| // Copyright 2015 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "components/gcm_driver/crypto/gcm_message_cryptographer.h" |
| |
| #include "base/base64.h" |
| #include "base/memory/scoped_ptr.h" |
| #include "base/strings/string_util.h" |
| #include "crypto/random.h" |
| #include "crypto/symmetric_key.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| namespace gcm { |
| |
| namespace { |
| |
| // The number of bits of the key in AEAD_AES_128_GCM. |
| const size_t kKeySizeBits = 128; |
| |
| // Example plaintext data to use in the tests. |
| const char kExamplePlaintext[] = "Example plaintext"; |
| |
| // A test vector contains the information necessary to either encrypt or decrypt |
| // a message. These vectors were created using a JavaScript implementation of |
| // the same RFCs that the GCMMessageCryptographer implements. |
| struct TestVector { |
| const char* const input; |
| const char* const key; |
| const char* const salt; |
| size_t record_size; |
| const char* const output; |
| }; |
| |
| const TestVector kEncryptionTestVectors[] = { |
| // Simple message. |
| { "Hello, world!", |
| "AhA6n2oFYPWIh+cXwyv1m2C0JvmjHB4ZkXj8QylESXU=", |
| "tsJYqAGvFDk6lDEv7daecw==", |
| 4096, |
| "KNXRqBR9VKhtajeMaeKR/rHYIiORcyeFpUwWFGyS" |
| }, |
| // Empty message. |
| { "", |
| "lMyvTong4VR053jfCpWmMDGW5dEDAqiTZUIU+inhTjU=", |
| "wH3uvZqcN6oey9whiGpn1A==", |
| 4096, |
| "Mnfr+AU5o7D30gjFdVOTFtw=" |
| }, |
| // Message with an invalid salt size. |
| { "Hello, world!", |
| "CcdxzkR6z1EY9vSrM7/IxYVxDxu46hV638EZQTPd7XI=", |
| "aRr1fI1YSGVi5XU=", |
| 4096, |
| nullptr // expected to fail |
| } |
| }; |
| |
| const TestVector kDecryptionTestVectors[] = { |
| // Simple message. |
| { "avAFNhdbQohzizu+ORbU4XHhHSaXzw9lTN7UzB/j", |
| "47ZytAw9qHlm+Q8g+7rH81rUPzaCgGcoFvlS1qxQtQk=", |
| "EuR7EVetcaWpndXd/dKeyA==", |
| 4096, |
| "Hello, world!" |
| }, |
| // Simple message with 16 bytes of padding. |
| { "0198n7ZJ/ZPMnl4ZU2l9Lma5ktKbuzXCiJEXyYtROmWTP8RSiZd8sUd48xpk6Q==", |
| "MYSsNybwrTzRIzQYUq/yFPc6ugcTrJdEZJDM4NswvUg=", |
| "8sEAMQYnufo2UkKl80cUGQ==", |
| 4096, |
| "Hello, world!" |
| }, |
| // Empty message. |
| { "g+ACk32a4gK2dS2xllKXn4c=", |
| "S3+Ki/+XtzR66gUp/zR75CC5JXO62pyr5fWfneTYwFE=", |
| "4RM6s19jJHdmqiVEJDp9jg==", |
| 4096, |
| "" |
| }, |
| // Message with an invalid salt size. |
| { "rt4OiodS087DAQo6e24wA55k0hRPAHgz7OX7m+nj", |
| "wW3Iy5ma803lLd+ysPdHUe2NB3HqXbY0XhCCdG5Y1Gw=", |
| "N7oMH/xohAhMhOY=", |
| 4096, |
| nullptr // expected to fail |
| }, |
| // Message with an invalid record size. |
| { "AsuoRkFtqLE1c0mGCae4OvgZSCSHWCoeRL9mXKjY", |
| "omxWz7tse3lgDpxUP+e7u14Dp1irvV3BdzXTcZOtsHs=", |
| "vKJD3bexto1hY64KVzS7ug==", |
| 3, |
| nullptr // expected to fail |
| }, |
| // Truncated message. |
| { "AGr4BfZSXW9txWkAG8pjg7IuRWWm1Mo8bDli/PSv", |
| "kR5BMfqMKOD1yrLKE2giObXHI7merrMtnoO2oqneqXA=", |
| "SQeJSPrqHvTdSfAMF8bBzQ==", |
| 13, |
| nullptr // expected to fail |
| }, |
| // Message with multiple (2) records. |
| { "H2ujfPbpRbVSy+adIG2NRe4VxkX4V0r/zl6e9xnMSF6LSutblGdWLrwQc82Xh7DXAQlihW0q3" |
| "IQzHP+LIxuAiA==", |
| "W3W4gx7sqcfmBnvNNdO9d4MBCC1bvJkvsNjZOGD+CCg=", |
| "xG0TPGi9aIcxjpXKmaYBBQ==", |
| 7, |
| nullptr // expected to fail |
| } |
| }; |
| |
| } // namespace |
| |
| class GCMMessageCryptographerTest : public ::testing::Test { |
| public: |
| void SetUp() override { |
| scoped_ptr<crypto::SymmetricKey> random_key( |
| crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES, |
| kKeySizeBits)); |
| |
| ASSERT_TRUE(random_key->GetRawKey(&key_)); |
| } |
| |
| protected: |
| // Generates a cryptographically secure random salt of 16-octets in size, the |
| // required length as expected by the HKDF. |
| std::string GenerateRandomSalt() { |
| const size_t kSaltSize = 16; |
| |
| std::string salt; |
| |
| crypto::RandBytes(base::WriteInto(&salt, kSaltSize + 1), kSaltSize); |
| return salt; |
| } |
| |
| GCMMessageCryptographer* cryptographer() { return &cryptographer_; } |
| |
| base::StringPiece key() const { return key_; } |
| |
| private: |
| GCMMessageCryptographer cryptographer_; |
| |
| std::string key_; |
| }; |
| |
| TEST_F(GCMMessageCryptographerTest, RoundTrip) { |
| const std::string salt = GenerateRandomSalt(); |
| |
| size_t record_size = 0; |
| |
| std::string ciphertext, plaintext; |
| ASSERT_TRUE(cryptographer()->Encrypt(kExamplePlaintext, key(), salt, |
| &record_size, &ciphertext)); |
| |
| EXPECT_GT(record_size, ciphertext.size() - 16); |
| EXPECT_GT(ciphertext.size(), 0u); |
| |
| ASSERT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size, |
| &plaintext)); |
| |
| EXPECT_EQ(kExamplePlaintext, plaintext); |
| } |
| |
| TEST_F(GCMMessageCryptographerTest, RoundTripEmptyMessage) { |
| const std::string salt = GenerateRandomSalt(); |
| const std::string message = ""; |
| |
| size_t record_size = 0; |
| |
| std::string ciphertext, plaintext; |
| ASSERT_TRUE(cryptographer()->Encrypt(message, key(), salt, &record_size, |
| &ciphertext)); |
| |
| EXPECT_GT(record_size, ciphertext.size() - 16); |
| EXPECT_GT(ciphertext.size(), 0u); |
| |
| ASSERT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size, |
| &plaintext)); |
| |
| EXPECT_EQ(message, plaintext); |
| } |
| |
| TEST_F(GCMMessageCryptographerTest, InvalidRecordSize) { |
| const std::string salt = GenerateRandomSalt(); |
| |
| size_t record_size = 0; |
| |
| std::string ciphertext, plaintext; |
| EXPECT_TRUE(cryptographer()->Encrypt(kExamplePlaintext, key(), salt, |
| &record_size, &ciphertext)); |
| |
| EXPECT_GT(record_size, ciphertext.size() - 16); |
| EXPECT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt, |
| 0 /* record_size */, &plaintext)); |
| |
| EXPECT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt, |
| ciphertext.size() - 17, &plaintext)); |
| |
| EXPECT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, |
| ciphertext.size() - 16, &plaintext)); |
| } |
| |
| TEST_F(GCMMessageCryptographerTest, InvalidRecordPadding) { |
| std::string message = std::string(1, '\0') + kExamplePlaintext; |
| |
| const std::string salt = GenerateRandomSalt(); |
| |
| const std::string nonce = cryptographer()->DeriveNonce(key(), salt); |
| const std::string content_encryption_key = |
| cryptographer()->DeriveContentEncryptionKey(key(), salt); |
| |
| ASSERT_GT(message.size(), 1u); |
| const size_t record_size = message.size() + 1; |
| |
| std::string ciphertext, plaintext; |
| ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal( |
| GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce, |
| &ciphertext)); |
| |
| ASSERT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size, |
| &plaintext)); |
| |
| // Note that GCMMessageCryptographer::Decrypt removes the padding. |
| EXPECT_EQ(kExamplePlaintext, plaintext); |
| |
| // Now run the same steps again, but say that there are four padding octets. |
| // This should be rejected because the padding will not be all zeros. |
| message[0] = 4; |
| |
| ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal( |
| GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce, |
| &ciphertext)); |
| |
| ASSERT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size, |
| &plaintext)); |
| |
| // Run the same steps again, but say that there are more padding octets than |
| // the length of the message. |
| message[0] = 64; |
| |
| EXPECT_GT(static_cast<size_t>(message[0]), message.size()); |
| ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal( |
| GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce, |
| &ciphertext)); |
| |
| ASSERT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size, |
| &plaintext)); |
| } |
| |
| TEST_F(GCMMessageCryptographerTest, EncryptionTestVectors) { |
| std::string key, salt, output, ciphertext; |
| size_t record_size = 0; |
| |
| for (size_t i = 0; i < arraysize(kEncryptionTestVectors); ++i) { |
| SCOPED_TRACE(i); |
| |
| ASSERT_TRUE(base::Base64Decode(kEncryptionTestVectors[i].key, &key)); |
| ASSERT_TRUE(base::Base64Decode(kEncryptionTestVectors[i].salt, &salt)); |
| |
| const bool has_output = kEncryptionTestVectors[i].output; |
| const bool result = cryptographer()->Encrypt( |
| kEncryptionTestVectors[i].input, key, salt, &record_size, &ciphertext); |
| |
| if (!has_output) { |
| EXPECT_FALSE(result); |
| continue; |
| } |
| |
| EXPECT_TRUE(result); |
| ASSERT_TRUE(base::Base64Decode(kEncryptionTestVectors[i].output, |
| &output)); |
| |
| EXPECT_EQ(kEncryptionTestVectors[i].record_size, record_size); |
| EXPECT_EQ(output, ciphertext); |
| } |
| } |
| |
| TEST_F(GCMMessageCryptographerTest, DecryptionTestVectors) { |
| std::string input, key, salt, plaintext; |
| for (size_t i = 0; i < arraysize(kDecryptionTestVectors); ++i) { |
| SCOPED_TRACE(i); |
| |
| ASSERT_TRUE(base::Base64Decode(kDecryptionTestVectors[i].input, &input)); |
| ASSERT_TRUE(base::Base64Decode(kDecryptionTestVectors[i].key, &key)); |
| ASSERT_TRUE(base::Base64Decode(kDecryptionTestVectors[i].salt, &salt)); |
| |
| const bool has_output = kDecryptionTestVectors[i].output; |
| const bool result = cryptographer()->Decrypt( |
| input, key, salt, kDecryptionTestVectors[i].record_size, &plaintext); |
| |
| if (!has_output) { |
| EXPECT_FALSE(result); |
| continue; |
| } |
| |
| EXPECT_TRUE(result); |
| EXPECT_EQ(kDecryptionTestVectors[i].output, plaintext); |
| } |
| } |
| |
| } // namespace gcm |