blob: 095e6115533cacb65ca72b8658aeb59eb0bdbeec [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/cast/receiver/frame_receiver.h"
#include <algorithm>
#include "base/big_endian.h"
#include "base/bind.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "media/cast/cast_environment.h"
namespace {
const int kMinSchedulingDelayMs = 1;
} // namespace
namespace media {
namespace cast {
FrameReceiver::FrameReceiver(
const scoped_refptr<CastEnvironment>& cast_environment,
const FrameReceiverConfig& config,
EventMediaType event_media_type,
PacedPacketSender* const packet_sender)
: cast_environment_(cast_environment),
packet_parser_(config.incoming_ssrc, config.rtp_payload_type),
stats_(cast_environment->Clock()),
event_media_type_(event_media_type),
event_subscriber_(kReceiverRtcpEventHistorySize, event_media_type),
rtp_timebase_(config.frequency),
target_playout_delay_(
base::TimeDelta::FromMilliseconds(config.rtp_max_delay_ms)),
expected_frame_duration_(
base::TimeDelta::FromSeconds(1) / config.max_frame_rate),
reports_are_scheduled_(false),
framer_(cast_environment->Clock(),
this,
config.incoming_ssrc,
true,
config.rtp_max_delay_ms * config.max_frame_rate / 1000),
rtcp_(RtcpCastMessageCallback(),
RtcpRttCallback(),
RtcpLogMessageCallback(),
cast_environment_->Clock(),
packet_sender,
config.feedback_ssrc,
config.incoming_ssrc),
is_waiting_for_consecutive_frame_(false),
lip_sync_drift_(ClockDriftSmoother::GetDefaultTimeConstant()),
rtcp_interval_(base::TimeDelta::FromMilliseconds(config.rtcp_interval)),
weak_factory_(this) {
DCHECK_GT(config.rtp_max_delay_ms, 0);
DCHECK_GT(config.max_frame_rate, 0);
decryptor_.Initialize(config.aes_key, config.aes_iv_mask);
cast_environment_->Logging()->AddRawEventSubscriber(&event_subscriber_);
memset(frame_id_to_rtp_timestamp_, 0, sizeof(frame_id_to_rtp_timestamp_));
}
FrameReceiver::~FrameReceiver() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
cast_environment_->Logging()->RemoveRawEventSubscriber(&event_subscriber_);
}
void FrameReceiver::RequestEncodedFrame(
const ReceiveEncodedFrameCallback& callback) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
frame_request_queue_.push_back(callback);
EmitAvailableEncodedFrames();
}
bool FrameReceiver::ProcessPacket(scoped_ptr<Packet> packet) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
if (Rtcp::IsRtcpPacket(&packet->front(), packet->size())) {
rtcp_.IncomingRtcpPacket(&packet->front(), packet->size());
} else {
RtpCastHeader rtp_header;
const uint8* payload_data;
size_t payload_size;
if (!packet_parser_.ParsePacket(&packet->front(),
packet->size(),
&rtp_header,
&payload_data,
&payload_size)) {
return false;
}
ProcessParsedPacket(rtp_header, payload_data, payload_size);
stats_.UpdateStatistics(rtp_header);
}
if (!reports_are_scheduled_) {
ScheduleNextRtcpReport();
ScheduleNextCastMessage();
reports_are_scheduled_ = true;
}
return true;
}
// static
bool FrameReceiver::ParseSenderSsrc(const uint8* packet,
size_t length,
uint32* ssrc) {
base::BigEndianReader big_endian_reader(
reinterpret_cast<const char*>(packet), length);
return big_endian_reader.Skip(8) && big_endian_reader.ReadU32(ssrc);
}
void FrameReceiver::ProcessParsedPacket(const RtpCastHeader& rtp_header,
const uint8* payload_data,
size_t payload_size) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
const base::TimeTicks now = cast_environment_->Clock()->NowTicks();
frame_id_to_rtp_timestamp_[rtp_header.frame_id & 0xff] =
rtp_header.rtp_timestamp;
cast_environment_->Logging()->InsertPacketEvent(
now, PACKET_RECEIVED, event_media_type_, rtp_header.rtp_timestamp,
rtp_header.frame_id, rtp_header.packet_id, rtp_header.max_packet_id,
payload_size);
bool duplicate = false;
const bool complete =
framer_.InsertPacket(payload_data, payload_size, rtp_header, &duplicate);
// Duplicate packets are ignored.
if (duplicate)
return;
// Update lip-sync values upon receiving the first packet of each frame, or if
// they have never been set yet.
if (rtp_header.packet_id == 0 || lip_sync_reference_time_.is_null()) {
RtpTimestamp fresh_sync_rtp;
base::TimeTicks fresh_sync_reference;
if (!rtcp_.GetLatestLipSyncTimes(&fresh_sync_rtp, &fresh_sync_reference)) {
// HACK: The sender should have provided Sender Reports before the first
// frame was sent. However, the spec does not currently require this.
// Therefore, when the data is missing, the local clock is used to
// generate reference timestamps.
VLOG(2) << "Lip sync info missing. Falling-back to local clock.";
fresh_sync_rtp = rtp_header.rtp_timestamp;
fresh_sync_reference = now;
}
// |lip_sync_reference_time_| is always incremented according to the time
// delta computed from the difference in RTP timestamps. Then,
// |lip_sync_drift_| accounts for clock drift and also smoothes-out any
// sudden/discontinuous shifts in the series of reference time values.
if (lip_sync_reference_time_.is_null()) {
lip_sync_reference_time_ = fresh_sync_reference;
} else {
lip_sync_reference_time_ += RtpDeltaToTimeDelta(
static_cast<int32>(fresh_sync_rtp - lip_sync_rtp_timestamp_),
rtp_timebase_);
}
lip_sync_rtp_timestamp_ = fresh_sync_rtp;
lip_sync_drift_.Update(
now, fresh_sync_reference - lip_sync_reference_time_);
}
// Another frame is complete from a non-duplicate packet. Attempt to emit
// more frames to satisfy enqueued requests.
if (complete)
EmitAvailableEncodedFrames();
}
void FrameReceiver::CastFeedback(const RtcpCastMessage& cast_message) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
base::TimeTicks now = cast_environment_->Clock()->NowTicks();
RtpTimestamp rtp_timestamp =
frame_id_to_rtp_timestamp_[cast_message.ack_frame_id & 0xff];
cast_environment_->Logging()->InsertFrameEvent(
now, FRAME_ACK_SENT, event_media_type_,
rtp_timestamp, cast_message.ack_frame_id);
ReceiverRtcpEventSubscriber::RtcpEventMultiMap rtcp_events;
event_subscriber_.GetRtcpEventsAndReset(&rtcp_events);
rtcp_.SendRtcpFromRtpReceiver(&cast_message, target_playout_delay_,
&rtcp_events, NULL);
}
void FrameReceiver::EmitAvailableEncodedFrames() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
while (!frame_request_queue_.empty()) {
// Attempt to peek at the next completed frame from the |framer_|.
// TODO(miu): We should only be peeking at the metadata, and not copying the
// payload yet! Or, at least, peek using a StringPiece instead of a copy.
scoped_ptr<EncodedFrame> encoded_frame(
new EncodedFrame());
bool is_consecutively_next_frame = false;
bool have_multiple_complete_frames = false;
if (!framer_.GetEncodedFrame(encoded_frame.get(),
&is_consecutively_next_frame,
&have_multiple_complete_frames)) {
VLOG(1) << "Wait for more packets to produce a completed frame.";
return; // ProcessParsedPacket() will invoke this method in the future.
}
const base::TimeTicks now = cast_environment_->Clock()->NowTicks();
const base::TimeTicks playout_time = GetPlayoutTime(*encoded_frame);
// If we have multiple decodable frames, and the current frame is
// too old, then skip it and decode the next frame instead.
if (have_multiple_complete_frames && now > playout_time) {
framer_.ReleaseFrame(encoded_frame->frame_id);
continue;
}
// If |framer_| has a frame ready that is out of sequence, examine the
// playout time to determine whether it's acceptable to continue, thereby
// skipping one or more frames. Skip if the missing frame wouldn't complete
// playing before the start of playback of the available frame.
if (!is_consecutively_next_frame) {
// This assumes that decoding takes as long as playing, which might
// not be true.
const base::TimeTicks earliest_possible_end_time_of_missing_frame =
now + expected_frame_duration_ * 2;
if (earliest_possible_end_time_of_missing_frame < playout_time) {
VLOG(1) << "Wait for next consecutive frame instead of skipping.";
if (!is_waiting_for_consecutive_frame_) {
is_waiting_for_consecutive_frame_ = true;
cast_environment_->PostDelayedTask(
CastEnvironment::MAIN,
FROM_HERE,
base::Bind(&FrameReceiver::EmitAvailableEncodedFramesAfterWaiting,
weak_factory_.GetWeakPtr()),
playout_time - now);
}
return;
}
}
// At this point, we have the complete next frame, or a decodable
// frame from somewhere later in the stream, AND we have given up
// on waiting for any frames in between, so now we can ACK the frame.
framer_.AckFrame(encoded_frame->frame_id);
// Decrypt the payload data in the frame, if crypto is being used.
if (decryptor_.is_activated()) {
std::string decrypted_data;
if (!decryptor_.Decrypt(encoded_frame->frame_id,
encoded_frame->data,
&decrypted_data)) {
// Decryption failed. Give up on this frame.
framer_.ReleaseFrame(encoded_frame->frame_id);
continue;
}
encoded_frame->data.swap(decrypted_data);
}
// At this point, we have a decrypted EncodedFrame ready to be emitted.
encoded_frame->reference_time = playout_time;
framer_.ReleaseFrame(encoded_frame->frame_id);
if (encoded_frame->new_playout_delay_ms) {
target_playout_delay_ = base::TimeDelta::FromMilliseconds(
encoded_frame->new_playout_delay_ms);
}
cast_environment_->PostTask(CastEnvironment::MAIN,
FROM_HERE,
base::Bind(&FrameReceiver::EmitOneFrame,
weak_factory_.GetWeakPtr(),
frame_request_queue_.front(),
base::Passed(&encoded_frame)));
frame_request_queue_.pop_front();
}
}
void FrameReceiver::EmitAvailableEncodedFramesAfterWaiting() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
DCHECK(is_waiting_for_consecutive_frame_);
is_waiting_for_consecutive_frame_ = false;
EmitAvailableEncodedFrames();
}
void FrameReceiver::EmitOneFrame(const ReceiveEncodedFrameCallback& callback,
scoped_ptr<EncodedFrame> encoded_frame) const {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
if (!callback.is_null())
callback.Run(encoded_frame.Pass());
}
base::TimeTicks FrameReceiver::GetPlayoutTime(const EncodedFrame& frame) const {
base::TimeDelta target_playout_delay = target_playout_delay_;
if (frame.new_playout_delay_ms) {
target_playout_delay = base::TimeDelta::FromMilliseconds(
frame.new_playout_delay_ms);
}
return lip_sync_reference_time_ +
lip_sync_drift_.Current() +
RtpDeltaToTimeDelta(
static_cast<int32>(frame.rtp_timestamp - lip_sync_rtp_timestamp_),
rtp_timebase_) +
target_playout_delay;
}
void FrameReceiver::ScheduleNextCastMessage() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
base::TimeTicks send_time;
framer_.TimeToSendNextCastMessage(&send_time);
base::TimeDelta time_to_send =
send_time - cast_environment_->Clock()->NowTicks();
time_to_send = std::max(
time_to_send, base::TimeDelta::FromMilliseconds(kMinSchedulingDelayMs));
cast_environment_->PostDelayedTask(
CastEnvironment::MAIN,
FROM_HERE,
base::Bind(&FrameReceiver::SendNextCastMessage,
weak_factory_.GetWeakPtr()),
time_to_send);
}
void FrameReceiver::SendNextCastMessage() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
framer_.SendCastMessage(); // Will only send a message if it is time.
ScheduleNextCastMessage();
}
void FrameReceiver::ScheduleNextRtcpReport() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
base::TimeDelta time_to_next = rtcp_interval_;
time_to_next = std::max(
time_to_next, base::TimeDelta::FromMilliseconds(kMinSchedulingDelayMs));
cast_environment_->PostDelayedTask(
CastEnvironment::MAIN,
FROM_HERE,
base::Bind(&FrameReceiver::SendNextRtcpReport,
weak_factory_.GetWeakPtr()),
time_to_next);
}
void FrameReceiver::SendNextRtcpReport() {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
rtcp_.SendRtcpFromRtpReceiver(NULL, base::TimeDelta(), NULL, &stats_);
ScheduleNextRtcpReport();
}
} // namespace cast
} // namespace media