blob: 03fb4c14dc7b36ba7ff94472738d770e0907079c [file] [log] [blame]
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is a simple application that stress-tests the crash recovery of the disk
// cache. The main application starts a copy of itself on a loop, checking the
// exit code of the child process. When the child dies in an unexpected way,
// the main application quits.
// The child application has two threads: one to exercise the cache in an
// infinite loop, and another one to asynchronously kill the process.
#include <string>
#include <vector>
#include "base/at_exit.h"
#include "base/command_line.h"
#include "base/debug_util.h"
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/path_service.h"
#include "base/platform_thread.h"
#include "base/process_util.h"
#include "base/string_util.h"
#include "base/thread.h"
#include "net/disk_cache/disk_cache.h"
#include "net/disk_cache/disk_cache_test_util.h"
using base::Time;
const int kError = -1;
const int kExpectedCrash = 100;
// Starts a new process.
int RunSlave(int iteration) {
std::wstring exe;
PathService::Get(base::FILE_EXE, &exe);
#if defined(OS_WIN)
CommandLine cmdline(StringPrintf(L"%ls %d", exe.c_str(), iteration));
#elif defined(OS_POSIX)
std::vector<std::string> cmd_argv;
cmd_argv.push_back(WideToUTF8(exe));
cmd_argv.push_back(IntToString(iteration));
CommandLine cmdline(cmd_argv);
#endif
base::ProcessHandle handle;
if (!base::LaunchApp(cmdline, false, false, &handle)) {
printf("Unable to run test\n");
return kError;
}
int exit_code;
if (!base::WaitForExitCode(handle, &exit_code)) {
printf("Unable to get return code\n");
return kError;
}
return exit_code;
}
// Main loop for the master process.
int MasterCode() {
for (int i = 0; i < 100000; i++) {
int ret = RunSlave(i);
if (kExpectedCrash != ret)
return ret;
}
printf("More than enough...\n");
return 0;
}
// -----------------------------------------------------------------------
// This thread will loop forever, adding and removing entries from the cache.
// iteration is the current crash cycle, so the entries on the cache are marked
// to know which instance of the application wrote them.
void StressTheCache(int iteration) {
int cache_size = 0x800000; // 8MB
std::wstring path = GetCachePath();
path.append(L"_stress");
disk_cache::Backend* cache = disk_cache::CreateCacheBackend(path, false,
cache_size);
if (NULL == cache) {
printf("Unable to initialize cache.\n");
return;
}
printf("Iteration %d, initial entries: %d\n", iteration,
cache->GetEntryCount());
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
const int kNumKeys = 5000;
const int kNumEntries = 30;
std::string keys[kNumKeys];
disk_cache::Entry* entries[kNumEntries] = {0};
for (int i = 0; i < kNumKeys; i++) {
keys[i] = GenerateKey(true);
}
const int kDataLen = 4000;
char data[kDataLen];
memset(data, 'k', kDataLen);
for (int i = 0;; i++) {
int slot = rand() % kNumEntries;
int key = rand() % kNumKeys;
if (entries[slot])
entries[slot]->Close();
if (!cache->OpenEntry(keys[key], &entries[slot]))
CHECK(cache->CreateEntry(keys[key], &entries[slot]));
base::snprintf(data, kDataLen, "%d %d", iteration, i);
CHECK(kDataLen == entries[slot]->WriteData(0, 0, data, kDataLen, NULL,
false));
if (rand() % 100 > 80) {
key = rand() % kNumKeys;
cache->DoomEntry(keys[key]);
}
if (!(i % 100))
printf("Entries: %d \r", i);
}
}
// We want to prevent the timer thread from killing the process while we are
// waiting for the debugger to attach.
bool g_crashing = false;
class CrashTask : public Task {
public:
CrashTask() {}
~CrashTask() {}
virtual void Run() {
// Keep trying to run.
RunSoon(MessageLoop::current());
if (g_crashing)
return;
if (rand() % 100 > 1) {
printf("sweet death...\n");
#if defined(OS_WIN)
// Windows does more work on _exit() that we would like, so we use Kill.
base::KillProcess(base::GetCurrentProcId(), kExpectedCrash, false);
#elif defined(OS_POSIX)
// On POSIX, _exit() will terminate the process with minimal cleanup,
// and it is cleaner than killing.
_exit(kExpectedCrash);
#endif
}
}
static void RunSoon(MessageLoop* target_loop) {
int task_delay = 10000; // 10 seconds
CrashTask* task = new CrashTask();
target_loop->PostDelayedTask(FROM_HERE, task, task_delay);
}
};
// We leak everything here :)
bool StartCrashThread() {
base::Thread* thread = new base::Thread("party_crasher");
if (!thread->Start())
return false;
CrashTask::RunSoon(thread->message_loop());
return true;
}
void CrashHandler(const std::string& str) {
g_crashing = true;
DebugUtil::BreakDebugger();
}
// -----------------------------------------------------------------------
int main(int argc, const char* argv[]) {
// Setup an AtExitManager so Singleton objects will be destructed.
base::AtExitManager at_exit_manager;
if (argc < 2)
return MasterCode();
logging::SetLogAssertHandler(CrashHandler);
// Some time for the memory manager to flush stuff.
PlatformThread::Sleep(3000);
MessageLoop message_loop;
char* end;
long int iteration = strtol(argv[1], &end, 0);
if (!StartCrashThread()) {
printf("failed to start thread\n");
return kError;
}
StressTheCache(iteration);
return 0;
}