blob: 4c6d573b14cbd1e8c788aeaa32772cb5dcfe0de3 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<title>
Test Basic IIRFilterNode Operation
</title>
<script src="../../resources/testharness.js"></script>
<script src="../../resources/testharnessreport.js"></script>
<script src="../resources/audit-util.js"></script>
<script src="../resources/audit.js"></script>
<script src="../resources/biquad-filters.js"></script>
</head>
<body>
<script id="layout-test-code">
let sampleRate = 24000;
let testDurationSec = 0.25;
let testFrames = testDurationSec * sampleRate;
let audit = Audit.createTaskRunner();
audit.define('coefficient-normalization', (task, should) => {
// Test that the feedback coefficients are normalized. Do this be
// creating two IIRFilterNodes. One has normalized coefficients, and
// one doesn't. Compute the difference and make sure they're the same.
let context = new OfflineAudioContext(2, testFrames, sampleRate);
// Use a simple impulse as the source.
let buffer = context.createBuffer(1, 1, sampleRate);
buffer.getChannelData(0)[0] = 1;
let source = context.createBufferSource();
source.buffer = buffer;
// Gain node for computing the difference between the filters.
let gain = context.createGain();
gain.gain.value = -1;
// The IIR filters. Use a common feedforward array.
let ff = [1];
let fb1 = [1, .9];
let fb2 = new Float64Array(2);
// Scale the feedback coefficients by an arbitrary factor.
let coefScaleFactor = 2;
for (let k = 0; k < fb2.length; ++k) {
fb2[k] = coefScaleFactor * fb1[k];
}
let iir1;
let iir2;
should(function() {
iir1 = context.createIIRFilter(ff, fb1);
}, 'createIIRFilter with normalized coefficients').notThrow();
should(function() {
iir2 = context.createIIRFilter(ff, fb2);
}, 'createIIRFilter with unnormalized coefficients').notThrow();
// Create the graph. The output of iir1 (normalized coefficients) is
// channel 0, and the output of iir2 (unnormalized coefficients), with
// appropriate scaling, is channel 1.
let merger = context.createChannelMerger(2);
source.connect(iir1);
source.connect(iir2);
iir1.connect(merger, 0, 0);
iir2.connect(gain);
// The gain for the gain node should be set to compensate for the
// scaling of the coefficients. Since iir2 has scaled the coefficients
// by coefScaleFactor, the output is reduced by the same factor, so
// adjust the gain to scale the output of iir2 back up.
gain.gain.value = coefScaleFactor;
gain.connect(merger, 0, 1);
merger.connect(context.destination);
source.start();
// Rock and roll!
context.startRendering()
.then(function(result) {
// Find the max amplitude of the result, which should be near
// zero.
let iir1Data = result.getChannelData(0);
let iir2Data = result.getChannelData(1);
// Threshold isn't exactly zero because the arithmetic is done
// differently between the IIRFilterNode and the BiquadFilterNode.
should(
iir2Data,
'Output of IIR filter with unnormalized coefficients')
.beCloseToArray(iir1Data, {absoluteThreshold: 2.1958e-38});
})
.then(() => task.done());
});
audit.define('one-zero', (task, should) => {
// Create a simple 1-zero filter and compare with the expected output.
let context = new OfflineAudioContext(1, testFrames, sampleRate);
// Use a simple impulse as the source
let buffer = context.createBuffer(1, 1, sampleRate);
buffer.getChannelData(0)[0] = 1;
let source = context.createBufferSource();
source.buffer = buffer;
// The filter is y(n) = 0.5*(x(n) + x(n-1)), a simple 2-point moving
// average. This is rather arbitrary; keep it simple.
let iir = context.createIIRFilter([0.5, 0.5], [1]);
// Create the graph
source.connect(iir);
iir.connect(context.destination);
// Rock and roll!
source.start();
context.startRendering()
.then(function(result) {
let actual = result.getChannelData(0);
let expected = new Float64Array(testFrames);
// The filter is a simple 2-point moving average of an impulse, so
// the first two values are non-zero and the rest are zero.
expected[0] = 0.5;
expected[1] = 0.5;
should(actual, 'IIR 1-zero output').beCloseToArray(expected, {
absoluteThreshold: 0
});
})
.then(() => task.done());
});
audit.define('one-pole', (task, should) => {
// Create a simple 1-pole filter and compare with the expected output.
// The filter is y(n) + c*y(n-1)= x(n). The analytical response is
// (-c)^n, so choose a suitable number of frames to run the test for
// where the output isn't flushed to zero.
let c = 0.9;
let eps = 1e-20;
let duration = Math.floor(Math.log(eps) / Math.log(Math.abs(c)));
let context = new OfflineAudioContext(1, duration, sampleRate);
// Use a simple impulse as the source
let buffer = context.createBuffer(1, 1, sampleRate);
buffer.getChannelData(0)[0] = 1;
let source = context.createBufferSource();
source.buffer = buffer;
let iir = context.createIIRFilter([1], [1, c]);
// Create the graph
source.connect(iir);
iir.connect(context.destination);
// Rock and roll!
source.start();
context.startRendering()
.then(function(result) {
let actual = result.getChannelData(0);
let expected = new Float64Array(actual.length);
// The filter is a simple 1-pole filter: y(n) = -c*y(n-k)+x(n),
// with an impulse as the input.
expected[0] = 1;
for (k = 1; k < testFrames; ++k) {
expected[k] = -c * expected[k - 1];
}
// Threshold isn't exactly zero due to round-off in the
// single-precision IIRFilterNode computations versus the
// double-precision Javascript computations.
should(actual, 'IIR 1-pole output').beCloseToArray(expected, {
absoluteThreshold: 2.7657e-8
});
})
.then(() => task.done());
});
// Return a function suitable for use as a defineTask function. This
// function creates an IIRFilterNode equivalent to the specified
// BiquadFilterNode and compares the outputs. The outputs from the two
// filters should be virtually identical.
function testWithBiquadFilter(filterType, errorThreshold, snrThreshold) {
return (task, should) => {
let context = new OfflineAudioContext(2, testFrames, sampleRate);
// Use a constant (step function) as the source
let buffer = createConstantBuffer(context, testFrames, 1);
let source = context.createBufferSource();
source.buffer = buffer;
// Create the biquad. Choose some rather arbitrary values for Q and
// gain for the biquad so that the shelf filters aren't identical.
let biquad = context.createBiquadFilter();
biquad.type = filterType;
biquad.Q.value = 10;
biquad.gain.value = 10;
// Create the equivalent IIR Filter node by computing the coefficients
// of the given biquad filter type.
let nyquist = sampleRate / 2;
let coef = createFilter(
filterType, biquad.frequency.value / nyquist, biquad.Q.value,
biquad.gain.value);
let iir = context.createIIRFilter(
[coef.b0, coef.b1, coef.b2], [1, coef.a1, coef.a2]);
let merger = context.createChannelMerger(2);
// Create the graph
source.connect(biquad);
source.connect(iir);
biquad.connect(merger, 0, 0);
iir.connect(merger, 0, 1);
merger.connect(context.destination);
// Rock and roll!
source.start();
context.startRendering()
.then(function(result) {
// Find the max amplitude of the result, which should be near
// zero.
let expected = result.getChannelData(0);
let actual = result.getChannelData(1);
// On MacOSX, WebAudio uses an optimized Biquad implementation
// that is different from the implementation used for Linux and
// Windows. This will cause the output to differ, even if the
// threshold passes. Thus, only print out a very small number
// of elements of the array where we have tested that they are
// consistent.
should(actual, 'IIRFilter for Biquad ' + filterType)
.beCloseToArray(expected, errorThreshold);
let snr = 10 * Math.log10(computeSNR(actual, expected));
should(snr, 'SNR for IIRFIlter for Biquad ' + filterType)
.beGreaterThanOrEqualTo(snrThreshold);
})
.then(() => task.done());
};
}
// Thresholds here are experimentally determined.
let biquadTestConfigs = [
{
filterType: 'lowpass',
snrThreshold: 91.221,
errorThreshold: {relativeThreshold: 4.9834e-5}
},
{
filterType: 'highpass',
snrThreshold: 105.4590,
errorThreshold: {absoluteThreshold: 2.9e-6, relativeThreshold: 3e-5}
},
{
filterType: 'bandpass',
snrThreshold: 104.060,
errorThreshold: {absoluteThreshold: 2e-7, relativeThreshold: 8.7e-4}
},
{
filterType: 'notch',
snrThreshold: 91.312,
errorThreshold: {absoluteThreshold: 0, relativeThreshold: 4.22e-5}
},
{
filterType: 'allpass',
snrThreshold: 91.319,
errorThreshold: {absoluteThreshold: 0, relativeThreshold: 4.31e-5}
},
{
filterType: 'lowshelf',
snrThreshold: 90.609,
errorThreshold: {absoluteThreshold: 0, relativeThreshold: 2.98e-5}
},
{
filterType: 'highshelf',
snrThreshold: 103.159,
errorThreshold: {absoluteThreshold: 0, relativeThreshold: 1.24e-5}
},
{
filterType: 'peaking',
snrThreshold: 91.504,
errorThreshold: {absoluteThreshold: 0, relativeThreshold: 5.05e-5}
}
];
// Create a set of tasks based on biquadTestConfigs.
for (k = 0; k < biquadTestConfigs.length; ++k) {
let config = biquadTestConfigs[k];
let name = k + ': ' + config.filterType;
audit.define(
name,
testWithBiquadFilter(
config.filterType, config.errorThreshold, config.snrThreshold));
}
audit.define('multi-channel', (task, should) => {
// Multi-channel test. Create a biquad filter and the equivalent IIR
// filter. Filter the same multichannel signal and compare the results.
let nChannels = 3;
let context =
new OfflineAudioContext(nChannels, testFrames, sampleRate);
// Create a set of oscillators as the multi-channel source.
let source = [];
for (k = 0; k < nChannels; ++k) {
source[k] = context.createOscillator();
source[k].type = 'sawtooth';
// The frequency of the oscillator is pretty arbitrary, but each
// oscillator should have a different frequency.
source[k].frequency.value = 100 + k * 100;
}
let merger = context.createChannelMerger(3);
let biquad = context.createBiquadFilter();
// Create the equivalent IIR Filter node.
let nyquist = sampleRate / 2;
let coef = createFilter(
biquad.type, biquad.frequency.value / nyquist, biquad.Q.value,
biquad.gain.value);
let fb = [1, coef.a1, coef.a2];
let ff = [coef.b0, coef.b1, coef.b2];
let iir = context.createIIRFilter(ff, fb);
// Gain node to compute the difference between the IIR and biquad
// filter.
let gain = context.createGain();
gain.gain.value = -1;
// Create the graph.
for (k = 0; k < nChannels; ++k)
source[k].connect(merger, 0, k);
merger.connect(biquad);
merger.connect(iir);
iir.connect(gain);
biquad.connect(context.destination);
gain.connect(context.destination);
for (k = 0; k < nChannels; ++k)
source[k].start();
context.startRendering()
.then(function(result) {
let errorThresholds = [3.7671e-5, 3.0071e-5, 2.6241e-5];
// Check the difference signal on each channel
for (channel = 0; channel < result.numberOfChannels; ++channel) {
// Find the max amplitude of the result, which should be near
// zero.
let data = result.getChannelData(channel);
let maxError =
data.reduce(function(reducedValue, currentValue) {
return Math.max(reducedValue, Math.abs(currentValue));
});
should(
maxError,
'Max difference between IIR and Biquad on channel ' +
channel)
.beLessThanOrEqualTo(errorThresholds[channel]);
}
})
.then(() => task.done());
});
// Apply an IIRFilter to the given input signal.
//
// IIR filter in the time domain is
//
// y[n] = sum(ff[k]*x[n-k], k, 0, M) - sum(fb[k]*y[n-k], k, 1, N)
//
function iirFilter(input, feedforward, feedback) {
// For simplicity, create an x buffer that contains the input, and a y
// buffer that contains the output. Both of these buffers have an
// initial work space to implement the initial memory of the filter.
let workSize = Math.max(feedforward.length, feedback.length);
let x = new Float32Array(input.length + workSize);
// Float64 because we want to match the implementation that uses doubles
// to minimize roundoff.
let y = new Float64Array(input.length + workSize);
// Copy the input over.
for (let k = 0; k < input.length; ++k)
x[k + feedforward.length] = input[k];
// Run the filter
for (let n = 0; n < input.length; ++n) {
let index = n + workSize;
let yn = 0;
for (let k = 0; k < feedforward.length; ++k)
yn += feedforward[k] * x[index - k];
for (let k = 0; k < feedback.length; ++k)
yn -= feedback[k] * y[index - k];
y[index] = yn;
}
return y.slice(workSize).map(Math.fround);
}
// Cascade the two given biquad filters to create one IIR filter.
function cascadeBiquads(f1Coef, f2Coef) {
// The biquad filters are:
//
// f1 = (b10 + b11/z + b12/z^2)/(1 + a11/z + a12/z^2);
// f2 = (b20 + b21/z + b22/z^2)/(1 + a21/z + a22/z^2);
//
// To cascade them, multiply the two transforms together to get a fourth
// order IIR filter.
let numProduct = [
f1Coef.b0 * f2Coef.b0, f1Coef.b0 * f2Coef.b1 + f1Coef.b1 * f2Coef.b0,
f1Coef.b0 * f2Coef.b2 + f1Coef.b1 * f2Coef.b1 + f1Coef.b2 * f2Coef.b0,
f1Coef.b1 * f2Coef.b2 + f1Coef.b2 * f2Coef.b1, f1Coef.b2 * f2Coef.b2
];
let denProduct = [
1, f2Coef.a1 + f1Coef.a1,
f2Coef.a2 + f1Coef.a1 * f2Coef.a1 + f1Coef.a2,
f1Coef.a1 * f2Coef.a2 + f1Coef.a2 * f2Coef.a1, f1Coef.a2 * f2Coef.a2
];
return {
ff: numProduct, fb: denProduct
}
}
// Find the magnitude of the root of the quadratic that has the maximum
// magnitude.
//
// The quadratic is z^2 + a1 * z + a2 and we want the root z that has the
// largest magnitude.
function largestRootMagnitude(a1, a2) {
let discriminant = a1 * a1 - 4 * a2;
if (discriminant < 0) {
// Complex roots: -a1/2 +/- i*sqrt(-d)/2. Thus the magnitude of each
// root is the same and is sqrt(a1^2/4 + |d|/4)
let d = Math.sqrt(-discriminant);
return Math.hypot(a1 / 2, d / 2);
} else {
// Real roots
let d = Math.sqrt(discriminant);
return Math.max(Math.abs((-a1 + d) / 2), Math.abs((-a1 - d) / 2));
}
}
audit.define('4th-order-iir', (task, should) => {
// Cascade 2 lowpass biquad filters and compare that with the equivalent
// 4th order IIR filter.
let nyquist = sampleRate / 2;
// Compute the coefficients of a lowpass filter.
// First some preliminary stuff. Compute the coefficients of the
// biquad. This is used to figure out how frames to use in the test.
let biquadType = 'lowpass';
let biquadCutoff = 350;
let biquadQ = 5;
let biquadGain = 1;
let coef = createFilter(
biquadType, biquadCutoff / nyquist, biquadQ, biquadGain);
// Cascade the biquads together to create an equivalent IIR filter.
let cascade = cascadeBiquads(coef, coef);
// Since we're cascading two identical biquads, the root of denominator
// of the IIR filter is repeated, so the root of the denominator with
// the largest magnitude occurs twice. The impulse response of the IIR
// filter will be roughly c*(r*r)^n at time n, where r is the root of
// largest magnitude. This approximation gets better as n increases.
// We can use this to get a rough idea of when the response has died
// down to a small value.
// This is the value we will use to determine how many frames to render.
// Rendering too many is a waste of time and also makes it hard to
// compare the actual result to the expected because the magnitudes are
// so small that they could be mostly round-off noise.
//
// Find magnitude of the root with largest magnitude
let rootMagnitude = largestRootMagnitude(coef.a1, coef.a2);
// Find n such that |r|^(2*n) <= eps. That is, n = log(eps)/(2*log(r)).
// Somewhat arbitrarily choose eps = 1e-20;
let eps = 1e-20;
let framesForTest =
Math.floor(Math.log(eps) / (2 * Math.log(rootMagnitude)));
// We're ready to create the graph for the test. The offline context
// has two channels: channel 0 is the expected (cascaded biquad) result
// and channel 1 is the actual IIR filter result.
let context = new OfflineAudioContext(2, framesForTest, sampleRate);
// Use a simple impulse with a large (arbitrary) amplitude as the source
let amplitude = 1;
let buffer = context.createBuffer(1, testFrames, sampleRate);
buffer.getChannelData(0)[0] = amplitude;
let source = context.createBufferSource();
source.buffer = buffer;
// Create the two biquad filters. Doesn't really matter what, but for
// simplicity we choose identical lowpass filters with the same
// parameters.
let biquad1 = context.createBiquadFilter();
biquad1.type = biquadType;
biquad1.frequency.value = biquadCutoff;
biquad1.Q.value = biquadQ;
let biquad2 = context.createBiquadFilter();
biquad2.type = biquadType;
biquad2.frequency.value = biquadCutoff;
biquad2.Q.value = biquadQ;
let iir = context.createIIRFilter(cascade.ff, cascade.fb);
// Create the merger to get the signals into multiple channels
let merger = context.createChannelMerger(2);
// Create the graph, filtering the source through two biquads.
source.connect(biquad1);
biquad1.connect(biquad2);
biquad2.connect(merger, 0, 0);
source.connect(iir);
iir.connect(merger, 0, 1);
merger.connect(context.destination);
// Now filter the source through the IIR filter.
let y = iirFilter(buffer.getChannelData(0), cascade.ff, cascade.fb);
// Rock and roll!
source.start();
context.startRendering()
.then(function(result) {
let expected = result.getChannelData(0);
let actual = result.getChannelData(1);
should(actual, '4-th order IIRFilter (biquad ref)')
.beCloseToArray(expected, {
// Thresholds experimentally determined.
absoluteThreshold: 1.59e-7,
relativeThreshold: 2.11e-5,
});
let snr = 10 * Math.log10(computeSNR(actual, expected));
should(snr, 'SNR of 4-th order IIRFilter (biquad ref)')
.beGreaterThanOrEqualTo(108.947);
})
.then(() => task.done());
});
audit.run();
</script>
</body>
</html>