blob: c8baceb3d4dd1fc9eef0974975094f9bfa899eef [file] [log] [blame]
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/trees/layer_tree_host_common.h"
#include <stddef.h>
#include <algorithm>
#include "base/trace_event/trace_event.h"
#include "cc/base/math_util.h"
#include "cc/layers/heads_up_display_layer_impl.h"
#include "cc/layers/layer.h"
#include "cc/layers/layer_impl.h"
#include "cc/layers/layer_iterator.h"
#include "cc/layers/render_surface_draw_properties.h"
#include "cc/layers/render_surface_impl.h"
#include "cc/proto/begin_main_frame_and_commit_state.pb.h"
#include "cc/proto/gfx_conversions.h"
#include "cc/trees/draw_property_utils.h"
#include "cc/trees/layer_tree_host.h"
#include "cc/trees/layer_tree_impl.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/vector2d_conversions.h"
#include "ui/gfx/transform.h"
#include "ui/gfx/transform_util.h"
namespace cc {
LayerTreeHostCommon::CalcDrawPropsMainInputs::CalcDrawPropsMainInputs(
Layer* root_layer,
const gfx::Size& device_viewport_size,
const gfx::Transform& device_transform,
float device_scale_factor,
float page_scale_factor,
const Layer* page_scale_layer,
const Layer* inner_viewport_scroll_layer,
const Layer* outer_viewport_scroll_layer)
: root_layer(root_layer),
device_viewport_size(device_viewport_size),
device_transform(device_transform),
device_scale_factor(device_scale_factor),
page_scale_factor(page_scale_factor),
page_scale_layer(page_scale_layer),
inner_viewport_scroll_layer(inner_viewport_scroll_layer),
outer_viewport_scroll_layer(outer_viewport_scroll_layer) {}
LayerTreeHostCommon::CalcDrawPropsMainInputs::CalcDrawPropsMainInputs(
Layer* root_layer,
const gfx::Size& device_viewport_size,
const gfx::Transform& device_transform)
: CalcDrawPropsMainInputs(root_layer,
device_viewport_size,
device_transform,
1.f,
1.f,
NULL,
NULL,
NULL) {}
LayerTreeHostCommon::CalcDrawPropsMainInputs::CalcDrawPropsMainInputs(
Layer* root_layer,
const gfx::Size& device_viewport_size)
: CalcDrawPropsMainInputs(root_layer,
device_viewport_size,
gfx::Transform()) {}
LayerTreeHostCommon::CalcDrawPropsImplInputs::CalcDrawPropsImplInputs(
LayerImpl* root_layer,
const gfx::Size& device_viewport_size,
const gfx::Transform& device_transform,
float device_scale_factor,
float page_scale_factor,
const LayerImpl* page_scale_layer,
const LayerImpl* inner_viewport_scroll_layer,
const LayerImpl* outer_viewport_scroll_layer,
const gfx::Vector2dF& elastic_overscroll,
const LayerImpl* elastic_overscroll_application_layer,
int max_texture_size,
bool can_use_lcd_text,
bool layers_always_allowed_lcd_text,
bool can_render_to_separate_surface,
bool can_adjust_raster_scales,
LayerImplList* render_surface_layer_list,
int current_render_surface_layer_list_id,
PropertyTrees* property_trees)
: root_layer(root_layer),
device_viewport_size(device_viewport_size),
device_transform(device_transform),
device_scale_factor(device_scale_factor),
page_scale_factor(page_scale_factor),
page_scale_layer(page_scale_layer),
inner_viewport_scroll_layer(inner_viewport_scroll_layer),
outer_viewport_scroll_layer(outer_viewport_scroll_layer),
elastic_overscroll(elastic_overscroll),
elastic_overscroll_application_layer(
elastic_overscroll_application_layer),
max_texture_size(max_texture_size),
can_use_lcd_text(can_use_lcd_text),
layers_always_allowed_lcd_text(layers_always_allowed_lcd_text),
can_render_to_separate_surface(can_render_to_separate_surface),
can_adjust_raster_scales(can_adjust_raster_scales),
render_surface_layer_list(render_surface_layer_list),
current_render_surface_layer_list_id(
current_render_surface_layer_list_id),
property_trees(property_trees) {}
LayerTreeHostCommon::CalcDrawPropsImplInputsForTesting::
CalcDrawPropsImplInputsForTesting(LayerImpl* root_layer,
const gfx::Size& device_viewport_size,
const gfx::Transform& device_transform,
LayerImplList* render_surface_layer_list,
int current_render_surface_layer_list_id)
: CalcDrawPropsImplInputs(root_layer,
device_viewport_size,
device_transform,
1.f,
1.f,
NULL,
NULL,
NULL,
gfx::Vector2dF(),
NULL,
std::numeric_limits<int>::max() / 2,
false,
false,
true,
false,
render_surface_layer_list,
current_render_surface_layer_list_id,
GetPropertyTrees(root_layer)) {
DCHECK(root_layer);
DCHECK(render_surface_layer_list);
}
LayerTreeHostCommon::CalcDrawPropsImplInputsForTesting::
CalcDrawPropsImplInputsForTesting(LayerImpl* root_layer,
const gfx::Size& device_viewport_size,
LayerImplList* render_surface_layer_list,
int current_render_surface_layer_list_id)
: CalcDrawPropsImplInputsForTesting(root_layer,
device_viewport_size,
gfx::Transform(),
render_surface_layer_list,
current_render_surface_layer_list_id) {}
bool LayerTreeHostCommon::ScrollUpdateInfo::operator==(
const LayerTreeHostCommon::ScrollUpdateInfo& other) const {
return layer_id == other.layer_id && scroll_delta == other.scroll_delta;
}
void LayerTreeHostCommon::ScrollUpdateInfo::ToProtobuf(
proto::ScrollUpdateInfo* proto) const {
proto->set_layer_id(layer_id);
Vector2dToProto(scroll_delta, proto->mutable_scroll_delta());
}
void LayerTreeHostCommon::ScrollUpdateInfo::FromProtobuf(
const proto::ScrollUpdateInfo& proto) {
layer_id = proto.layer_id();
scroll_delta = ProtoToVector2d(proto.scroll_delta());
}
ScrollAndScaleSet::ScrollAndScaleSet()
: page_scale_delta(1.f), top_controls_delta(0.f) {
}
ScrollAndScaleSet::~ScrollAndScaleSet() {}
bool ScrollAndScaleSet::EqualsForTesting(const ScrollAndScaleSet& other) const {
return scrolls == other.scrolls &&
page_scale_delta == other.page_scale_delta &&
elastic_overscroll_delta == other.elastic_overscroll_delta &&
top_controls_delta == other.top_controls_delta;
}
void ScrollAndScaleSet::ToProtobuf(proto::ScrollAndScaleSet* proto) const {
for (const auto& scroll : scrolls)
scroll.ToProtobuf(proto->add_scrolls());
proto->set_page_scale_delta(page_scale_delta);
Vector2dFToProto(elastic_overscroll_delta,
proto->mutable_elastic_overscroll_delta());
proto->set_top_controls_delta(top_controls_delta);
}
void ScrollAndScaleSet::FromProtobuf(const proto::ScrollAndScaleSet& proto) {
DCHECK_EQ(scrolls.size(), 0u);
for (int i = 0; i < proto.scrolls_size(); ++i) {
scrolls.push_back(LayerTreeHostCommon::ScrollUpdateInfo());
scrolls[i].FromProtobuf(proto.scrolls(i));
}
page_scale_delta = proto.page_scale_delta();
elastic_overscroll_delta = ProtoToVector2dF(proto.elastic_overscroll_delta());
top_controls_delta = proto.top_controls_delta();
}
inline gfx::Rect CalculateVisibleRectWithCachedLayerRect(
const gfx::Rect& target_surface_rect,
const gfx::Rect& layer_bound_rect,
const gfx::Rect& layer_rect_in_target_space,
const gfx::Transform& transform) {
if (layer_rect_in_target_space.IsEmpty())
return gfx::Rect();
// Is this layer fully contained within the target surface?
if (target_surface_rect.Contains(layer_rect_in_target_space))
return layer_bound_rect;
// If the layer doesn't fill up the entire surface, then find the part of
// the surface rect where the layer could be visible. This avoids trying to
// project surface rect points that are behind the projection point.
gfx::Rect minimal_surface_rect = target_surface_rect;
minimal_surface_rect.Intersect(layer_rect_in_target_space);
if (minimal_surface_rect.IsEmpty())
return gfx::Rect();
// Project the corners of the target surface rect into the layer space.
// This bounding rectangle may be larger than it needs to be (being
// axis-aligned), but is a reasonable filter on the space to consider.
// Non-invertible transforms will create an empty rect here.
gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization);
if (!transform.GetInverse(&surface_to_layer)) {
// Because we cannot use the surface bounds to determine what portion of
// the layer is visible, we must conservatively assume the full layer is
// visible.
return layer_bound_rect;
}
gfx::Rect layer_rect = MathUtil::ProjectEnclosingClippedRect(
surface_to_layer, minimal_surface_rect);
layer_rect.Intersect(layer_bound_rect);
return layer_rect;
}
gfx::Rect LayerTreeHostCommon::CalculateVisibleRect(
const gfx::Rect& target_surface_rect,
const gfx::Rect& layer_bound_rect,
const gfx::Transform& transform) {
gfx::Rect layer_in_surface_space =
MathUtil::MapEnclosingClippedRect(transform, layer_bound_rect);
return CalculateVisibleRectWithCachedLayerRect(
target_surface_rect, layer_bound_rect, layer_in_surface_space, transform);
}
static const LayerImpl* NextTargetSurface(const LayerImpl* layer) {
return layer->parent() ? layer->parent()->render_target() : 0;
}
// Given two layers, this function finds their respective render targets and,
// computes a change of basis translation. It does this by accumulating the
// translation components of the draw transforms of each target between the
// ancestor and descendant. These transforms must be 2D translations, and this
// requirement is enforced at every step.
static gfx::Vector2dF ComputeChangeOfBasisTranslation(
const LayerImpl& ancestor_layer,
const LayerImpl& descendant_layer) {
DCHECK(descendant_layer.HasAncestor(&ancestor_layer));
const LayerImpl* descendant_target = descendant_layer.render_target();
DCHECK(descendant_target);
const LayerImpl* ancestor_target = ancestor_layer.render_target();
DCHECK(ancestor_target);
gfx::Vector2dF translation;
for (const LayerImpl* target = descendant_target; target != ancestor_target;
target = NextTargetSurface(target)) {
const gfx::Transform& trans = target->render_surface()->draw_transform();
// Ensure that this translation is truly 2d.
DCHECK(trans.IsIdentityOrTranslation());
DCHECK_EQ(0.f, trans.matrix().get(2, 3));
translation += trans.To2dTranslation();
}
return translation;
}
enum TranslateRectDirection {
TRANSLATE_RECT_DIRECTION_TO_ANCESTOR,
TRANSLATE_RECT_DIRECTION_TO_DESCENDANT
};
static gfx::Rect TranslateRectToTargetSpace(const LayerImpl& ancestor_layer,
const LayerImpl& descendant_layer,
const gfx::Rect& rect,
TranslateRectDirection direction) {
gfx::Vector2dF translation =
ComputeChangeOfBasisTranslation(ancestor_layer, descendant_layer);
if (direction == TRANSLATE_RECT_DIRECTION_TO_DESCENDANT)
translation.Scale(-1.f);
gfx::RectF rect_f = gfx::RectF(rect);
return gfx::ToEnclosingRect(
gfx::RectF(rect_f.origin() + translation, rect_f.size()));
}
// We collect an accumulated drawable content rect per render surface.
// Typically, a layer will contribute to only one surface, the surface
// associated with its render target. Clip children, however, may affect
// several surfaces since there may be several surfaces between the clip child
// and its parent.
//
// NB: we accumulate the layer's *clipped* drawable content rect.
struct AccumulatedSurfaceState {
explicit AccumulatedSurfaceState(LayerImpl* render_target)
: render_target(render_target) {}
// The accumulated drawable content rect for the surface associated with the
// given |render_target|.
gfx::Rect drawable_content_rect;
// The target owning the surface. (We hang onto the target rather than the
// surface so that we can DCHECK that the surface's draw transform is simply
// a translation when |render_target| reports that it has no unclipped
// descendants).
LayerImpl* render_target;
};
template <typename LayerType>
static inline bool IsRootLayer(LayerType* layer) {
return !layer->parent();
}
void UpdateAccumulatedSurfaceState(
LayerImpl* layer,
const gfx::Rect& drawable_content_rect,
std::vector<AccumulatedSurfaceState>* accumulated_surface_state) {
if (IsRootLayer(layer))
return;
// We will apply our drawable content rect to the accumulated rects for all
// surfaces between us and |render_target| (inclusive). This is either our
// clip parent's target if we are a clip child, or else simply our parent's
// target. We use our parent's target because we're either the owner of a
// render surface and we'll want to add our rect to our *surface's* target, or
// we're not and our target is the same as our parent's. In both cases, the
// parent's target gives us what we want.
LayerImpl* render_target = layer->clip_parent()
? layer->clip_parent()->render_target()
: layer->parent()->render_target();
// If the layer owns a surface, then the content rect is in the wrong space.
// Instead, we will use the surface's DrawableContentRect which is in target
// space as required.
gfx::Rect target_rect = drawable_content_rect;
if (layer->render_surface()) {
target_rect =
gfx::ToEnclosedRect(layer->render_surface()->DrawableContentRect());
}
if (render_target->is_clipped()) {
gfx::Rect clip_rect = render_target->clip_rect();
// If the layer has a clip parent, the clip rect may be in the wrong space,
// so we'll need to transform it before it is applied.
if (layer->clip_parent()) {
clip_rect =
TranslateRectToTargetSpace(*layer->clip_parent(), *layer, clip_rect,
TRANSLATE_RECT_DIRECTION_TO_DESCENDANT);
}
target_rect.Intersect(clip_rect);
}
// We must have at least one entry in the vector for the root.
DCHECK_LT(0ul, accumulated_surface_state->size());
typedef std::vector<AccumulatedSurfaceState> AccumulatedSurfaceStateVector;
typedef AccumulatedSurfaceStateVector::reverse_iterator
AccumulatedSurfaceStateIterator;
AccumulatedSurfaceStateIterator current_state =
accumulated_surface_state->rbegin();
// Add this rect to the accumulated content rect for all surfaces until we
// reach the target surface.
bool found_render_target = false;
for (; current_state != accumulated_surface_state->rend(); ++current_state) {
current_state->drawable_content_rect.Union(target_rect);
// If we've reached |render_target| our work is done and we can bail.
if (current_state->render_target == render_target) {
found_render_target = true;
break;
}
// Transform rect from the current target's space to the next.
LayerImpl* current_target = current_state->render_target;
DCHECK(current_target->render_surface());
const gfx::Transform& current_draw_transform =
current_target->render_surface()->draw_transform();
// If we have unclipped descendants, the draw transform is a translation.
DCHECK(!current_target->num_unclipped_descendants() ||
current_draw_transform.IsIdentityOrTranslation());
target_rect =
MathUtil::MapEnclosingClippedRect(current_draw_transform, target_rect);
}
// It is an error to not reach |render_target|. If this happens, it means that
// either the clip parent is not an ancestor of the clip child or the surface
// state vector is empty, both of which should be impossible.
DCHECK(found_render_target);
}
template <typename LayerType>
static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) {
return layer->Is3dSorted() && layer->parent() &&
layer->parent()->Is3dSorted() &&
(layer->parent()->sorting_context_id() == layer->sorting_context_id());
}
static bool IsRootLayerOfNewRenderingContext(LayerImpl* layer) {
if (layer->parent())
return !layer->parent()->Is3dSorted() && layer->Is3dSorted();
return layer->Is3dSorted();
}
static bool IsLayerBackFaceVisible(LayerImpl* layer,
const TransformTree& transform_tree) {
// The current W3C spec on CSS transforms says that backface visibility should
// be determined differently depending on whether the layer is in a "3d
// rendering context" or not. For Chromium code, we can determine whether we
// are in a 3d rendering context by checking if the parent preserves 3d.
if (LayerIsInExisting3DRenderingContext(layer)) {
return DrawTransformFromPropertyTrees(layer, transform_tree)
.IsBackFaceVisible();
}
// In this case, either the layer establishes a new 3d rendering context, or
// is not in a 3d rendering context at all.
return layer->transform().IsBackFaceVisible();
}
static bool IsSurfaceBackFaceVisible(LayerImpl* layer,
const gfx::Transform& draw_transform) {
if (LayerIsInExisting3DRenderingContext(layer))
return draw_transform.IsBackFaceVisible();
if (IsRootLayerOfNewRenderingContext(layer))
return layer->transform().IsBackFaceVisible();
// If the render_surface is not part of a new or existing rendering context,
// then the layers that contribute to this surface will decide back-face
// visibility for themselves.
return false;
}
template <typename LayerType>
static inline bool LayerClipsSubtree(LayerType* layer) {
return layer->masks_to_bounds() || layer->mask_layer();
}
static bool LayerShouldBeSkipped(LayerImpl* layer,
bool layer_is_drawn,
const TransformTree& transform_tree) {
// Layers can be skipped if any of these conditions are met.
// - is not drawn due to it or one of its ancestors being hidden (or having
// no copy requests).
// - does not draw content.
// - is transparent.
// - has empty bounds
// - the layer is not double-sided, but its back face is visible.
//
// Some additional conditions need to be computed at a later point after the
// recursion is finished.
// - the intersection of render_surface content and layer clip_rect is empty
// - the visible_layer_rect is empty
//
// Note, if the layer should not have been drawn due to being fully
// transparent, we would have skipped the entire subtree and never made it
// into this function, so it is safe to omit this check here.
if (!layer_is_drawn)
return true;
if (!layer->DrawsContent() || layer->bounds().IsEmpty())
return true;
LayerImpl* backface_test_layer = layer;
if (layer->use_parent_backface_visibility()) {
DCHECK(layer->parent());
DCHECK(!layer->parent()->use_parent_backface_visibility());
backface_test_layer = layer->parent();
}
// The layer should not be drawn if (1) it is not double-sided and (2) the
// back of the layer is known to be facing the screen.
if (!backface_test_layer->double_sided() &&
IsLayerBackFaceVisible(backface_test_layer, transform_tree))
return true;
return false;
}
template <typename LayerType>
static bool HasInvertibleOrAnimatedTransform(LayerType* layer) {
return layer->transform_is_invertible() ||
layer->HasPotentiallyRunningTransformAnimation();
}
static inline bool SubtreeShouldBeSkipped(LayerImpl* layer,
bool layer_is_drawn) {
// If the layer transform is not invertible, it should not be drawn.
// TODO(ajuma): Correctly process subtrees with singular transform for the
// case where we may animate to a non-singular transform and wish to
// pre-raster.
if (!HasInvertibleOrAnimatedTransform(layer))
return true;
// When we need to do a readback/copy of a layer's output, we can not skip
// it or any of its ancestors.
if (layer->num_copy_requests_in_target_subtree() > 0)
return false;
// We cannot skip the the subtree if a descendant has a touch handler
// or the hit testing code will break (it requires fresh transforms, etc).
if (layer->layer_or_descendant_has_touch_handler())
return false;
// If the layer is not drawn, then skip it and its subtree.
if (!layer_is_drawn)
return true;
// If layer is on the pending tree and opacity is being animated then
// this subtree can't be skipped as we need to create, prioritize and
// include tiles for this layer when deciding if tree can be activated.
if (layer->layer_tree_impl()->IsPendingTree() &&
layer->HasPotentiallyRunningOpacityAnimation())
return false;
// If layer has a background filter, don't skip the layer, even it the
// opacity is 0.
if (!layer->background_filters().IsEmpty())
return false;
// The opacity of a layer always applies to its children (either implicitly
// via a render surface or explicitly if the parent preserves 3D), so the
// entire subtree can be skipped if this layer is fully transparent.
return !layer->EffectiveOpacity();
}
// This function returns a translation matrix that can be applied on a vector
// that's in the layer's target surface coordinate, while the position offset is
// specified in some ancestor layer's coordinate.
gfx::Transform ComputeSizeDeltaCompensation(
LayerImpl* layer,
LayerImpl* container,
const gfx::Vector2dF& position_offset) {
gfx::Transform result_transform;
// To apply a translate in the container's layer space,
// the following steps need to be done:
// Step 1a. transform from target surface space to the container's target
// surface space
// Step 1b. transform from container's target surface space to the
// container's layer space
// Step 2. apply the compensation
// Step 3. transform back to target surface space
gfx::Transform target_surface_space_to_container_layer_space;
// Calculate step 1a
LayerImpl* container_target_surface = container->render_target();
for (const LayerImpl* current_target_surface = NextTargetSurface(layer);
current_target_surface &&
current_target_surface != container_target_surface;
current_target_surface = NextTargetSurface(current_target_surface)) {
// Note: Concat is used here to convert the result coordinate space from
// current render surface to the next render surface.
target_surface_space_to_container_layer_space.ConcatTransform(
current_target_surface->render_surface()->draw_transform());
}
// Calculate step 1b
gfx::Transform container_layer_space_to_container_target_surface_space =
container->draw_properties().target_space_transform;
gfx::Transform container_target_surface_space_to_container_layer_space;
if (container_layer_space_to_container_target_surface_space.GetInverse(
&container_target_surface_space_to_container_layer_space)) {
// Note: Again, Concat is used to conver the result coordinate space from
// the container render surface to the container layer.
target_surface_space_to_container_layer_space.ConcatTransform(
container_target_surface_space_to_container_layer_space);
}
// Apply step 3
gfx::Transform container_layer_space_to_target_surface_space;
if (target_surface_space_to_container_layer_space.GetInverse(
&container_layer_space_to_target_surface_space)) {
result_transform.PreconcatTransform(
container_layer_space_to_target_surface_space);
} else {
// TODO(shawnsingh): A non-invertible matrix could still make meaningful
// projection. For example ScaleZ(0) is non-invertible but the layer is
// still visible.
return gfx::Transform();
}
// Apply step 2
result_transform.Translate(position_offset.x(), position_offset.y());
// Apply step 1
result_transform.PreconcatTransform(
target_surface_space_to_container_layer_space);
return result_transform;
}
void ApplyPositionAdjustment(LayerImpl* layer,
LayerImpl* container,
const gfx::Transform& scroll_compensation,
gfx::Transform* combined_transform) {
if (!layer->position_constraint().is_fixed_position())
return;
// Special case: this layer is a composited fixed-position layer; we need to
// explicitly compensate for all ancestors' nonzero scroll_deltas to keep
// this layer fixed correctly.
// Note carefully: this is Concat, not Preconcat
// (current_scroll_compensation * combined_transform).
combined_transform->ConcatTransform(scroll_compensation);
// For right-edge or bottom-edge anchored fixed position layers,
// the layer should relocate itself if the container changes its size.
bool fixed_to_right_edge =
layer->position_constraint().is_fixed_to_right_edge();
bool fixed_to_bottom_edge =
layer->position_constraint().is_fixed_to_bottom_edge();
gfx::Vector2dF position_offset = container->FixedContainerSizeDelta();
position_offset.set_x(fixed_to_right_edge ? position_offset.x() : 0);
position_offset.set_y(fixed_to_bottom_edge ? position_offset.y() : 0);
if (position_offset.IsZero())
return;
// Note: Again, this is Concat. The compensation matrix will be applied on
// the vector in target surface space.
combined_transform->ConcatTransform(
ComputeSizeDeltaCompensation(layer, container, position_offset));
}
gfx::Transform ComputeScrollCompensationForThisLayer(
LayerImpl* scrolling_layer,
const gfx::Transform& parent_matrix,
const gfx::Vector2dF& scroll_delta) {
// For every layer that has non-zero scroll_delta, we have to compute a
// transform that can undo the scroll_delta translation. In particular, we
// want this matrix to premultiply a fixed-position layer's parent_matrix, so
// we design this transform in three steps as follows. The steps described
// here apply from right-to-left, so Step 1 would be the right-most matrix:
//
// Step 1. transform from target surface space to the exact space where
// scroll_delta is actually applied.
// -- this is inverse of parent_matrix
// Step 2. undo the scroll_delta
// -- this is just a translation by scroll_delta.
// Step 3. transform back to target surface space.
// -- this transform is the parent_matrix
//
// These steps create a matrix that both start and end in target surface
// space. So this matrix can pre-multiply any fixed-position layer's
// draw_transform to undo the scroll_deltas -- as long as that fixed position
// layer is fixed onto the same render_target as this scrolling_layer.
//
gfx::Transform scroll_compensation_for_this_layer = parent_matrix; // Step 3
scroll_compensation_for_this_layer.Translate(
scroll_delta.x(),
scroll_delta.y()); // Step 2
gfx::Transform inverse_parent_matrix(gfx::Transform::kSkipInitialization);
if (!parent_matrix.GetInverse(&inverse_parent_matrix)) {
// TODO(shawnsingh): Either we need to handle uninvertible transforms
// here, or DCHECK that the transform is invertible.
}
scroll_compensation_for_this_layer.PreconcatTransform(
inverse_parent_matrix); // Step 1
return scroll_compensation_for_this_layer;
}
gfx::Transform ComputeScrollCompensationMatrixForChildren(
LayerImpl* layer,
const gfx::Transform& parent_matrix,
const gfx::Transform& current_scroll_compensation_matrix,
const gfx::Vector2dF& scroll_delta) {
// "Total scroll compensation" is the transform needed to cancel out all
// scroll_delta translations that occurred since the nearest container layer,
// even if there are render_surfaces in-between.
//
// There are some edge cases to be aware of, that are not explicit in the
// code:
// - A layer that is both a fixed-position and container should not be its
// own container, instead, that means it is fixed to an ancestor, and is a
// container for any fixed-position descendants.
// - A layer that is a fixed-position container and has a render_surface
// should behave the same as a container without a render_surface, the
// render_surface is irrelevant in that case.
// - A layer that does not have an explicit container is simply fixed to the
// viewport. (i.e. the root render_surface.)
// - If the fixed-position layer has its own render_surface, then the
// render_surface is the one who gets fixed.
//
// This function needs to be called AFTER layers create their own
// render_surfaces.
//
// Scroll compensation restarts from identity under two possible conditions:
// - the current layer is a container for fixed-position descendants
// - the current layer is fixed-position itself, so any fixed-position
// descendants are positioned with respect to this layer. Thus, any
// fixed position descendants only need to compensate for scrollDeltas
// that occur below this layer.
bool current_layer_resets_scroll_compensation_for_descendants =
layer->IsContainerForFixedPositionLayers() ||
layer->position_constraint().is_fixed_position();
// Avoid the overheads (including stack allocation and matrix
// initialization/copy) if we know that the scroll compensation doesn't need
// to be reset or adjusted.
if (!current_layer_resets_scroll_compensation_for_descendants &&
scroll_delta.IsZero() && !layer->render_surface())
return current_scroll_compensation_matrix;
// Start as identity matrix.
gfx::Transform next_scroll_compensation_matrix;
// If this layer does not reset scroll compensation, then it inherits the
// existing scroll compensations.
if (!current_layer_resets_scroll_compensation_for_descendants)
next_scroll_compensation_matrix = current_scroll_compensation_matrix;
// If the current layer has a non-zero scroll_delta, then we should compute
// its local scroll compensation and accumulate it to the
// next_scroll_compensation_matrix.
if (!scroll_delta.IsZero()) {
gfx::Transform scroll_compensation_for_this_layer =
ComputeScrollCompensationForThisLayer(
layer, parent_matrix, scroll_delta);
next_scroll_compensation_matrix.PreconcatTransform(
scroll_compensation_for_this_layer);
}
// If the layer created its own render_surface, we have to adjust
// next_scroll_compensation_matrix. The adjustment allows us to continue
// using the scroll compensation on the next surface.
// Step 1 (right-most in the math): transform from the new surface to the
// original ancestor surface
// Step 2: apply the scroll compensation
// Step 3: transform back to the new surface.
if (layer->render_surface() &&
!next_scroll_compensation_matrix.IsIdentity()) {
gfx::Transform inverse_surface_draw_transform(
gfx::Transform::kSkipInitialization);
if (!layer->render_surface()->draw_transform().GetInverse(
&inverse_surface_draw_transform)) {
// TODO(shawnsingh): Either we need to handle uninvertible transforms
// here, or DCHECK that the transform is invertible.
}
next_scroll_compensation_matrix =
inverse_surface_draw_transform * next_scroll_compensation_matrix *
layer->render_surface()->draw_transform();
}
return next_scroll_compensation_matrix;
}
static inline void MarkLayerWithRenderSurfaceLayerListId(
LayerImpl* layer,
int current_render_surface_layer_list_id) {
layer->draw_properties().last_drawn_render_surface_layer_list_id =
current_render_surface_layer_list_id;
layer->set_layer_or_descendant_is_drawn(
!!current_render_surface_layer_list_id);
}
static inline void MarkMasksWithRenderSurfaceLayerListId(
LayerImpl* layer,
int current_render_surface_layer_list_id) {
if (layer->mask_layer()) {
MarkLayerWithRenderSurfaceLayerListId(layer->mask_layer(),
current_render_surface_layer_list_id);
}
if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
MarkLayerWithRenderSurfaceLayerListId(layer->replica_layer()->mask_layer(),
current_render_surface_layer_list_id);
}
}
static inline void MarkLayerListWithRenderSurfaceLayerListId(
LayerImplList* layer_list,
int current_render_surface_layer_list_id) {
for (LayerImplList::iterator it = layer_list->begin();
it != layer_list->end(); ++it) {
MarkLayerWithRenderSurfaceLayerListId(*it,
current_render_surface_layer_list_id);
MarkMasksWithRenderSurfaceLayerListId(*it,
current_render_surface_layer_list_id);
}
}
static inline void RemoveSurfaceForEarlyExit(
LayerImpl* layer_to_remove,
LayerImplList* render_surface_layer_list) {
DCHECK(layer_to_remove->render_surface());
// Technically, we know that the layer we want to remove should be
// at the back of the render_surface_layer_list. However, we have had
// bugs before that added unnecessary layers here
// (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes
// things to crash. So here we proactively remove any additional
// layers from the end of the list.
while (render_surface_layer_list->back() != layer_to_remove) {
MarkLayerListWithRenderSurfaceLayerListId(
&render_surface_layer_list->back()->render_surface()->layer_list(), 0);
MarkLayerWithRenderSurfaceLayerListId(render_surface_layer_list->back(), 0);
render_surface_layer_list->back()->ClearRenderSurfaceLayerList();
render_surface_layer_list->pop_back();
}
DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove);
MarkLayerListWithRenderSurfaceLayerListId(
&layer_to_remove->render_surface()->layer_list(), 0);
MarkLayerWithRenderSurfaceLayerListId(layer_to_remove, 0);
render_surface_layer_list->pop_back();
layer_to_remove->ClearRenderSurfaceLayerList();
}
struct PreCalculateMetaInformationRecursiveData {
size_t num_unclipped_descendants;
int num_layer_or_descendants_with_copy_request;
int num_layer_or_descendants_with_touch_handler;
int num_descendants_that_draw_content;
PreCalculateMetaInformationRecursiveData()
: num_unclipped_descendants(0),
num_layer_or_descendants_with_copy_request(0),
num_layer_or_descendants_with_touch_handler(0),
num_descendants_that_draw_content(0) {}
void Merge(const PreCalculateMetaInformationRecursiveData& data) {
num_layer_or_descendants_with_copy_request +=
data.num_layer_or_descendants_with_copy_request;
num_layer_or_descendants_with_touch_handler +=
data.num_layer_or_descendants_with_touch_handler;
num_unclipped_descendants += data.num_unclipped_descendants;
num_descendants_that_draw_content += data.num_descendants_that_draw_content;
}
};
static bool IsMetaInformationRecomputationNeeded(Layer* layer) {
return layer->layer_tree_host()->needs_meta_info_recomputation();
}
static void UpdateMetaInformationSequenceNumber(Layer* root_layer) {
root_layer->layer_tree_host()->IncrementMetaInformationSequenceNumber();
}
static void UpdateMetaInformationSequenceNumber(LayerImpl* root_layer) {
}
// Recursively walks the layer tree(if needed) to compute any information
// that is needed before doing the main recursion.
static void PreCalculateMetaInformationInternal(
Layer* layer,
PreCalculateMetaInformationRecursiveData* recursive_data) {
if (!IsMetaInformationRecomputationNeeded(layer)) {
DCHECK(IsRootLayer(layer));
return;
}
layer->set_sorted_for_recursion(false);
layer->set_layer_or_descendant_is_drawn(false);
layer->set_visited(false);
if (layer->clip_parent())
recursive_data->num_unclipped_descendants++;
if (!HasInvertibleOrAnimatedTransform(layer)) {
// Layers with singular transforms should not be drawn, the whole subtree
// can be skipped.
return;
}
for (size_t i = 0; i < layer->children().size(); ++i) {
Layer* child_layer = layer->child_at(i);
PreCalculateMetaInformationRecursiveData data_for_child;
PreCalculateMetaInformationInternal(child_layer, &data_for_child);
recursive_data->Merge(data_for_child);
}
if (layer->clip_children()) {
size_t num_clip_children = layer->clip_children()->size();
DCHECK_GE(recursive_data->num_unclipped_descendants, num_clip_children);
recursive_data->num_unclipped_descendants -= num_clip_children;
}
if (layer->HasCopyRequest())
recursive_data->num_layer_or_descendants_with_copy_request++;
if (!layer->touch_event_handler_region().IsEmpty())
recursive_data->num_layer_or_descendants_with_touch_handler++;
layer->set_num_unclipped_descendants(
recursive_data->num_unclipped_descendants);
if (IsRootLayer(layer))
layer->layer_tree_host()->SetNeedsMetaInfoRecomputation(false);
}
static void PreCalculateMetaInformationInternal(
LayerImpl* layer,
PreCalculateMetaInformationRecursiveData* recursive_data) {
layer->set_sorted_for_recursion(false);
layer->draw_properties().has_child_with_a_scroll_parent = false;
layer->set_layer_or_descendant_is_drawn(false);
layer->set_visited(false);
if (layer->clip_parent())
recursive_data->num_unclipped_descendants++;
if (!HasInvertibleOrAnimatedTransform(layer)) {
// Layers with singular transforms should not be drawn, the whole subtree
// can be skipped.
return;
}
for (size_t i = 0; i < layer->children().size(); ++i) {
LayerImpl* child_layer = layer->child_at(i);
PreCalculateMetaInformationRecursiveData data_for_child;
PreCalculateMetaInformationInternal(child_layer, &data_for_child);
if (child_layer->scroll_parent())
layer->draw_properties().has_child_with_a_scroll_parent = true;
recursive_data->Merge(data_for_child);
}
if (layer->clip_children()) {
size_t num_clip_children = layer->clip_children()->size();
DCHECK_GE(recursive_data->num_unclipped_descendants, num_clip_children);
recursive_data->num_unclipped_descendants -= num_clip_children;
}
if (layer->HasCopyRequest())
recursive_data->num_layer_or_descendants_with_copy_request++;
if (!layer->touch_event_handler_region().IsEmpty())
recursive_data->num_layer_or_descendants_with_touch_handler++;
layer->draw_properties().num_unclipped_descendants =
recursive_data->num_unclipped_descendants;
layer->set_layer_or_descendant_has_touch_handler(
(recursive_data->num_layer_or_descendants_with_touch_handler != 0));
// TODO(enne): this should be synced from the main thread, so is only
// for tests constructing layers on the compositor thread.
layer->SetNumDescendantsThatDrawContent(
recursive_data->num_descendants_that_draw_content);
if (layer->DrawsContent())
recursive_data->num_descendants_that_draw_content++;
}
void LayerTreeHostCommon::PreCalculateMetaInformation(Layer* root_layer) {
PreCalculateMetaInformationRecursiveData recursive_data;
PreCalculateMetaInformationInternal(root_layer, &recursive_data);
}
void LayerTreeHostCommon::PreCalculateMetaInformationForTesting(
LayerImpl* root_layer) {
PreCalculateMetaInformationRecursiveData recursive_data;
PreCalculateMetaInformationInternal(root_layer, &recursive_data);
}
void LayerTreeHostCommon::PreCalculateMetaInformationForTesting(
Layer* root_layer) {
UpdateMetaInformationSequenceNumber(root_layer);
PreCalculateMetaInformationRecursiveData recursive_data;
PreCalculateMetaInformationInternal(root_layer, &recursive_data);
}
struct SubtreeGlobals {
int max_texture_size;
float device_scale_factor;
float page_scale_factor;
const LayerImpl* page_scale_layer;
gfx::Vector2dF elastic_overscroll;
const LayerImpl* elastic_overscroll_application_layer;
bool can_adjust_raster_scales;
bool can_render_to_separate_surface;
bool layers_always_allowed_lcd_text;
};
struct DataForRecursion {
// The accumulated sequence of transforms a layer will use to determine its
// own draw transform.
gfx::Transform parent_matrix;
// The accumulated sequence of transforms a layer will use to determine its
// own screen-space transform.
gfx::Transform full_hierarchy_matrix;
// The transform that removes all scrolling that may have occurred between a
// fixed-position layer and its container, so that the layer actually does
// remain fixed.
gfx::Transform scroll_compensation_matrix;
// The ancestor that would be the container for any fixed-position / sticky
// layers.
LayerImpl* fixed_container;
// This is the normal clip rect that is propagated from parent to child.
gfx::Rect clip_rect_in_target_space;
// When the layer's children want to compute their visible content rect, they
// want to know what their target surface's clip rect will be. BUT - they
// want to know this clip rect represented in their own target space. This
// requires inverse-projecting the surface's clip rect from the surface's
// render target space down to the surface's own space. Instead of computing
// this value redundantly for each child layer, it is computed only once
// while dealing with the parent layer, and then this precomputed value is
// passed down the recursion to the children that actually use it.
gfx::Rect clip_rect_of_target_surface_in_target_space;
// The maximum amount by which this layer will be scaled during the lifetime
// of currently running animations, considering only scales at keyframes not
// including the starting keyframe of each animation.
float maximum_animation_contents_scale;
// The maximum amout by which this layer will be scaled during the lifetime of
// currently running animations, consdering only the starting scale of each
// animation.
float starting_animation_contents_scale;
bool ancestor_is_animating_scale;
bool ancestor_clips_subtree;
bool in_subtree_of_page_scale_layer;
bool subtree_can_use_lcd_text;
bool subtree_is_visible_from_ancestor;
};
static LayerImpl* GetChildContainingLayer(const LayerImpl& parent,
LayerImpl* layer) {
for (LayerImpl* ancestor = layer; ancestor; ancestor = ancestor->parent()) {
if (ancestor->parent() == &parent)
return ancestor;
}
NOTREACHED();
return 0;
}
static void AddScrollParentChain(std::vector<LayerImpl*>* out,
const LayerImpl& parent,
LayerImpl* layer) {
// At a high level, this function walks up the chain of scroll parents
// recursively, and once we reach the end of the chain, we add the child
// of |parent| containing each scroll ancestor as we unwind. The result is
// an ordering of parent's children that ensures that scroll parents are
// visited before their descendants.
// Take for example this layer tree:
//
// + stacking_context
// + scroll_child (1)
// + scroll_parent_graphics_layer (*)
// | + scroll_parent_scrolling_layer
// | + scroll_parent_scrolling_content_layer (2)
// + scroll_grandparent_graphics_layer (**)
// + scroll_grandparent_scrolling_layer
// + scroll_grandparent_scrolling_content_layer (3)
//
// The scroll child is (1), its scroll parent is (2) and its scroll
// grandparent is (3). Note, this doesn't mean that (2)'s scroll parent is
// (3), it means that (*)'s scroll parent is (3). We don't want our list to
// look like [ (3), (2), (1) ], even though that does have the ancestor chain
// in the right order. Instead, we want [ (**), (*), (1) ]. That is, only want
// (1)'s siblings in the list, but we want them to appear in such an order
// that the scroll ancestors get visited in the correct order.
//
// So our first task at this step of the recursion is to determine the layer
// that we will potentionally add to the list. That is, the child of parent
// containing |layer|.
LayerImpl* child = GetChildContainingLayer(parent, layer);
if (child->sorted_for_recursion())
return;
if (LayerImpl* scroll_parent = child->scroll_parent())
AddScrollParentChain(out, parent, scroll_parent);
out->push_back(child);
bool sorted_for_recursion = true;
child->set_sorted_for_recursion(sorted_for_recursion);
}
static bool CdpPerfTracingEnabled() {
bool tracing_enabled;
TRACE_EVENT_CATEGORY_GROUP_ENABLED("cdp.perf", &tracing_enabled);
return tracing_enabled;
}
static float TranslationFromActiveTreeLayerScreenSpaceTransform(
LayerImpl* pending_tree_layer) {
LayerTreeImpl* layer_tree_impl = pending_tree_layer->layer_tree_impl();
if (layer_tree_impl) {
LayerImpl* active_tree_layer =
layer_tree_impl->FindActiveTreeLayerById(pending_tree_layer->id());
if (active_tree_layer) {
gfx::Transform active_tree_screen_space_transform =
active_tree_layer->draw_properties().screen_space_transform;
if (active_tree_screen_space_transform.IsIdentity())
return 0.f;
if (active_tree_screen_space_transform.ApproximatelyEqual(
pending_tree_layer->draw_properties().screen_space_transform))
return 0.f;
return (active_tree_layer->draw_properties()
.screen_space_transform.To2dTranslation() -
pending_tree_layer->draw_properties()
.screen_space_transform.To2dTranslation())
.Length();
}
}
return 0.f;
}
// A layer jitters if its screen space transform is same on two successive
// commits, but has changed in between the commits. CalculateFrameJitter
// computes the jitter in the entire frame.
int LayerTreeHostCommon::CalculateFrameJitter(LayerImpl* layer) {
if (!layer)
return 0.f;
float jitter = 0.f;
layer->performance_properties().translation_from_last_frame = 0.f;
layer->performance_properties().last_commit_screen_space_transform =
layer->draw_properties().screen_space_transform;
if (!layer->visible_layer_rect().IsEmpty()) {
if (layer->draw_properties().screen_space_transform.ApproximatelyEqual(
layer->performance_properties()
.last_commit_screen_space_transform)) {
float translation_from_last_commit =
TranslationFromActiveTreeLayerScreenSpaceTransform(layer);
if (translation_from_last_commit > 0.f) {
layer->performance_properties().num_fixed_point_hits++;
layer->performance_properties().translation_from_last_frame =
translation_from_last_commit;
if (layer->performance_properties().num_fixed_point_hits >
layer->layer_tree_impl()->kFixedPointHitsThreshold) {
// Jitter = Translation from fixed point * sqrt(Area of the layer).
// The square root of the area is used instead of the area to match
// the dimensions of both terms on the rhs.
jitter += translation_from_last_commit *
sqrt(layer->visible_layer_rect().size().GetArea());
}
} else {
layer->performance_properties().num_fixed_point_hits = 0;
}
}
}
// Descendants of jittering layer will not contribute to unique jitter.
if (jitter > 0.f)
return jitter;
for (size_t i = 0; i < layer->children().size(); ++i) {
LayerImpl* child_layer =
LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i);
jitter += CalculateFrameJitter(child_layer);
}
return jitter;
}
enum PropertyTreeOption {
BUILD_PROPERTY_TREES_IF_NEEDED,
DONT_BUILD_PROPERTY_TREES
};
void CalculateRenderTargetInternal(LayerImpl* layer,
PropertyTrees* property_trees,
bool subtree_visible_from_ancestor,
bool can_render_to_separate_surface) {
bool layer_is_drawn;
DCHECK_GE(layer->effect_tree_index(), 0);
layer_is_drawn = property_trees->effect_tree.Node(layer->effect_tree_index())
->data.is_drawn;
// The root layer cannot be skipped.
if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer, layer_is_drawn)) {
layer->draw_properties().render_target = nullptr;
return;
}
bool render_to_separate_surface =
IsRootLayer(layer) ||
(can_render_to_separate_surface && layer->render_surface());
if (render_to_separate_surface) {
DCHECK(layer->render_surface()) << IsRootLayer(layer)
<< can_render_to_separate_surface
<< layer->has_render_surface();
layer->draw_properties().render_target = layer;
if (layer->mask_layer())
layer->mask_layer()->draw_properties().render_target = layer;
if (layer->replica_layer() && layer->replica_layer()->mask_layer())
layer->replica_layer()->mask_layer()->draw_properties().render_target =
layer;
} else {
DCHECK(layer->parent());
layer->draw_properties().render_target = layer->parent()->render_target();
}
for (size_t i = 0; i < layer->children().size(); ++i) {
CalculateRenderTargetInternal(
LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i),
property_trees, layer_is_drawn, can_render_to_separate_surface);
}
}
void CalculateRenderSurfaceLayerListInternal(
LayerImpl* layer,
PropertyTrees* property_trees,
LayerImplList* render_surface_layer_list,
LayerImplList* descendants,
RenderSurfaceImpl* nearest_occlusion_immune_ancestor,
bool subtree_visible_from_ancestor,
const bool can_render_to_separate_surface,
const int current_render_surface_layer_list_id,
const int max_texture_size) {
// This calculates top level Render Surface Layer List, and Layer List for all
// Render Surfaces.
// |layer| is current layer.
// |render_surface_layer_list| is the top level RenderSurfaceLayerList.
// |descendants| is used to determine what's in current layer's render
// surface's layer list.
// |subtree_visible_from_ancestor| is set during recursion to affect current
// layer's subtree.
// |can_render_to_separate_surface| and |current_render_surface_layer_list_id|
// are settings that should stay the same during recursion.
bool layer_is_drawn = false;
DCHECK_GE(layer->effect_tree_index(), 0);
layer_is_drawn = property_trees->effect_tree.Node(layer->effect_tree_index())
->data.is_drawn;
// The root layer cannot be skipped.
if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer, layer_is_drawn)) {
if (layer->render_surface())
layer->ClearRenderSurfaceLayerList();
layer->draw_properties().render_target = nullptr;
return;
}
bool render_to_separate_surface =
IsRootLayer(layer) ||
(can_render_to_separate_surface && layer->render_surface());
if (render_to_separate_surface) {
DCHECK(layer->render_surface());
RenderSurfaceDrawProperties draw_properties;
ComputeSurfaceDrawPropertiesUsingPropertyTrees(
layer->render_surface(), property_trees, &draw_properties);
// TODO(ajuma): Once property tree verification is removed, make the above
// call directly set the surface's properties, so that the copying below
// is no longer needed.
layer->render_surface()->SetIsClipped(draw_properties.is_clipped);
layer->render_surface()->SetDrawOpacity(draw_properties.draw_opacity);
layer->render_surface()->SetDrawTransform(draw_properties.draw_transform);
layer->render_surface()->SetScreenSpaceTransform(
draw_properties.screen_space_transform);
layer->render_surface()->SetReplicaDrawTransform(
draw_properties.replica_draw_transform);
layer->render_surface()->SetReplicaScreenSpaceTransform(
draw_properties.replica_screen_space_transform);
layer->render_surface()->SetClipRect(draw_properties.clip_rect);
if (!layer->double_sided() &&
IsSurfaceBackFaceVisible(layer,
layer->render_surface()->draw_transform())) {
layer->ClearRenderSurfaceLayerList();
layer->draw_properties().render_target = nullptr;
return;
}
if (IsRootLayer(layer)) {
// The root surface does not contribute to any other surface, it has no
// target.
layer->render_surface()->set_contributes_to_drawn_surface(false);
} else {
bool contributes_to_drawn_surface =
property_trees->effect_tree.ContributesToDrawnSurface(
layer->effect_tree_index());
layer->render_surface()->set_contributes_to_drawn_surface(
contributes_to_drawn_surface);
}
// Ignore occlusion from outside the surface when surface contents need to
// be fully drawn. Layers with copy-request need to be complete.
// We could be smarter about layers with replica and exclude regions
// where both layer and the replica are occluded, but this seems like an
// overkill. The same is true for layers with filters that move pixels.
// TODO(senorblanco): make this smarter for the SkImageFilter case (check
// for pixel-moving filters)
if (layer->HasCopyRequest() || layer->has_replica() ||
layer->filters().HasReferenceFilter() ||
layer->filters().HasFilterThatMovesPixels()) {
nearest_occlusion_immune_ancestor = layer->render_surface();
}
layer->render_surface()->SetNearestOcclusionImmuneAncestor(
nearest_occlusion_immune_ancestor);
layer->ClearRenderSurfaceLayerList();
render_surface_layer_list->push_back(layer);
descendants = &(layer->render_surface()->layer_list());
}
size_t descendants_size = descendants->size();
bool layer_should_be_skipped = LayerShouldBeSkipped(
layer, layer_is_drawn, property_trees->transform_tree);
if (!layer_should_be_skipped) {
MarkLayerWithRenderSurfaceLayerListId(layer,
current_render_surface_layer_list_id);
descendants->push_back(layer);
}
// Clear the old accumulated content rect of surface.
if (render_to_separate_surface)
layer->render_surface()->SetAccumulatedContentRect(gfx::Rect());
for (const auto& child_layer : layer->children()) {
CalculateRenderSurfaceLayerListInternal(
child_layer.get(), property_trees, render_surface_layer_list,
descendants, nearest_occlusion_immune_ancestor, layer_is_drawn,
can_render_to_separate_surface, current_render_surface_layer_list_id,
max_texture_size);
// If the child is its own render target, then it has a render surface.
if (child_layer->render_target() == child_layer.get() &&
!child_layer->render_surface()->layer_list().empty() &&
!child_layer->render_surface()->content_rect().IsEmpty()) {
// This child will contribute its render surface, which means
// we need to mark just the mask layer (and replica mask layer)
// with the id.
MarkMasksWithRenderSurfaceLayerListId(
child_layer.get(), current_render_surface_layer_list_id);
descendants->push_back(child_layer.get());
}
if (child_layer->layer_or_descendant_is_drawn()) {
bool layer_or_descendant_is_drawn = true;
layer->set_layer_or_descendant_is_drawn(layer_or_descendant_is_drawn);
}
}
if (render_to_separate_surface && !IsRootLayer(layer) &&
layer->render_surface()->layer_list().empty()) {
RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
return;
}
// The render surface's content rect is the union of drawable content rects
// of the layers that draw into the surface. If the render surface is clipped,
// it is also intersected with the render's surface clip rect.
if (!IsRootLayer(layer)) {
if (render_to_separate_surface) {
gfx::Rect surface_content_rect =
layer->render_surface()->accumulated_content_rect();
// If the owning layer of a render surface draws content, the content
// rect of the render surface is expanded to include the drawable
// content rect of the layer.
if (layer->DrawsContent())
surface_content_rect.Union(layer->drawable_content_rect());
if (!layer->replica_layer() && !layer->HasCopyRequest() &&
layer->render_surface()->is_clipped()) {
// Here, we clip the render surface's content rect with its clip rect.
// As the clip rect of render surface is in the surface's target
// space, we first map the content rect into the target space,
// intersect it with clip rect and project back the result to the
// surface space.
if (!surface_content_rect.IsEmpty()) {
gfx::Rect surface_clip_rect =
LayerTreeHostCommon::CalculateVisibleRect(
layer->render_surface()->clip_rect(), surface_content_rect,
layer->render_surface()->draw_transform());
surface_content_rect.Intersect(surface_clip_rect);
}
}
// The RenderSurfaceImpl backing texture cannot exceed the maximum
// supported texture size.
surface_content_rect.set_width(
std::min(surface_content_rect.width(), max_texture_size));
surface_content_rect.set_height(
std::min(surface_content_rect.height(), max_texture_size));
layer->render_surface()->SetContentRect(surface_content_rect);
}
const LayerImpl* parent_target = layer->parent()->render_target();
if (!IsRootLayer(parent_target)) {
gfx::Rect surface_content_rect =
parent_target->render_surface()->accumulated_content_rect();
if (render_to_separate_surface) {
// If the layer owns a surface, then the content rect is in the wrong
// space. Instead, we will use the surface's DrawableContentRect which
// is in target space as required. We also need to clip it with the
// target's clip if the target is clipped.
surface_content_rect.Union(gfx::ToEnclosedRect(
layer->render_surface()->DrawableContentRect()));
if (parent_target->is_clipped())
surface_content_rect.Intersect(parent_target->clip_rect());
} else if (layer->DrawsContent()) {
surface_content_rect.Union(layer->drawable_content_rect());
}
parent_target->render_surface()->SetAccumulatedContentRect(
surface_content_rect);
}
} else {
// The root layer's surface content rect is always the entire viewport.
gfx::Rect viewport =
gfx::ToEnclosingRect(property_trees->clip_tree.ViewportClip());
layer->render_surface()->SetContentRect(viewport);
}
if (render_to_separate_surface && !IsRootLayer(layer) &&
layer->render_surface()->DrawableContentRect().IsEmpty()) {
RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
return;
}
// If neither this layer nor any of its children were added, early out.
if (descendants_size == descendants->size()) {
DCHECK(!render_to_separate_surface || IsRootLayer(layer));
return;
}
}
void CalculateRenderTarget(
LayerTreeHostCommon::CalcDrawPropsImplInputs* inputs) {
CalculateRenderTargetInternal(inputs->root_layer, inputs->property_trees,
true, inputs->can_render_to_separate_surface);
}
void CalculateRenderSurfaceLayerList(
LayerTreeHostCommon::CalcDrawPropsImplInputs* inputs) {
const bool subtree_visible_from_ancestor = true;
DCHECK_EQ(
inputs->current_render_surface_layer_list_id,
inputs->root_layer->layer_tree_impl()->current_render_surface_list_id());
CalculateRenderSurfaceLayerListInternal(
inputs->root_layer, inputs->property_trees,
inputs->render_surface_layer_list, nullptr, nullptr,
subtree_visible_from_ancestor, inputs->can_render_to_separate_surface,
inputs->current_render_surface_layer_list_id, inputs->max_texture_size);
}
static void ComputeMaskLayerDrawProperties(const LayerImpl* layer,
LayerImpl* mask_layer) {
DrawProperties& mask_layer_draw_properties = mask_layer->draw_properties();
mask_layer_draw_properties.visible_layer_rect = gfx::Rect(layer->bounds());
mask_layer_draw_properties.target_space_transform =
layer->draw_properties().target_space_transform;
mask_layer_draw_properties.screen_space_transform =
layer->draw_properties().screen_space_transform;
mask_layer_draw_properties.maximum_animation_contents_scale =
layer->draw_properties().maximum_animation_contents_scale;
mask_layer_draw_properties.starting_animation_contents_scale =
layer->draw_properties().starting_animation_contents_scale;
}
void CalculateDrawPropertiesInternal(
LayerTreeHostCommon::CalcDrawPropsImplInputs* inputs,
PropertyTreeOption property_tree_option) {
inputs->render_surface_layer_list->clear();
UpdateMetaInformationSequenceNumber(inputs->root_layer);
PreCalculateMetaInformationRecursiveData recursive_data;
PreCalculateMetaInformationInternal(inputs->root_layer, &recursive_data);
const bool should_measure_property_tree_performance =
property_tree_option == BUILD_PROPERTY_TREES_IF_NEEDED;
LayerImplList visible_layer_list;
switch (property_tree_option) {
case BUILD_PROPERTY_TREES_IF_NEEDED: {
// The translation from layer to property trees is an intermediate
// state. We will eventually get these data passed directly to the
// compositor.
if (should_measure_property_tree_performance) {
TRACE_EVENT_BEGIN0(
TRACE_DISABLED_BY_DEFAULT("cc.debug.cdp-perf"),
"LayerTreeHostCommon::ComputeVisibleRectsWithPropertyTrees");
}
BuildPropertyTreesAndComputeVisibleRects(
inputs->root_layer, inputs->page_scale_layer,
inputs->inner_viewport_scroll_layer,
inputs->outer_viewport_scroll_layer,
inputs->elastic_overscroll_application_layer,
inputs->elastic_overscroll, inputs->page_scale_factor,
inputs->device_scale_factor, gfx::Rect(inputs->device_viewport_size),
inputs->device_transform, inputs->can_render_to_separate_surface,
inputs->property_trees, &visible_layer_list);
// Property trees are normally constructed on the main thread and
// passed to compositor thread. Source to parent updates on them are not
// allowed in the compositor thread. Some tests build them on the
// compositor thread, so we need to explicitly disallow source to parent
// updates when they are built on compositor thread.
inputs->property_trees->transform_tree
.set_source_to_parent_updates_allowed(false);
if (should_measure_property_tree_performance) {
TRACE_EVENT_END0(
TRACE_DISABLED_BY_DEFAULT("cc.debug.cdp-perf"),
"LayerTreeHostCommon::ComputeVisibleRectsWithPropertyTrees");
}
break;
}
case DONT_BUILD_PROPERTY_TREES: {
TRACE_EVENT0(
TRACE_DISABLED_BY_DEFAULT("cc.debug.cdp-perf"),
"LayerTreeHostCommon::ComputeJustVisibleRectsWithPropertyTrees");
// Since page scale and elastic overscroll are SyncedProperties, changes
// on the active tree immediately affect the pending tree, so instead of
// trying to update property trees whenever these values change, we
// update property trees before using them.
UpdatePageScaleFactorInPropertyTrees(
inputs->property_trees, inputs->page_scale_layer,
inputs->page_scale_factor, inputs->device_scale_factor,
inputs->device_transform);
UpdateElasticOverscrollInPropertyTrees(
inputs->property_trees, inputs->elastic_overscroll_application_layer,
inputs->elastic_overscroll);
// Similarly, the device viewport and device transform are shared
// by both trees.
inputs->property_trees->clip_tree.SetViewportClip(
gfx::RectF(gfx::SizeF(inputs->device_viewport_size)));
inputs->property_trees->transform_tree.SetDeviceTransform(
inputs->device_transform, inputs->root_layer->position());
inputs->property_trees->transform_tree.SetDeviceTransformScaleFactor(
inputs->device_transform);
ComputeVisibleRectsUsingPropertyTrees(
inputs->root_layer, inputs->property_trees,
inputs->can_render_to_separate_surface, &visible_layer_list);
break;
}
}
if (should_measure_property_tree_performance) {
TRACE_EVENT_BEGIN0(TRACE_DISABLED_BY_DEFAULT("cc.debug.cdp-perf"),
"LayerTreeHostCommon::CalculateDrawProperties");
}
std::vector<AccumulatedSurfaceState> accumulated_surface_state;
DCHECK(inputs->can_render_to_separate_surface ==
inputs->property_trees->non_root_surfaces_enabled);
CalculateRenderTarget(inputs);
for (LayerImpl* layer : visible_layer_list) {
ComputeLayerDrawPropertiesUsingPropertyTrees(
layer, inputs->property_trees, inputs->layers_always_allowed_lcd_text,
inputs->can_use_lcd_text, &layer->draw_properties());
if (layer->mask_layer())
ComputeMaskLayerDrawProperties(layer, layer->mask_layer());
LayerImpl* replica_mask_layer =
layer->replica_layer() ? layer->replica_layer()->mask_layer() : nullptr;
if (replica_mask_layer)
ComputeMaskLayerDrawProperties(layer, replica_mask_layer);
}
CalculateRenderSurfaceLayerList(inputs);
if (should_measure_property_tree_performance) {
TRACE_EVENT_END0(TRACE_DISABLED_BY_DEFAULT("cc.debug.cdp-perf"),
"LayerTreeHostCommon::CalculateDrawProperties");
}
// A root layer render_surface should always exist after
// CalculateDrawProperties.
DCHECK(inputs->root_layer->render_surface());
}
void LayerTreeHostCommon::CalculateDrawProperties(
CalcDrawPropsMainInputs* inputs) {
LayerList update_layer_list;
bool can_render_to_separate_surface = true;
PropertyTrees* property_trees =
inputs->root_layer->layer_tree_host()->property_trees();
Layer* overscroll_elasticity_layer = nullptr;
gfx::Vector2dF elastic_overscroll;
BuildPropertyTreesAndComputeVisibleRects(
inputs->root_layer, inputs->page_scale_layer,
inputs->inner_viewport_scroll_layer, inputs->outer_viewport_scroll_layer,
overscroll_elasticity_layer, elastic_overscroll,
inputs->page_scale_factor, inputs->device_scale_factor,
gfx::Rect(inputs->device_viewport_size), inputs->device_transform,
can_render_to_separate_surface, property_trees, &update_layer_list);
}
void LayerTreeHostCommon::CalculateDrawProperties(
CalcDrawPropsImplInputs* inputs) {
CalculateDrawPropertiesInternal(inputs, DONT_BUILD_PROPERTY_TREES);
if (CdpPerfTracingEnabled()) {
LayerTreeImpl* layer_tree_impl = inputs->root_layer->layer_tree_impl();
if (layer_tree_impl->IsPendingTree() &&
layer_tree_impl->is_first_frame_after_commit()) {
LayerImpl* active_tree_root =
layer_tree_impl->FindActiveTreeLayerById(inputs->root_layer->id());
float jitter = 0.f;
if (active_tree_root) {
LayerImpl* last_scrolled_layer = layer_tree_impl->LayerById(
active_tree_root->layer_tree_impl()->LastScrolledLayerId());
jitter = CalculateFrameJitter(last_scrolled_layer);
}
TRACE_EVENT_ASYNC_BEGIN1(
"cdp.perf", "jitter",
inputs->root_layer->layer_tree_impl()->source_frame_number(), "value",
jitter);
inputs->root_layer->layer_tree_impl()->set_is_first_frame_after_commit(
false);
TRACE_EVENT_ASYNC_END1(
"cdp.perf", "jitter",
inputs->root_layer->layer_tree_impl()->source_frame_number(), "value",
jitter);
}
}
}
void LayerTreeHostCommon::CalculateDrawProperties(
CalcDrawPropsImplInputsForTesting* inputs) {
CalculateDrawPropertiesInternal(inputs, BUILD_PROPERTY_TREES_IF_NEEDED);
}
PropertyTrees* GetPropertyTrees(Layer* layer) {
return layer->layer_tree_host()->property_trees();
}
PropertyTrees* GetPropertyTrees(LayerImpl* layer) {
return layer->layer_tree_impl()->property_trees();
}
} // namespace cc