASSERT_TRUE(base::CreatePipe(&parent_read_fd, &parent_write_fd));
struct Child {
base::ScopedFD read_fd;
base::ScopedFD write_fd;
base::Process process;
} children[kNumChildren];
for (Child& child : children) {
ASSERT_TRUE(base::CreatePipe(&child.read_fd, &child.write_fd));
// Since the child process will wipe its address space by calling execvp, we
// must share the file descriptors via its command line.
base::CommandLine command_line(
base::GetMultiProcessTestChildBaseCommandLine());
command_line.AppendSwitchASCII(kSwitchParentWriteFd,
base::NumberToString(parent_write_fd.get()));
command_line.AppendSwitchASCII(kSwitchReadFd,
base::NumberToString(child.read_fd.get()));
base::LaunchOptions options;
// Indicate that the child process requires these file descriptors.
// Otherwise, they will be closed. See `base::CloseSuperfluousFds`.
options.fds_to_remap = {{child.read_fd.get(), child.read_fd.get()},
{parent_write_fd.get(), parent_write_fd.get()}};
// Clone into a new PID namespace. Making it a new user namespace as well to
// skirt the CAP_SYS_ADMIN requirement.
options.clone_flags = CLONE_NEWPID | CLONE_NEWUSER;
child.process = base::SpawnMultiProcessTestChild(
"ChildProcessInitializeTrackerForTesting", command_line, options);
}
// Wait for all children to finish initializing their tracking
// AddressTrackerLinuxes.
base::File parent_reader(std::move(parent_read_fd));
for (const Child& child : children) {
ASSERT_TRUE(child.process.IsValid());
uint8_t message[] = {0};
ASSERT_TRUE(parent_reader.ReadAtCurrentPosAndCheck(message));
ASSERT_EQ(message[0], kChildInitializedAndWaiting);
}
// Tell children to exit and wait for them to exit.
for (Child& child : children) {
base::File child_writer(std::move(child.write_fd));
const uint8_t kMessage[] = {kChildMayExit};
ASSERT_TRUE(child_writer.WriteAtCurrentPosAndCheck(kMessage));
int exit_code = 0;
ASSERT_TRUE(child.process.WaitForExit(&exit_code));
ASSERT_EQ(exit_code, 0);
}
}
MULTIPROCESS_TEST_MAIN(ChildProcessInitializeTrackerForTesting) {
base::test::TaskEnvironment task_env(
base::test::TaskEnvironment::MainThreadType::IO);
const base::CommandLine* command_line =
base::CommandLine::ForCurrentProcess();
base::File reader = GetSwitchValueFile(command_line, kSwitchReadFd);
base::File parent_writer =
GetSwitchValueFile(command_line, kSwitchParentWriteFd);
// Initialize an `AddressTrackerLinux` in tracking mode and ensure that it
// created a netlink socket.
AddressTrackerLinux tracker(base::DoNothing(), base::DoNothing(),
base::DoNothing(), {});
tracker.Init();
if (!tracker.DidTrackingInitSucceedForTesting()) {
const uint8_t kMessage[] = {kChildFailed};
parent_writer.WriteAtCurrentPosAndCheck(kMessage);
return 1;
}
// Signal to the parent that we have initialized the tracker.
const uint8_t kMessage[] = {kChildInitializedAndWaiting};
if (!parent_writer.WriteAtCurrentPosAndCheck(kMessage))
return 1;
// Block until the parent says all children have initialized their trackers.
uint8_t message[] = {0};
if (!reader.ReadAtCurrentPosAndCheck(message) || message[0] != kChildMayExit)
return 1;
return 0;
}
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
#endif // defined(CLONE_NEWUSER) && defined(CLONE_NEWPID)
} // namespace net::internal