| // Copyright 2016 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "ash/laser/laser_segment_utils.h" |
| |
| #include <cmath> |
| #include <limits> |
| |
| #include "base/logging.h" |
| #include "ui/gfx/geometry/angle_conversions.h" |
| #include "ui/gfx/geometry/point3_f.h" |
| #include "ui/gfx/geometry/point_f.h" |
| #include "ui/gfx/geometry/vector2d_f.h" |
| #include "ui/gfx/transform.h" |
| |
| namespace ash { |
| namespace { |
| |
| // Solves the equation x = (-b (+|-) sqrt(b^2 - 4ac)) / 2a. |use_plus| |
| // determines whether + or - is used in the equation; if |use_plus| is true, + |
| // is used. |a| cannot be 0 (linear equation). Note: This does not handle the |
| // case where the roots are complex. |
| float QuadraticEquation(bool use_plus, float a, float b, float c) { |
| DCHECK_NE(0.0f, a); |
| return (-1.0f * b + sqrt(b * b - 4.0f * a * c) * (use_plus ? 1.0f : -1.0f)) / |
| (2.0f * a); |
| } |
| } |
| |
| float AngleOfPointInNewCoordinates(const gfx::PointF& origin, |
| const gfx::Vector2dF& direction, |
| const gfx::PointF& point) { |
| double angle_degrees = gfx::RadToDeg(atan2(direction.y(), direction.x())); |
| gfx::Transform transform; |
| transform.Rotate(-angle_degrees); |
| transform.Translate(-origin.x(), -origin.y()); |
| gfx::Point3F point_to_transform(point.x(), point.y(), 0.0f); |
| transform.TransformPoint(&point_to_transform); |
| return atan2(point_to_transform.y(), point_to_transform.x()); |
| } |
| |
| void ComputeNormalLineVariables(const gfx::PointF& start_point, |
| const gfx::PointF& end_point, |
| float* normal_slope, |
| float* start_y_intercept, |
| float* end_y_intercept) { |
| float rise = end_point.y() - start_point.y(); |
| float run = end_point.x() - start_point.x(); |
| // If the rise of line between the two points is close to zero, the normal of |
| // the line is undefined. |
| if (fabs(rise) < 0.0001f) { |
| *normal_slope = std::numeric_limits<float>::quiet_NaN(); |
| *start_y_intercept = std::numeric_limits<float>::quiet_NaN(); |
| *end_y_intercept = std::numeric_limits<float>::quiet_NaN(); |
| return; |
| } |
| |
| *normal_slope = -1.0f * (run / rise); |
| *start_y_intercept = start_point.y() - *normal_slope * start_point.x(); |
| *end_y_intercept = end_point.y() - *normal_slope * end_point.x(); |
| } |
| |
| void ComputeProjectedPoints(const gfx::PointF& point, |
| float line_slope, |
| float line_y_intercept, |
| float projection_distance, |
| gfx::PointF* first_projection, |
| gfx::PointF* second_projection) { |
| // If the slope is NaN, the y-intercept should be NaN too. The line is thus |
| // vertical and projections will be projected straight up/down from |point|. |
| if (std::isnan(line_slope)) { |
| DCHECK(std::isnan(line_y_intercept)); |
| |
| *first_projection = |
| gfx::PointF(point.x(), point.y() + round(projection_distance)); |
| *second_projection = |
| gfx::PointF(point.x(), point.y() - round(projection_distance)); |
| return; |
| } |
| |
| // |point| must be on the line defined by |line_slope| and |line_y_intercept|. |
| DCHECK_LE(fabs(point.y() - (line_slope * point.x() + line_y_intercept)), 2.f); |
| |
| // We want the two points along the line given by |slope|(m) and |
| // |y_intercept|(b). If |original_point| is defined as (x,y) and |
| // |distance_from_old_point| is d, we want the two (dx,dy) which satisfys the |
| // two equations (1)dx^2+dy^2=d^2 and (2)y+dy=m(x+dx)+b. Since y,x,b and m are |
| // constants we form a new equation (3)dy=mdx + K, where K=mx+b-y. Plugging |
| // (3) into (1) we get dx^2+(mdx)^2+2Kmdx+K^2=d^2 -> |
| // (m^2+1)dx^2+(2Km)dx+(K^2-d^2)=0. We can then solve for dx using the |
| // quadratic equation with variables a=m^2+1, b=2Km, c=K^2-d^2. We plug |
| // dx into (3) to find dy. The new points will then be (x+dx,y+dy). |
| float constant = line_y_intercept + line_slope * point.x() - point.y(); |
| float a = 1.0f + line_slope * line_slope; |
| float b = 2.0f * line_slope * constant; |
| float c = constant * constant - projection_distance * projection_distance; |
| float p1_delta_x = QuadraticEquation(true, a, b, c); |
| float p1_delta_y = |
| line_slope * (point.x() + p1_delta_x) + line_y_intercept - point.y(); |
| float p2_delta_x = QuadraticEquation(false, a, b, c); |
| float p2_delta_y = |
| line_slope * (point.x() + p2_delta_x) + line_y_intercept - point.y(); |
| *first_projection = |
| gfx::PointF(point.x() + round(p1_delta_x), point.y() + round(p1_delta_y)); |
| *second_projection = |
| gfx::PointF(point.x() + round(p2_delta_x), point.y() + round(p2_delta_y)); |
| } |
| |
| bool IsFirstPointSmallerAngle(const gfx::PointF& start_point, |
| const gfx::PointF& end_point, |
| const gfx::PointF& first_point, |
| const gfx::PointF& second_point) { |
| gfx::PointF new_origin( |
| start_point.x() + (end_point.x() - start_point.x()) / 2.0f, |
| start_point.y() + (end_point.y() - start_point.y()) / 2.0f); |
| gfx::Vector2dF direction = end_point - start_point; |
| |
| // Compute the angles of the projections relative to the the new origin and |
| // direction. |
| float end_first_projection_angle = |
| AngleOfPointInNewCoordinates(new_origin, direction, first_point); |
| float end_second_projection_angle = |
| AngleOfPointInNewCoordinates(new_origin, direction, second_point); |
| |
| // We want to always have the smaller angle come first. |
| return end_first_projection_angle < end_second_projection_angle; |
| } |
| |
| } // namespace ash |