blob: 090d15092dfeb654009e8b8255503572ec4c0404 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/sync/base/unique_position.h"
#include <algorithm>
#include <limits>
#include "base/logging.h"
#include "base/rand_util.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/trace_event/memory_usage_estimator.h"
#include "components/sync/protocol/unique_position.pb.h"
#include "third_party/zlib/zlib.h"
namespace syncer {
constexpr size_t UniquePosition::kSuffixLength;
constexpr size_t UniquePosition::kCompressBytesThreshold;
// static.
bool UniquePosition::IsValidSuffix(const std::string& suffix) {
// The suffix must be exactly the specified length, otherwise unique suffixes
// are not sufficient to guarantee unique positions (because prefix + suffix
// == p + refixsuffix).
return suffix.length() == kSuffixLength && suffix[kSuffixLength - 1] != 0;
}
// static.
bool UniquePosition::IsValidBytes(const std::string& bytes) {
// The first condition ensures that our suffix uniqueness is sufficient to
// guarantee position uniqueness. Otherwise, it's possible the end of some
// prefix + some short suffix == some long suffix.
// The second condition ensures that FindSmallerWithSuffix can always return a
// result.
return bytes.length() >= kSuffixLength && bytes[bytes.length() - 1] != 0;
}
// static.
std::string UniquePosition::RandomSuffix() {
// Users random data for all but the last byte. The last byte must not be
// zero. We arbitrarily set it to 0x7f.
return base::RandBytesAsString(kSuffixLength - 1) + "\x7f";
}
// static.
UniquePosition UniquePosition::CreateInvalid() {
UniquePosition pos;
DCHECK(!pos.IsValid());
return pos;
}
// static.
UniquePosition UniquePosition::FromProto(const sync_pb::UniquePosition& proto) {
if (proto.has_custom_compressed_v1()) {
return UniquePosition(proto.custom_compressed_v1());
} else if (proto.has_value() && !proto.value().empty()) {
return UniquePosition(Compress(proto.value()));
} else if (proto.has_compressed_value() && proto.has_uncompressed_length()) {
uLongf uncompressed_len = proto.uncompressed_length();
std::string un_gzipped;
un_gzipped.resize(uncompressed_len);
int result = uncompress(
reinterpret_cast<Bytef*>(base::data(un_gzipped)), &uncompressed_len,
reinterpret_cast<const Bytef*>(proto.compressed_value().data()),
proto.compressed_value().size());
if (result != Z_OK) {
DLOG(ERROR) << "Unzip failed " << result;
return UniquePosition::CreateInvalid();
}
if (uncompressed_len != proto.uncompressed_length()) {
DLOG(ERROR) << "Uncompressed length " << uncompressed_len
<< " did not match specified length "
<< proto.uncompressed_length();
return UniquePosition::CreateInvalid();
}
return UniquePosition(Compress(un_gzipped));
} else {
return UniquePosition::CreateInvalid();
}
}
// static.
UniquePosition UniquePosition::FromInt64(int64_t x, const std::string& suffix) {
uint64_t y = static_cast<uint64_t>(x);
y ^= 0x8000000000000000ULL; // Make it non-negative.
std::string bytes(8, 0);
for (int i = 7; i >= 0; --i) {
bytes[i] = static_cast<uint8_t>(y);
y >>= 8;
}
return UniquePosition(bytes + suffix, suffix);
}
// static.
UniquePosition UniquePosition::InitialPosition(const std::string& suffix) {
DCHECK(IsValidSuffix(suffix));
return UniquePosition(suffix, suffix);
}
// static.
UniquePosition UniquePosition::Before(const UniquePosition& x,
const std::string& suffix) {
DCHECK(IsValidSuffix(suffix));
DCHECK(x.IsValid());
const std::string& before =
FindSmallerWithSuffix(Uncompress(x.compressed_), suffix);
return UniquePosition(before + suffix, suffix);
}
// static.
UniquePosition UniquePosition::After(const UniquePosition& x,
const std::string& suffix) {
DCHECK(IsValidSuffix(suffix));
DCHECK(x.IsValid());
const std::string& after =
FindGreaterWithSuffix(Uncompress(x.compressed_), suffix);
return UniquePosition(after + suffix, suffix);
}
// static.
UniquePosition UniquePosition::Between(const UniquePosition& before,
const UniquePosition& after,
const std::string& suffix) {
DCHECK(before.IsValid());
DCHECK(after.IsValid());
DCHECK(before.LessThan(after));
DCHECK(IsValidSuffix(suffix));
const std::string& mid = FindBetweenWithSuffix(
Uncompress(before.compressed_), Uncompress(after.compressed_), suffix);
return UniquePosition(mid + suffix, suffix);
}
UniquePosition::UniquePosition() : is_valid_(false) {}
bool UniquePosition::LessThan(const UniquePosition& other) const {
DCHECK(this->IsValid());
DCHECK(other.IsValid());
return compressed_ < other.compressed_;
}
bool UniquePosition::Equals(const UniquePosition& other) const {
if (!this->IsValid() && !other.IsValid())
return true;
return compressed_ == other.compressed_;
}
sync_pb::UniquePosition UniquePosition::ToProto() const {
sync_pb::UniquePosition proto;
// This is the current preferred foramt.
proto.set_custom_compressed_v1(compressed_);
return proto;
// Older clients used to write other formats. We don't bother doing that
// anymore because that form of backwards compatibility is expensive. We no
// longer want to pay that price just too support clients that have been
// obsolete for a long time. See the proto definition for details.
}
void UniquePosition::SerializeToString(std::string* blob) const {
DCHECK(blob);
ToProto().SerializeToString(blob);
}
int64_t UniquePosition::ToInt64() const {
uint64_t y = 0;
const std::string& s = Uncompress(compressed_);
size_t l = sizeof(int64_t);
if (s.length() < l) {
NOTREACHED();
l = s.length();
}
for (size_t i = 0; i < l; ++i) {
const uint8_t byte = s[l - i - 1];
y |= static_cast<uint64_t>(byte) << (i * 8);
}
y ^= 0x8000000000000000ULL;
// This is technically implementation-defined if y > INT64_MAX, so
// we're assuming that we're on a twos-complement machine.
return static_cast<int64_t>(y);
}
bool UniquePosition::IsValid() const {
return is_valid_;
}
std::string UniquePosition::ToDebugString() const {
const std::string bytes = Uncompress(compressed_);
if (bytes.empty())
return std::string("INVALID[]");
std::string debug_string = base::HexEncode(bytes.data(), bytes.length());
if (!IsValid()) {
debug_string = "INVALID[" + debug_string + "]";
}
std::string compressed_string =
base::HexEncode(compressed_.data(), compressed_.length());
debug_string.append(", compressed: " + compressed_string);
return debug_string;
}
std::string UniquePosition::GetSuffixForTest() const {
const std::string bytes = Uncompress(compressed_);
const size_t prefix_len = bytes.length() - kSuffixLength;
return bytes.substr(prefix_len, std::string::npos);
}
std::string UniquePosition::FindSmallerWithSuffix(const std::string& reference,
const std::string& suffix) {
size_t ref_zeroes = reference.find_first_not_of('\0');
size_t suffix_zeroes = suffix.find_first_not_of('\0');
// Neither of our inputs are allowed to have trailing zeroes, so the following
// must be true.
DCHECK_NE(ref_zeroes, std::string::npos);
DCHECK_NE(suffix_zeroes, std::string::npos);
if (suffix_zeroes > ref_zeroes) {
// Implies suffix < ref.
return std::string();
}
if (suffix.substr(suffix_zeroes) < reference.substr(ref_zeroes)) {
// Prepend zeroes so the result has as many zero digits as |reference|.
return std::string(ref_zeroes - suffix_zeroes, '\0');
} else if (suffix_zeroes > 1) {
// Prepend zeroes so the result has one more zero digit than |reference|.
// We could also take the "else" branch below, but taking this branch will
// give us a smaller result.
return std::string(ref_zeroes - suffix_zeroes + 1, '\0');
} else {
// Prepend zeroes to match those in the |reference|, then something smaller
// than the first non-zero digit in |reference|.
char lt_digit = static_cast<uint8_t>(reference[ref_zeroes]) / 2;
return std::string(ref_zeroes, '\0') + lt_digit;
}
}
// static
std::string UniquePosition::FindGreaterWithSuffix(const std::string& reference,
const std::string& suffix) {
size_t ref_FFs =
reference.find_first_not_of(std::numeric_limits<uint8_t>::max());
size_t suffix_FFs =
suffix.find_first_not_of(std::numeric_limits<uint8_t>::max());
if (ref_FFs == std::string::npos) {
ref_FFs = reference.length();
}
if (suffix_FFs == std::string::npos) {
suffix_FFs = suffix.length();
}
if (suffix_FFs > ref_FFs) {
// Implies suffix > reference.
return std::string();
}
if (suffix.substr(suffix_FFs) > reference.substr(ref_FFs)) {
// Prepend FF digits to match those in |reference|.
return std::string(ref_FFs - suffix_FFs,
std::numeric_limits<uint8_t>::max());
} else if (suffix_FFs > 1) {
// Prepend enough leading FF digits so result has one more of them than
// |reference| does. We could also take the "else" branch below, but this
// gives us a smaller result.
return std::string(ref_FFs - suffix_FFs + 1,
std::numeric_limits<uint8_t>::max());
} else {
// Prepend FF digits to match those in |reference|, then something larger
// than the first non-FF digit in |reference|.
char gt_digit = static_cast<uint8_t>(reference[ref_FFs]) +
(std::numeric_limits<uint8_t>::max() -
static_cast<uint8_t>(reference[ref_FFs]) + 1) /
2;
return std::string(ref_FFs, std::numeric_limits<uint8_t>::max()) + gt_digit;
}
}
// static
std::string UniquePosition::FindBetweenWithSuffix(const std::string& before,
const std::string& after,
const std::string& suffix) {
DCHECK(IsValidSuffix(suffix));
DCHECK_NE(before, after);
DCHECK_LT(before, after);
std::string mid;
// Sometimes our suffix puts us where we want to be.
if (before < suffix && suffix < after) {
return std::string();
}
size_t i = 0;
for (; i < std::min(before.length(), after.length()); ++i) {
uint8_t a_digit = before[i];
uint8_t b_digit = after[i];
if (b_digit - a_digit >= 2) {
mid.push_back(a_digit + (b_digit - a_digit) / 2);
return mid;
} else if (a_digit == b_digit) {
mid.push_back(a_digit);
// Both strings are equal so far. Will appending the suffix at this point
// give us the comparison we're looking for?
if (before.substr(i + 1) < suffix && suffix < after.substr(i + 1)) {
return mid;
}
} else {
DCHECK_EQ(b_digit - a_digit, 1); // Implied by above if branches.
// The two options are off by one digit. The choice of whether to round
// up or down here will have consequences on what we do with the remaining
// digits. Exploring both options is an optimization and is not required
// for the correctness of this algorithm.
// Option A: Round down the current digit. This makes our |mid| <
// |after|, no matter what we append afterwards. We then focus on
// appending digits until |mid| > |before|.
std::string mid_a = mid;
mid_a.push_back(a_digit);
mid_a.append(FindGreaterWithSuffix(before.substr(i + 1), suffix));
// Option B: Round up the current digit. This makes our |mid| > |before|,
// no matter what we append afterwards. We then focus on appending digits
// until |mid| < |after|. Note that this option may not be viable if the
// current digit is the last one in |after|, so we skip the option in that
// case.
if (after.length() > i + 1) {
std::string mid_b = mid;
mid_b.push_back(b_digit);
mid_b.append(FindSmallerWithSuffix(after.substr(i + 1), suffix));
// Does this give us a shorter position value? If so, use it.
if (mid_b.length() < mid_a.length()) {
return mid_b;
}
}
return mid_a;
}
}
// If we haven't found a midpoint yet, the following must be true:
DCHECK_EQ(before.substr(0, i), after.substr(0, i));
DCHECK_EQ(before, mid);
DCHECK_LT(before.length(), after.length());
// We know that we'll need to append at least one more byte to |mid| in the
// process of making it < |after|. Appending any digit, regardless of the
// value, will make |before| < |mid|. Therefore, the following will get us a
// valid position.
mid.append(FindSmallerWithSuffix(after.substr(i), suffix));
return mid;
}
UniquePosition::UniquePosition(const std::string& internal_rep)
: compressed_(internal_rep),
is_valid_(IsValidBytes(Uncompress(internal_rep))) {}
UniquePosition::UniquePosition(const std::string& uncompressed,
const std::string& suffix)
: compressed_(Compress(uncompressed)),
is_valid_(IsValidBytes(uncompressed)) {
DCHECK(uncompressed.rfind(suffix) + kSuffixLength == uncompressed.length());
DCHECK(IsValidSuffix(suffix));
DCHECK(IsValid());
}
// On custom compression:
//
// Let C(x) be the compression function and U(x) be the uncompression function.
//
// This compression scheme has a few special properties. For one, it is
// order-preserving. For any two valid position strings x and y:
// x < y <=> C(x) < C(y)
// This allows us keep the position strings compressed as we sort them.
//
// The compressed format and the decode algorithm:
//
// The compressed string is a series of blocks, almost all of which are 8 bytes
// in length. The only exception is the last block in the compressed string,
// which may be a remainder block, which has length no greater than 7. The
// full-length blocks are either repeated character blocks or plain data blocks.
// All blocks are entirely self-contained. Their decoded values are independent
// from that of their neighbours.
//
// A repeated character block is encoded into eight bytes and represents between
// 4 and 2^31 repeated instances of a given character in the unencoded stream.
// The encoding consists of a single character repeated four times, followed by
// an encoded count. The encoded count is stored as a big-endian 32 bit
// integer. There are 2^31 possible count values, and two encodings for each.
// The high encoding is 'enc = kuint32max - count'; the low encoding is 'enc =
// count'. At compression time, the algorithm will choose between the two
// encodings based on which of the two will maintain the appropriate sort
// ordering (by a process which will be described below). The decompression
// algorithm need not concern itself with which encoding was used; it needs only
// to decode it. The decoded value of this block is "count" instances of the
// character that was repeated four times in the first half of this block.
//
// A plain data block is encoded into eight bytes and represents exactly eight
// bytes of data in the unencoded stream. The plain data block must not begin
// with the same character repeated four times. It is allowed to contain such a
// four-character sequence, just not at the start of the block. The decoded
// value of a plain data block is identical to its encoded value.
//
// A remainder block has length of at most seven. It is a shorter version of
// the plain data block. It occurs only at the end of the encoded stream and
// represents exactly as many bytes of unencoded data as its own length. Like a
// plain data block, the remainder block never begins with the same character
// repeated four times. The decoded value of this block is identical to its
// encoded value.
//
// The encode algorithm:
//
// From the above description, it can be seen that there may be more than one
// way to encode a given input string. The encoder must be careful to choose
// the encoding that guarantees sort ordering.
//
// The rules for the encoder are as follows:
// 1. Iterate through the input string and produce output blocks one at a time.
// 2. Where possible (ie. where the next four bytes of input consist of the
// same character repeated four times), produce a repeated data block of
// maximum possible length.
// 3. If there is at least 8 bytes of data remaining and it is not possible
// to produce a repeated character block, produce a plain data block.
// 4. If there are less than 8 bytes of data remaining and it is not possible
// to produce a repeated character block, produce a remainder block.
// 5. When producing a repeated character block, the count encoding must be
// chosen in such a way that the sort ordering is maintained. The choice is
// best illustrated by way of example:
//
// When comparing two strings, the first of which begins with of 8
// instances of the letter 'B' and the second with 10 instances of the
// letter 'B', which of the two should compare lower? The result depends
// on the 9th character of the first string, since it will be compared
// against the 9th 'B' in the second string. If that character is an 'A',
// then the first string will compare lower. If it is a 'C', then the
// first string will compare higher.
//
// The key insight is that the comparison value of a repeated character block
// depends on the value of the character that follows it. If the character
// follows the repeated character has a value greater than the repeated
// character itself, then a shorter run length should translate to a higher
// comparison value. Therefore, we encode its count using the low encoding.
// Similarly, if the following character is lower, we use the high encoding.
namespace {
// Appends an encoded run length to |output_str|.
static void WriteEncodedRunLength(uint32_t length,
bool high_encoding,
std::string* output_str) {
CHECK_GE(length, 4U);
CHECK_LT(length, 0x80000000);
// Step 1: Invert the count, if necessary, to account for the following digit.
uint32_t encoded_length;
if (high_encoding) {
encoded_length = 0xffffffff - length;
} else {
encoded_length = length;
}
// Step 2: Write it as big-endian so it compares correctly with memcmp(3).
output_str->append(1, 0xff & (encoded_length >> 24U));
output_str->append(1, 0xff & (encoded_length >> 16U));
output_str->append(1, 0xff & (encoded_length >> 8U));
output_str->append(1, 0xff & (encoded_length >> 0U));
}
// Reads an encoded run length for |str| at position |i|.
static uint32_t ReadEncodedRunLength(const std::string& str, size_t i) {
DCHECK_LE(i + 4, str.length());
// Step 1: Extract the big-endian count.
uint32_t encoded_length =
((uint8_t)(str[i + 3]) << 0) | ((uint8_t)(str[i + 2]) << 8) |
((uint8_t)(str[i + 1]) << 16) | ((uint8_t)(str[i + 0]) << 24);
// Step 2: If this was an inverted count, un-invert it.
uint32_t length;
if (encoded_length & 0x80000000) {
length = 0xffffffff - encoded_length;
} else {
length = encoded_length;
}
return length;
}
// A series of four identical chars at the beginning of a block indicates
// the beginning of a repeated character block.
static bool IsRepeatedCharPrefix(const std::string& chars, size_t start_index) {
return chars[start_index] == chars[start_index + 1] &&
chars[start_index] == chars[start_index + 2] &&
chars[start_index] == chars[start_index + 3];
}
} // namespace
// static
// Wraps the CompressImpl function with a bunch of DCHECKs.
std::string UniquePosition::Compress(const std::string& str) {
DCHECK(IsValidBytes(str));
std::string compressed = CompressImpl(str);
DCHECK(IsValidCompressed(compressed));
DCHECK_EQ(str, Uncompress(compressed));
return compressed;
}
// static
// Performs the order preserving run length compression of a given input string.
std::string UniquePosition::CompressImpl(const std::string& str) {
std::string output;
// The compressed length will usually be at least as long as the suffix (28),
// since the suffix bytes are mostly random. Most are a few bytes longer; a
// small few are tens of bytes longer. Some early tests indicated that
// roughly 99% had length 40 or smaller. We guess that pre-sizing for 48 is a
// good trade-off, but that has not been confirmed through profiling.
output.reserve(48);
// Each loop iteration will consume 8, or N bytes, where N >= 4 and is the
// length of a string of identical digits starting at i.
for (size_t i = 0; i < str.length();) {
if (i + 4 <= str.length() && IsRepeatedCharPrefix(str, i)) {
// Four identical bytes in a row at this position means that we must start
// a repeated character block. Begin by outputting those four bytes.
output.append(str, i, 4);
// Determine the size of the run.
const char rep_digit = str[i];
const size_t runs_until = str.find_first_not_of(rep_digit, i + 4);
// Handle the 'runs until end' special case specially.
size_t run_length;
bool encode_high; // True if the next byte is greater than |rep_digit|.
if (runs_until == std::string::npos) {
run_length = str.length() - i;
encode_high = false;
} else {
run_length = runs_until - i;
encode_high = static_cast<uint8_t>(str[runs_until]) >
static_cast<uint8_t>(rep_digit);
}
DCHECK_LT(run_length,
static_cast<size_t>(std::numeric_limits<int32_t>::max()))
<< "This implementation can't encode run-lengths greater than 2^31.";
WriteEncodedRunLength(run_length, encode_high, &output);
i += run_length; // Jump forward by the size of the run length.
} else {
// Output up to eight bytes without any encoding.
const size_t len = std::min(static_cast<size_t>(8), str.length() - i);
output.append(str, i, len);
i += len; // Jump forward by the amount of input consumed (usually 8).
}
}
return output;
}
// static
// Uncompresses strings that were compresed with UniquePosition::Compress.
std::string UniquePosition::Uncompress(const std::string& str) {
std::string output;
size_t i = 0;
// Iterate through the compressed string one block at a time.
for (i = 0; i + 8 <= str.length(); i += 8) {
if (IsRepeatedCharPrefix(str, i)) {
// Found a repeated character block. Expand it.
const char rep_digit = str[i];
uint32_t length = ReadEncodedRunLength(str, i + 4);
output.append(length, rep_digit);
} else {
// Found a regular block. Copy it.
output.append(str, i, 8);
}
}
// Copy the remaining bytes that were too small to form a block.
output.append(str, i, std::string::npos);
return output;
}
bool UniquePosition::IsValidCompressed(const std::string& str) {
for (size_t i = 0; i + 8 <= str.length(); i += 8) {
if (IsRepeatedCharPrefix(str, i)) {
uint32_t count = ReadEncodedRunLength(str, i + 4);
if (count < 4) {
// A repeated character block should at least represent the four
// characters that started it.
return false;
}
if (str[i] == str[i + 4]) {
// Does the next digit after a count match the repeated character? Then
// this is not the highest possible count.
return false;
}
}
}
// We don't bother looking for the existence or checking the validity of
// any partial blocks. There's no way they could be invalid anyway.
return true;
}
size_t UniquePosition::EstimateMemoryUsage() const {
using base::trace_event::EstimateMemoryUsage;
return EstimateMemoryUsage(compressed_);
}
} // namespace syncer