blob: 8b0811f02b4eaeaa3e01773c3bd0e055407d465a [file] [log] [blame]
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/http/http_cache.h"
#include <algorithm>
#include "base/compiler_specific.h"
#if defined(OS_POSIX)
#include <unistd.h>
#endif
#include "base/callback.h"
#include "base/format_macros.h"
#include "base/message_loop.h"
#include "base/pickle.h"
#include "base/ref_counted.h"
#include "base/string_util.h"
#include "net/base/io_buffer.h"
#include "net/base/load_flags.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/disk_cache.h"
#include "net/http/http_cache_transaction.h"
#include "net/http/http_network_layer.h"
#include "net/http/http_network_session.h"
#include "net/http/http_request_info.h"
#include "net/http/http_response_headers.h"
#include "net/http/http_response_info.h"
#include "net/spdy/spdy_session_pool.h"
namespace net {
// disk cache entry data indices.
enum {
kResponseInfoIndex,
kResponseContentIndex
};
//-----------------------------------------------------------------------------
HttpCache::ActiveEntry::ActiveEntry(disk_cache::Entry* e)
: disk_entry(e),
writer(NULL),
will_process_pending_queue(false),
doomed(false) {
}
HttpCache::ActiveEntry::~ActiveEntry() {
if (disk_entry)
disk_entry->Close();
}
//-----------------------------------------------------------------------------
// This structure keeps track of work items that are attempting to create or
// open cache entries.
struct HttpCache::NewEntry {
NewEntry() : disk_entry(NULL), writer(NULL) {}
~NewEntry() {}
disk_cache::Entry* disk_entry;
WorkItem* writer;
WorkItemList pending_queue;
};
//-----------------------------------------------------------------------------
// The type of operation represented by a work item.
enum WorkItemOperation {
WI_OPEN_ENTRY,
WI_CREATE_ENTRY,
WI_DOOM_ENTRY
};
// A work item encapsulates a single request for cache entry with all the
// information needed to complete that request.
class HttpCache::WorkItem {
public:
WorkItem(ActiveEntry** entry, Transaction* trans, WorkItemOperation operation)
: entry_(entry), trans_(trans), operation_(operation) {}
~WorkItem() {}
WorkItemOperation operation() { return operation_; }
// Calls back the transaction with the result of the operation.
void NotifyTransaction(int result, ActiveEntry* entry) {
if (entry_)
*entry_ = entry;
if (trans_)
trans_->io_callback()->Run(result);
}
void ClearTransaction() { trans_ = NULL; }
void ClearEntry() { entry_ = NULL; }
bool Matches(Transaction* trans) const { return trans == trans_; }
bool IsValid() const { return trans_ || entry_; }
private:
ActiveEntry** entry_;
Transaction* trans_;
WorkItemOperation operation_;
};
//-----------------------------------------------------------------------------
// This class is a specialized type of CompletionCallback that allows us to
// pass multiple arguments to the completion routine.
class HttpCache::BackendCallback : public CallbackRunner<Tuple1<int> > {
public:
BackendCallback(HttpCache* cache, NewEntry* entry)
: cache_(cache), entry_(entry) {}
~BackendCallback() {}
virtual void RunWithParams(const Tuple1<int>& params) {
cache_->OnIOComplete(params.a, entry_);
delete this;
}
private:
HttpCache* cache_;
NewEntry* entry_;
DISALLOW_COPY_AND_ASSIGN(BackendCallback);
};
//-----------------------------------------------------------------------------
// This class encapsulates a transaction whose only purpose is to write metadata
// to a given entry.
class HttpCache::MetadataWriter {
public:
explicit MetadataWriter(HttpCache::Transaction* trans)
: transaction_(trans),
ALLOW_THIS_IN_INITIALIZER_LIST(
callback_(this, &MetadataWriter::OnIOComplete)) {}
~MetadataWriter() {}
// Implementes the bulk of HttpCache::WriteMetadata.
void Write(const GURL& url, base::Time expected_response_time, IOBuffer* buf,
int buf_len);
private:
void VerifyResponse(int result);
void SelfDestroy();
void OnIOComplete(int result);
scoped_ptr<HttpCache::Transaction> transaction_;
bool verified_;
scoped_refptr<IOBuffer> buf_;
int buf_len_;
base::Time expected_response_time_;
CompletionCallbackImpl<MetadataWriter> callback_;
HttpRequestInfo request_info_;
DISALLOW_COPY_AND_ASSIGN(MetadataWriter);
};
void HttpCache::MetadataWriter::Write(const GURL& url,
base::Time expected_response_time,
IOBuffer* buf, int buf_len) {
DCHECK_GT(buf_len, 0);
DCHECK(buf);
DCHECK(buf->data());
request_info_.url = url;
request_info_.method = "GET";
request_info_.load_flags = LOAD_ONLY_FROM_CACHE;
expected_response_time_ = expected_response_time;
buf_ = buf;
buf_len_ = buf_len;
verified_ = false;
int rv = transaction_->Start(&request_info_, &callback_, NULL);
if (rv != ERR_IO_PENDING)
VerifyResponse(rv);
}
void HttpCache::MetadataWriter::VerifyResponse(int result) {
verified_ = true;
if (result != OK)
return SelfDestroy();
const HttpResponseInfo* response_info = transaction_->GetResponseInfo();
DCHECK(response_info->was_cached);
if (response_info->response_time != expected_response_time_)
return SelfDestroy();
result = transaction_->WriteMetadata(buf_, buf_len_, &callback_);
if (result != ERR_IO_PENDING)
SelfDestroy();
}
void HttpCache::MetadataWriter::SelfDestroy() {
delete this;
}
void HttpCache::MetadataWriter::OnIOComplete(int result) {
if (!verified_)
return VerifyResponse(result);
SelfDestroy();
}
//-----------------------------------------------------------------------------
HttpCache::HttpCache(NetworkChangeNotifier* network_change_notifier,
HostResolver* host_resolver,
ProxyService* proxy_service,
SSLConfigService* ssl_config_service,
HttpAuthHandlerFactory* http_auth_handler_factory,
const FilePath& cache_dir,
int cache_size)
: disk_cache_dir_(cache_dir),
mode_(NORMAL),
type_(DISK_CACHE),
network_layer_(HttpNetworkLayer::CreateFactory(
network_change_notifier, host_resolver, proxy_service,
ssl_config_service, http_auth_handler_factory)),
ALLOW_THIS_IN_INITIALIZER_LIST(task_factory_(this)),
enable_range_support_(true),
cache_size_(cache_size) {
}
HttpCache::HttpCache(HttpNetworkSession* session,
const FilePath& cache_dir,
int cache_size)
: disk_cache_dir_(cache_dir),
mode_(NORMAL),
type_(DISK_CACHE),
network_layer_(HttpNetworkLayer::CreateFactory(session)),
ALLOW_THIS_IN_INITIALIZER_LIST(task_factory_(this)),
enable_range_support_(true),
cache_size_(cache_size) {
}
HttpCache::HttpCache(NetworkChangeNotifier* network_change_notifier,
HostResolver* host_resolver,
ProxyService* proxy_service,
SSLConfigService* ssl_config_service,
HttpAuthHandlerFactory* http_auth_handler_factory,
int cache_size)
: mode_(NORMAL),
type_(MEMORY_CACHE),
network_layer_(HttpNetworkLayer::CreateFactory(
network_change_notifier, host_resolver, proxy_service,
ssl_config_service, http_auth_handler_factory)),
ALLOW_THIS_IN_INITIALIZER_LIST(task_factory_(this)),
enable_range_support_(true),
cache_size_(cache_size) {
}
HttpCache::HttpCache(HttpTransactionFactory* network_layer,
disk_cache::Backend* disk_cache)
: mode_(NORMAL),
type_(DISK_CACHE),
network_layer_(network_layer),
disk_cache_(disk_cache),
ALLOW_THIS_IN_INITIALIZER_LIST(task_factory_(this)),
enable_range_support_(true),
cache_size_(0) {
}
HttpCache::~HttpCache() {
// If we have any active entries remaining, then we need to deactivate them.
// We may have some pending calls to OnProcessPendingQueue, but since those
// won't run (due to our destruction), we can simply ignore the corresponding
// will_process_pending_queue flag.
while (!active_entries_.empty()) {
ActiveEntry* entry = active_entries_.begin()->second;
entry->will_process_pending_queue = false;
entry->pending_queue.clear();
entry->readers.clear();
entry->writer = NULL;
DeactivateEntry(entry);
}
ActiveEntriesSet::iterator it = doomed_entries_.begin();
for (; it != doomed_entries_.end(); ++it)
delete *it;
}
disk_cache::Backend* HttpCache::GetBackend() {
if (disk_cache_.get())
return disk_cache_.get();
DCHECK_GE(cache_size_, 0);
if (type_ == MEMORY_CACHE) {
// We may end up with no folder name and no cache if the initialization
// of the disk cache fails. We want to be sure that what we wanted to have
// was an in-memory cache.
disk_cache_.reset(disk_cache::CreateInMemoryCacheBackend(cache_size_));
} else if (!disk_cache_dir_.empty()) {
disk_cache_.reset(disk_cache::CreateCacheBackend(disk_cache_dir_, true,
cache_size_, type_));
disk_cache_dir_ = FilePath(); // Reclaim memory.
}
return disk_cache_.get();
}
int HttpCache::CreateTransaction(scoped_ptr<HttpTransaction>* trans) {
// Do lazy initialization of disk cache if needed.
GetBackend();
trans->reset(new HttpCache::Transaction(this, enable_range_support_));
return OK;
}
HttpCache* HttpCache::GetCache() {
return this;
}
HttpNetworkSession* HttpCache::GetSession() {
net::HttpNetworkLayer* network =
static_cast<net::HttpNetworkLayer*>(network_layer_.get());
return network->GetSession();
}
void HttpCache::Suspend(bool suspend) {
network_layer_->Suspend(suspend);
}
// static
bool HttpCache::ReadResponseInfo(disk_cache::Entry* disk_entry,
HttpResponseInfo* response_info,
bool* response_truncated) {
int size = disk_entry->GetDataSize(kResponseInfoIndex);
scoped_refptr<IOBuffer> buffer = new IOBuffer(size);
int rv = disk_entry->ReadData(kResponseInfoIndex, 0, buffer, size, NULL);
if (rv != size) {
DLOG(ERROR) << "ReadData failed: " << rv;
return false;
}
return ParseResponseInfo(buffer->data(), size, response_info,
response_truncated);
}
// static
bool HttpCache::WriteResponseInfo(disk_cache::Entry* disk_entry,
const HttpResponseInfo* response_info,
bool skip_transient_headers,
bool response_truncated) {
Pickle pickle;
response_info->Persist(
&pickle, skip_transient_headers, response_truncated);
scoped_refptr<WrappedIOBuffer> data = new WrappedIOBuffer(
reinterpret_cast<const char*>(pickle.data()));
int len = static_cast<int>(pickle.size());
return disk_entry->WriteData(kResponseInfoIndex, 0, data, len, NULL,
true) == len;
}
// static
bool HttpCache::ParseResponseInfo(const char* data, int len,
HttpResponseInfo* response_info,
bool* response_truncated) {
Pickle pickle(data, len);
return response_info->InitFromPickle(pickle, response_truncated);
}
void HttpCache::WriteMetadata(const GURL& url,
base::Time expected_response_time, IOBuffer* buf,
int buf_len) {
if (!buf_len)
return;
GetBackend();
HttpCache::Transaction* trans =
new HttpCache::Transaction(this, enable_range_support_);
MetadataWriter* writer = new MetadataWriter(trans);
// The writer will self destruct when done.
writer->Write(url, expected_response_time, buf, buf_len);
}
void HttpCache::CloseCurrentConnections() {
net::HttpNetworkLayer* network =
static_cast<net::HttpNetworkLayer*>(network_layer_.get());
HttpNetworkSession* session = network->GetSession();
if (session) {
session->tcp_socket_pool()->CloseIdleSockets();
if (session->spdy_session_pool())
session->spdy_session_pool()->CloseAllSessions();
session->ReplaceTCPSocketPool();
}
}
//-----------------------------------------------------------------------------
// Generate a key that can be used inside the cache.
std::string HttpCache::GenerateCacheKey(const HttpRequestInfo* request) {
// Strip out the reference, username, and password sections of the URL.
std::string url = HttpUtil::SpecForRequest(request->url);
DCHECK(mode_ != DISABLE);
if (mode_ == NORMAL) {
// No valid URL can begin with numerals, so we should not have to worry
// about collisions with normal URLs.
if (request->upload_data && request->upload_data->identifier()) {
url.insert(0, StringPrintf("%" PRId64 "/",
request->upload_data->identifier()));
}
return url;
}
// In playback and record mode, we cache everything.
// Lazily initialize.
if (playback_cache_map_ == NULL)
playback_cache_map_.reset(new PlaybackCacheMap());
// Each time we request an item from the cache, we tag it with a
// generation number. During playback, multiple fetches for the same
// item will use the same generation number and pull the proper
// instance of an URL from the cache.
int generation = 0;
DCHECK(playback_cache_map_ != NULL);
if (playback_cache_map_->find(url) != playback_cache_map_->end())
generation = (*playback_cache_map_)[url];
(*playback_cache_map_)[url] = generation + 1;
// The key into the cache is GENERATION # + METHOD + URL.
std::string result = IntToString(generation);
result.append(request->method);
result.append(url);
return result;
}
int HttpCache::DoomEntry(const std::string& key, Transaction* trans) {
// Need to abandon the ActiveEntry, but any transaction attached to the entry
// should not be impacted. Dooming an entry only means that it will no
// longer be returned by FindActiveEntry (and it will also be destroyed once
// all consumers are finished with the entry).
ActiveEntriesMap::iterator it = active_entries_.find(key);
if (it == active_entries_.end()) {
return AsyncDoomEntry(key, trans);
}
ActiveEntry* entry = it->second;
active_entries_.erase(it);
// We keep track of doomed entries so that we can ensure that they are
// cleaned up properly when the cache is destroyed.
doomed_entries_.insert(entry);
entry->disk_entry->Doom();
entry->doomed = true;
DCHECK(entry->writer || !entry->readers.empty());
return OK;
}
int HttpCache::AsyncDoomEntry(const std::string& key, Transaction* trans) {
DCHECK(trans);
WorkItem* item = new WorkItem(NULL, trans, WI_DOOM_ENTRY);
NewEntry* new_entry = GetNewEntry(key);
if (new_entry->writer) {
new_entry->pending_queue.push_back(item);
return ERR_IO_PENDING;
}
DCHECK(new_entry->pending_queue.empty());
new_entry->writer = item;
BackendCallback* my_callback = new BackendCallback(this, new_entry);
int rv = disk_cache_->DoomEntry(key, my_callback);
if (rv != ERR_IO_PENDING) {
item->ClearTransaction();
my_callback->Run(rv);
}
return rv;
}
void HttpCache::FinalizeDoomedEntry(ActiveEntry* entry) {
DCHECK(entry->doomed);
DCHECK(!entry->writer);
DCHECK(entry->readers.empty());
DCHECK(entry->pending_queue.empty());
ActiveEntriesSet::iterator it = doomed_entries_.find(entry);
DCHECK(it != doomed_entries_.end());
doomed_entries_.erase(it);
delete entry;
}
HttpCache::ActiveEntry* HttpCache::FindActiveEntry(const std::string& key) {
ActiveEntriesMap::const_iterator it = active_entries_.find(key);
return it != active_entries_.end() ? it->second : NULL;
}
HttpCache::ActiveEntry* HttpCache::ActivateEntry(
const std::string& key,
disk_cache::Entry* disk_entry) {
DCHECK(!FindActiveEntry(key));
ActiveEntry* entry = new ActiveEntry(disk_entry);
active_entries_[key] = entry;
return entry;
}
void HttpCache::DeactivateEntry(ActiveEntry* entry) {
DCHECK(!entry->will_process_pending_queue);
DCHECK(!entry->doomed);
DCHECK(!entry->writer);
DCHECK(entry->readers.empty());
DCHECK(entry->pending_queue.empty());
std::string key = entry->disk_entry->GetKey();
if (key.empty())
return SlowDeactivateEntry(entry);
ActiveEntriesMap::iterator it = active_entries_.find(key);
DCHECK(it != active_entries_.end());
DCHECK(it->second == entry);
active_entries_.erase(it);
delete entry;
}
// We don't know this entry's key so we have to find it without it.
void HttpCache::SlowDeactivateEntry(ActiveEntry* entry) {
for (ActiveEntriesMap::iterator it = active_entries_.begin();
it != active_entries_.end(); ++it) {
if (it->second == entry) {
active_entries_.erase(it);
delete entry;
break;
}
}
}
HttpCache::NewEntry* HttpCache::GetNewEntry(const std::string& key) {
DCHECK(!FindActiveEntry(key));
NewEntriesMap::const_iterator it = new_entries_.find(key);
if (it != new_entries_.end())
return it->second;
NewEntry* entry = new NewEntry();
new_entries_[key] = entry;
return entry;
}
void HttpCache::DeleteNewEntry(NewEntry* entry) {
std::string key;
if (entry->disk_entry)
key = entry->disk_entry->GetKey();
if (!key.empty()) {
NewEntriesMap::iterator it = new_entries_.find(key);
DCHECK(it != new_entries_.end());
new_entries_.erase(it);
} else {
for (NewEntriesMap::iterator it = new_entries_.begin();
it != new_entries_.end(); ++it) {
if (it->second == entry) {
new_entries_.erase(it);
break;
}
}
}
delete entry;
}
int HttpCache::OpenEntry(const std::string& key, ActiveEntry** entry,
Transaction* trans) {
ActiveEntry* active_entry = FindActiveEntry(key);
if (active_entry) {
*entry = active_entry;
return OK;
}
WorkItem* item = new WorkItem(entry, trans, WI_OPEN_ENTRY);
NewEntry* new_entry = GetNewEntry(key);
if (new_entry->writer) {
new_entry->pending_queue.push_back(item);
return ERR_IO_PENDING;
}
DCHECK(new_entry->pending_queue.empty());
new_entry->writer = item;
BackendCallback* my_callback = new BackendCallback(this, new_entry);
int rv = disk_cache_->OpenEntry(key, &(new_entry->disk_entry), my_callback);
if (rv != ERR_IO_PENDING) {
item->ClearTransaction();
my_callback->Run(rv);
}
return rv;
}
int HttpCache::CreateEntry(const std::string& key, ActiveEntry** entry,
Transaction* trans) {
DCHECK(!FindActiveEntry(key));
WorkItem* item = new WorkItem(entry, trans, WI_CREATE_ENTRY);
NewEntry* new_entry = GetNewEntry(key);
if (new_entry->writer) {
new_entry->pending_queue.push_back(item);
return ERR_IO_PENDING;
}
DCHECK(new_entry->pending_queue.empty());
new_entry->writer = item;
BackendCallback* my_callback = new BackendCallback(this, new_entry);
int rv = disk_cache_->CreateEntry(key, &(new_entry->disk_entry), my_callback);
if (rv != ERR_IO_PENDING) {
item->ClearTransaction();
my_callback->Run(rv);
}
return rv;
}
void HttpCache::DestroyEntry(ActiveEntry* entry) {
if (entry->doomed) {
FinalizeDoomedEntry(entry);
} else {
DeactivateEntry(entry);
}
}
int HttpCache::AddTransactionToEntry(ActiveEntry* entry, Transaction* trans) {
DCHECK(entry);
// We implement a basic reader/writer lock for the disk cache entry. If
// there is already a writer, then everyone has to wait for the writer to
// finish before they can access the cache entry. There can be multiple
// readers.
//
// NOTE: If the transaction can only write, then the entry should not be in
// use (since any existing entry should have already been doomed).
if (entry->writer || entry->will_process_pending_queue) {
entry->pending_queue.push_back(trans);
return ERR_IO_PENDING;
}
if (trans->mode() & Transaction::WRITE) {
// transaction needs exclusive access to the entry
if (entry->readers.empty()) {
entry->writer = trans;
} else {
entry->pending_queue.push_back(trans);
return ERR_IO_PENDING;
}
} else {
// transaction needs read access to the entry
entry->readers.push_back(trans);
}
// We do this before calling EntryAvailable to force any further calls to
// AddTransactionToEntry to add their transaction to the pending queue, which
// ensures FIFO ordering.
if (!entry->writer && !entry->pending_queue.empty())
ProcessPendingQueue(entry);
return OK;
}
void HttpCache::DoneWithEntry(ActiveEntry* entry, Transaction* trans,
bool cancel) {
// If we already posted a task to move on to the next transaction and this was
// the writer, there is nothing to cancel.
if (entry->will_process_pending_queue && entry->readers.empty())
return;
if (entry->writer) {
DCHECK(trans == entry->writer);
// Assume there was a failure.
bool success = false;
if (cancel) {
DCHECK(entry->disk_entry);
// This is a successful operation in the sense that we want to keep the
// entry.
success = trans->AddTruncatedFlag();
}
DoneWritingToEntry(entry, success);
} else {
DoneReadingFromEntry(entry, trans);
}
}
void HttpCache::DoneWritingToEntry(ActiveEntry* entry, bool success) {
DCHECK(entry->readers.empty());
entry->writer = NULL;
if (success) {
ProcessPendingQueue(entry);
} else {
DCHECK(!entry->will_process_pending_queue);
// We failed to create this entry.
TransactionList pending_queue;
pending_queue.swap(entry->pending_queue);
entry->disk_entry->Doom();
DestroyEntry(entry);
// We need to do something about these pending entries, which now need to
// be added to a new entry.
while (!pending_queue.empty()) {
// ERR_CACHE_RACE causes the transaction to restart the whole process.
pending_queue.front()->io_callback()->Run(ERR_CACHE_RACE);
pending_queue.pop_front();
}
}
}
void HttpCache::DoneReadingFromEntry(ActiveEntry* entry, Transaction* trans) {
DCHECK(!entry->writer);
TransactionList::iterator it =
std::find(entry->readers.begin(), entry->readers.end(), trans);
DCHECK(it != entry->readers.end());
entry->readers.erase(it);
ProcessPendingQueue(entry);
}
void HttpCache::ConvertWriterToReader(ActiveEntry* entry) {
DCHECK(entry->writer);
DCHECK(entry->writer->mode() == Transaction::READ_WRITE);
DCHECK(entry->readers.empty());
Transaction* trans = entry->writer;
entry->writer = NULL;
entry->readers.push_back(trans);
ProcessPendingQueue(entry);
}
void HttpCache::RemovePendingTransaction(Transaction* trans) {
ActiveEntriesMap::const_iterator i = active_entries_.find(trans->key());
bool found = false;
if (i != active_entries_.end())
found = RemovePendingTransactionFromEntry(i->second, trans);
if (found)
return;
NewEntriesMap::const_iterator j = new_entries_.find(trans->key());
if (j != new_entries_.end())
found = RemovePendingTransactionFromNewEntry(j->second, trans);
ActiveEntriesSet::iterator k = doomed_entries_.begin();
for (; k != doomed_entries_.end() && !found; ++k)
found = RemovePendingTransactionFromEntry(*k, trans);
DCHECK(found) << "Pending transaction not found";
}
bool HttpCache::RemovePendingTransactionFromEntry(ActiveEntry* entry,
Transaction* trans) {
TransactionList& pending_queue = entry->pending_queue;
TransactionList::iterator j =
find(pending_queue.begin(), pending_queue.end(), trans);
if (j == pending_queue.end())
return false;
pending_queue.erase(j);
return true;
}
bool HttpCache::RemovePendingTransactionFromNewEntry(NewEntry* entry,
Transaction* trans) {
if (entry->writer->Matches(trans)) {
entry->writer->ClearTransaction();
entry->writer->ClearEntry();
return true;
}
WorkItemList& pending_queue = entry->pending_queue;
WorkItemList::iterator it = pending_queue.begin();
for (; it != pending_queue.end(); ++it) {
if ((*it)->Matches(trans)) {
delete *it;
pending_queue.erase(it);
return true;
}
}
return false;
}
void HttpCache::ProcessPendingQueue(ActiveEntry* entry) {
// Multiple readers may finish with an entry at once, so we want to batch up
// calls to OnProcessPendingQueue. This flag also tells us that we should
// not delete the entry before OnProcessPendingQueue runs.
if (entry->will_process_pending_queue)
return;
entry->will_process_pending_queue = true;
MessageLoop::current()->PostTask(FROM_HERE,
task_factory_.NewRunnableMethod(&HttpCache::OnProcessPendingQueue,
entry));
}
void HttpCache::OnProcessPendingQueue(ActiveEntry* entry) {
entry->will_process_pending_queue = false;
DCHECK(!entry->writer);
// If no one is interested in this entry, then we can de-activate it.
if (entry->pending_queue.empty()) {
if (entry->readers.empty())
DestroyEntry(entry);
return;
}
// Promote next transaction from the pending queue.
Transaction* next = entry->pending_queue.front();
if ((next->mode() & Transaction::WRITE) && !entry->readers.empty())
return; // Have to wait.
entry->pending_queue.erase(entry->pending_queue.begin());
int rv = AddTransactionToEntry(entry, next);
if (rv != ERR_IO_PENDING) {
next->io_callback()->Run(rv);
}
}
void HttpCache::OnIOComplete(int result, NewEntry* new_entry) {
scoped_ptr<WorkItem> item(new_entry->writer);
WorkItemOperation op = item->operation();
bool fail_requests = false;
ActiveEntry* entry = NULL;
std::string key;
if (result == OK) {
if (op == WI_DOOM_ENTRY) {
// Anything after a Doom has to be restarted.
fail_requests = true;
} else if (item->IsValid()) {
key = new_entry->disk_entry->GetKey();
entry = ActivateEntry(key, new_entry->disk_entry);
} else {
// The writer transaction is gone.
if (op == WI_CREATE_ENTRY)
new_entry->disk_entry->Doom();
new_entry->disk_entry->Close();
fail_requests = true;
}
}
// We are about to notify a bunch of transactions, and they may decide to
// re-issue a request (or send a different one). If we don't delete new_entry,
// the new request will be appended to the end of the list, and we'll see it
// again from this point before it has a chance to complete (and we'll be
// messing out the request order). The down side is that if for some reason
// notifying request A ends up cancelling request B (for the same key), we
// won't find request B anywhere (because it would be in a local variable
// here) and that's bad. If there is a chance for that to happen, we'll have
// to move the callback used to be a CancelableCallback. By the way, for this
// to happen the action (to cancel B) has to be synchronous to the
// notification for request A.
WorkItemList pending_items;
pending_items.swap(new_entry->pending_queue);
DeleteNewEntry(new_entry);
item->NotifyTransaction(result, entry);
while (!pending_items.empty()) {
item.reset(pending_items.front());
pending_items.pop_front();
if (item->operation() == WI_DOOM_ENTRY) {
// A queued doom request is always a race.
fail_requests = true;
} else if (result == OK) {
entry = FindActiveEntry(key);
if (!entry)
fail_requests = true;
}
if (fail_requests) {
item->NotifyTransaction(ERR_CACHE_RACE, NULL);
continue;
}
if (item->operation() == WI_CREATE_ENTRY) {
if (result == OK) {
// A second Create request, but the first request succeded.
item->NotifyTransaction(ERR_CACHE_CREATE_FAILURE, NULL);
} else {
if (op != WI_CREATE_ENTRY) {
// Failed Open followed by a Create.
item->NotifyTransaction(ERR_CACHE_RACE, NULL);
fail_requests = true;
} else {
item->NotifyTransaction(result, entry);
}
}
} else {
if (op == WI_CREATE_ENTRY && result != OK) {
// Failed Create followed by an Open.
item->NotifyTransaction(ERR_CACHE_RACE, NULL);
fail_requests = true;
} else {
item->NotifyTransaction(result, entry);
}
}
}
}
} // namespace net