blob: dabc0035caad597a9ee41343437c82864a166416 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <memory>
#include <numeric>
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/accessibility/ax_event_generator.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_serializable_tree.h"
#include "ui/accessibility/ax_tree.h"
#include "ui/accessibility/ax_tree_serializer.h"
#include "ui/accessibility/tree_generator.h"
namespace ui {
namespace {
// A function to turn a tree into a string, capturing only the node ids
// and their relationship to one another.
//
// The string format is kind of like an S-expression, with each expression
// being either a node id, or a node id followed by a subexpression
// representing its children.
//
// Examples:
//
// (1) is a tree with a single node with id 1.
// (1 (2 3)) is a tree with 1 as the root, and 2 and 3 as its children.
// (1 (2 (3))) has 1 as the root, 2 as its child, and then 3 as the child of 2.
// (1 (2 (3x))) is the same with node 3 ignored.
std::string TreeToStringHelper(const AXNode* node) {
std::string result = base::NumberToString(node->id());
if (node->IsIgnored())
result += "x";
if (node->children().empty())
return result;
const auto add_children = [](const std::string& str, const auto* node) {
return str + " " + TreeToStringHelper(node);
};
return result + " (" +
std::accumulate(node->children().cbegin() + 1, node->children().cend(),
TreeToStringHelper(node->children().front()),
add_children) +
")";
}
std::string TreeToString(const AXTree& tree) {
return "(" + TreeToStringHelper(tree.root()) + ")";
}
AXTreeUpdate SerializeEntireTree(AXSerializableTree& tree) {
std::unique_ptr<AXTreeSource<const AXNode*, AXNodeData, AXTreeData>>
tree_source(tree.CreateTreeSource());
AXTreeSerializer<const AXNode*, AXNodeData, AXTreeData> serializer(
tree_source.get());
AXTreeUpdate update;
CHECK(serializer.SerializeChanges(tree.root(), &update));
return update;
}
// Create an AXTreeUpdate consisting of only those nodes from
// |tree0| that changed their ignored status in |tree1|.
AXTreeUpdate MakeTreeUpdateFromIgnoredChanges(AXSerializableTree& tree0,
AXSerializableTree& tree1) {
AXTreeUpdate update = SerializeEntireTree(tree1);
AXTreeUpdate result;
for (size_t i = 0; i < update.nodes.size(); i++) {
AXNode* tree0_node = tree0.GetFromId(update.nodes[i].id);
AXNode* tree1_node = tree1.GetFromId(update.nodes[i].id);
if (tree0_node->IsIgnored() != tree1_node->IsIgnored())
result.nodes.push_back(update.nodes[i]);
}
return result;
}
void SerializeUnignoredNodes(AXNode* node, AXTreeUpdate* update) {
AXNodeData data = node->data();
data.child_ids.clear();
for (size_t i = 0; i < node->GetUnignoredChildCount(); i++) {
AXNode* child = node->GetUnignoredChildAtIndex(i);
data.child_ids.push_back(child->id());
}
update->nodes.push_back(data);
for (size_t i = 0; i < node->GetUnignoredChildCount(); i++) {
AXNode* child = node->GetUnignoredChildAtIndex(i);
SerializeUnignoredNodes(child, update);
}
}
void MakeTreeOfUnignoredNodesOnly(AXSerializableTree& src,
AXSerializableTree* dst) {
AXTreeUpdate update;
update.root_id = src.root()->id();
SerializeUnignoredNodes(src.root(), &update);
CHECK(dst->Unserialize(update));
}
} // anonymous namespace
// Test the TreeGenerator class by building all possible trees with
// 3 nodes and the ids [1...3], with no permutations of ids.
TEST(AXGeneratedTreeTest, TestTreeGeneratorNoPermutations) {
int tree_size = 3;
TreeGenerator generator(tree_size, false);
// clang-format off
const char* EXPECTED_TREES[] = {
"(1)",
"(1 (2))",
"(1 (2 3))",
"(1 (2 (3)))",
};
// clang-format on
int n = generator.UniqueTreeCount();
ASSERT_EQ(static_cast<int>(base::size(EXPECTED_TREES)), n);
for (int i = 0; i < n; ++i) {
AXTree tree;
generator.BuildUniqueTree(i, &tree);
std::string str = TreeToString(tree);
EXPECT_EQ(EXPECTED_TREES[i], str);
}
}
// Test generating trees with permutations of ignored nodes.
TEST(AXGeneratedTreeTest, TestGeneratingTreesWithIgnoredNodes) {
int tree_size = 3;
TreeGenerator generator(tree_size, false);
// clang-format off
const char* EXPECTED_TREES[] = {
"(1)",
"(1 (2))",
"(1 (2x))",
"(1 (2 3))",
"(1 (2x 3))",
"(1 (2 3x))",
"(1 (2x 3x))",
"(1 (2 (3)))",
"(1 (2x (3)))",
"(1 (2 (3x)))",
"(1 (2x (3x)))",
};
// clang-format on
int n = generator.UniqueTreeCount();
int expected_index = 0;
for (int i = 0; i < n; ++i) {
int ignored_permutation_count =
generator.IgnoredPermutationCountPerUniqueTree(i);
for (int j = 0; j < ignored_permutation_count; j++) {
AXTree tree;
generator.BuildUniqueTreeWithIgnoredNodes(i, j, &tree);
std::string str = TreeToString(tree);
EXPECT_EQ(EXPECTED_TREES[expected_index++], str);
}
}
EXPECT_EQ(11, expected_index);
}
// Test the TreeGenerator class by building all possible trees with
// 3 nodes and the ids [1...3] permuted in any order.
TEST(AXGeneratedTreeTest, TestTreeGeneratorWithPermutations) {
int tree_size = 3;
TreeGenerator generator(tree_size, true);
// clang-format off
const char* EXPECTED_TREES[] = {
"(1)",
"(1 (2))",
"(2 (1))",
"(1 (2 3))",
"(2 (1 3))",
"(3 (1 2))",
"(1 (3 2))",
"(2 (3 1))",
"(3 (2 1))",
"(1 (2 (3)))",
"(2 (1 (3)))",
"(3 (1 (2)))",
"(1 (3 (2)))",
"(2 (3 (1)))",
"(3 (2 (1)))",
};
// clang-format on
int n = generator.UniqueTreeCount();
ASSERT_EQ(static_cast<int>(base::size(EXPECTED_TREES)), n);
for (int i = 0; i < n; i++) {
AXTree tree;
generator.BuildUniqueTree(i, &tree);
std::string str = TreeToString(tree);
EXPECT_EQ(EXPECTED_TREES[i], str);
}
}
// Test mutating every possible tree with <n> nodes to every other possible
// tree with <n> nodes, where <n> is 4 in release mode and 3 in debug mode
// (for speed). For each possible combination of trees, we also vary which
// node we serialize first.
//
// For every possible scenario, we check that the AXTreeUpdate is valid,
// that the destination tree can unserialize it and create a valid tree,
// and that after updating all nodes the resulting tree now matches the
// intended tree.
TEST(AXGeneratedTreeTest, SerializeGeneratedTrees) {
// Do a more exhaustive test in release mode. If you're modifying
// the algorithm you may want to try even larger tree sizes if you
// can afford the time.
#ifdef NDEBUG
int max_tree_size = 4;
#else
LOG(WARNING) << "Debug build, only testing trees with 3 nodes and not 4.";
int max_tree_size = 3;
#endif
TreeGenerator generator0(max_tree_size, false);
int n0 = generator0.UniqueTreeCount();
TreeGenerator generator1(max_tree_size, true);
int n1 = generator1.UniqueTreeCount();
for (int i = 0; i < n0; i++) {
// Build the first tree, tree0.
AXSerializableTree tree0;
generator0.BuildUniqueTree(i, &tree0);
SCOPED_TRACE("tree0 is " + TreeToString(tree0));
for (int j = 0; j < n1; j++) {
// Build the second tree, tree1.
AXSerializableTree tree1;
generator1.BuildUniqueTree(j, &tree1);
SCOPED_TRACE("tree1 is " + TreeToString(tree1));
int tree_size = tree1.size();
// Now iterate over which node to update first, |k|.
for (int k = 0; k < tree_size; k++) {
// Iterate over a node to invalidate, |l| (zero means no invalidation).
for (int l = 0; l <= tree_size; l++) {
SCOPED_TRACE("i=" + base::NumberToString(i) +
" j=" + base::NumberToString(j) +
" k=" + base::NumberToString(k) +
" l=" + base::NumberToString(l));
// Start by serializing tree0 and unserializing it into a new
// empty tree |dst_tree|.
std::unique_ptr<AXTreeSource<const AXNode*, AXNodeData, AXTreeData>>
tree0_source(tree0.CreateTreeSource());
AXTreeSerializer<const AXNode*, AXNodeData, AXTreeData> serializer(
tree0_source.get());
AXTreeUpdate update0;
ASSERT_TRUE(serializer.SerializeChanges(tree0.root(), &update0));
AXTree dst_tree;
ASSERT_TRUE(dst_tree.Unserialize(update0))
<< dst_tree.error() << "\n"
<< TreeToString(dst_tree)
<< "\nTree update: " << update0.ToString();
// At this point, |dst_tree| should now be identical to |tree0|.
EXPECT_EQ(TreeToString(tree0), TreeToString(dst_tree));
// Next, pretend that tree0 turned into tree1.
std::unique_ptr<AXTreeSource<const AXNode*, AXNodeData, AXTreeData>>
tree1_source(tree1.CreateTreeSource());
serializer.ChangeTreeSourceForTesting(tree1_source.get());
// Invalidate a subtree rooted at one of the nodes.
if (l > 0)
serializer.InvalidateSubtree(tree1.GetFromId(l));
// Serialize a sequence of updates to |dst_tree| to match.
for (int k_index = 0; k_index < tree_size; ++k_index) {
int id = 1 + (k + k_index) % tree_size;
AXTreeUpdate update;
ASSERT_TRUE(
serializer.SerializeChanges(tree1.GetFromId(id), &update));
std::string tree_before_str = TreeToString(dst_tree);
ASSERT_TRUE(dst_tree.Unserialize(update))
<< dst_tree.error() << "\nTree before : " << tree_before_str
<< "\nTree after : " << TreeToString(dst_tree)
<< "\nExpected after: " << TreeToString(tree1)
<< "\nTree update : " << update.ToString();
}
// After the sequence of updates, |dst_tree| should now be
// identical to |tree1|.
EXPECT_EQ(TreeToString(tree1), TreeToString(dst_tree));
}
}
}
}
}
TEST(AXGeneratedTreeTest, GeneratedTreesWithIgnoredNodes) {
int max_tree_size = 5;
TreeGenerator generator(max_tree_size, false);
int unique_tree_count = generator.UniqueTreeCount();
// Loop over every possible tree up to a certain size.
for (int tree_index = 0; tree_index < unique_tree_count; tree_index++) {
// Try each permutation of nodes other than the root being ignored.
// We'll call this tree the "fat" tree because it has redundant
// ignored nodes.
int ignored_permutation_count =
generator.IgnoredPermutationCountPerUniqueTree(tree_index);
for (int perm_index0 = 0; perm_index0 < ignored_permutation_count;
perm_index0++) {
AXSerializableTree fat_tree;
generator.BuildUniqueTreeWithIgnoredNodes(tree_index, perm_index0,
&fat_tree);
SCOPED_TRACE("fat_tree is " + TreeToString(fat_tree));
// Create a second tree, also with each permutations of nodes
// other than the root being ignored.
for (int perm_index1 = 1; perm_index1 < ignored_permutation_count;
perm_index1++) {
AXSerializableTree fat_tree1;
generator.BuildUniqueTreeWithIgnoredNodes(tree_index, perm_index1,
&fat_tree1);
SCOPED_TRACE("fat_tree1 is " + TreeToString(fat_tree1));
// Make a source and destination tree using only the unignored nodes.
// We call this one the "skinny" tree.
AXSerializableTree skinny_tree;
MakeTreeOfUnignoredNodesOnly(fat_tree, &skinny_tree);
AXSerializableTree skinny_tree1;
MakeTreeOfUnignoredNodesOnly(fat_tree1, &skinny_tree1);
// Now, turn fat_tree into fat_tree1, and record the generated events.
AXEventGenerator event_generator(&fat_tree);
AXTreeUpdate update =
MakeTreeUpdateFromIgnoredChanges(fat_tree, fat_tree1);
std::string fat_tree_before_str = TreeToString(fat_tree);
ASSERT_TRUE(fat_tree.Unserialize(update))
<< fat_tree.error() << "\nTree before : " << fat_tree_before_str
<< "\nTree after :" << TreeToString(fat_tree)
<< "\nExpected after: " << TreeToString(fat_tree1)
<< "\nTree update : " << update.ToString();
EXPECT_EQ(TreeToString(fat_tree), TreeToString(fat_tree1));
// Capture the events generated.
std::map<AXNode::AXID, std::set<AXEventGenerator::Event>> actual_events;
for (const AXEventGenerator::TargetedEvent& event : event_generator) {
if (event.node->IsIgnored() ||
event.event_params.event ==
AXEventGenerator::Event::IGNORED_CHANGED) {
continue;
}
actual_events[event.node->id()].insert(event.event_params.event);
}
// Now, turn skinny_tree into skinny_tree1 and compare
// the generated events.
AXEventGenerator skinny_event_generator(&skinny_tree);
AXTreeUpdate skinny_update = SerializeEntireTree(skinny_tree1);
std::string skinny_tree_before_str = TreeToString(skinny_tree);
ASSERT_TRUE(skinny_tree.Unserialize(skinny_update))
<< skinny_tree.error()
<< "\nTree before : " << skinny_tree_before_str
<< "\nTree after :" << TreeToString(skinny_tree)
<< "\nExpected after: " << TreeToString(skinny_tree1)
<< "\nTree update : " << skinny_update.ToString();
EXPECT_EQ(TreeToString(skinny_tree), TreeToString(skinny_tree1));
std::map<AXNode::AXID, std::set<AXEventGenerator::Event>>
expected_events;
for (const AXEventGenerator::TargetedEvent& event :
skinny_event_generator)
expected_events[event.node->id()].insert(event.event_params.event);
for (auto& entry : expected_events) {
AXNode::AXID node_id = entry.first;
for (auto& event_type : entry.second) {
EXPECT_TRUE(actual_events[node_id].find(event_type) !=
actual_events[node_id].end())
<< "Expected " << event_type << " on node " << node_id;
}
}
for (auto& entry : actual_events) {
AXNode::AXID node_id = entry.first;
for (auto& event_type : entry.second) {
EXPECT_TRUE(expected_events[node_id].find(event_type) !=
expected_events[node_id].end())
<< "Unexpected " << event_type << " on node " << node_id;
}
}
// For each node in skinny_tree (the tree with only the unignored
// nodes), check the node in fat_tree (the tree with ignored nodes).
// Make sure that the parents, children, and siblings are all computed
// correctly.
AXTreeUpdate skinny_tree_serialized = SerializeEntireTree(skinny_tree);
for (size_t i = 0; i < skinny_tree_serialized.nodes.size(); i++) {
AXNode::AXID id = skinny_tree_serialized.nodes[i].id;
AXNode* skinny_tree_node = skinny_tree.GetFromId(id);
AXNode* fat_tree_node = fat_tree.GetFromId(id);
SCOPED_TRACE("Testing node ID " + base::NumberToString(id));
// Check children.
EXPECT_EQ(skinny_tree_node->children().size(),
fat_tree_node->GetUnignoredChildCount());
// Check child IDs.
for (size_t j = 0; j < skinny_tree_node->children().size(); j++) {
AXNode* skinny_tree_child = skinny_tree_node->children()[j];
AXNode* fat_tree_child = fat_tree_node->GetUnignoredChildAtIndex(j);
EXPECT_TRUE(skinny_tree_child);
EXPECT_TRUE(fat_tree_child);
if (fat_tree_child)
EXPECT_EQ(skinny_tree_child->id(), fat_tree_child->id());
}
// Check parent.
if (skinny_tree_node->parent()) {
EXPECT_EQ(skinny_tree_node->parent()->id(),
fat_tree_node->GetUnignoredParent()->id());
} else {
EXPECT_FALSE(fat_tree_node->GetUnignoredParent());
}
// Check index in parent.
EXPECT_EQ(skinny_tree_node->index_in_parent(),
fat_tree_node->GetUnignoredIndexInParent());
// Unignored previous sibling.
size_t index_in_parent = skinny_tree_node->index_in_parent();
size_t num_siblings =
skinny_tree_node->parent()
? skinny_tree_node->parent()->children().size()
: 1;
if (index_in_parent > 0) {
AXNode* skinny_tree_previous_sibling =
skinny_tree_node->parent()->children()[index_in_parent - 1];
AXNode* fat_tree_previous_sibling =
fat_tree_node->GetPreviousUnignoredSibling();
EXPECT_TRUE(fat_tree_previous_sibling);
if (fat_tree_previous_sibling) {
EXPECT_EQ(skinny_tree_previous_sibling->id(),
fat_tree_previous_sibling->id());
}
}
// Unignored next sibling.
if (index_in_parent < num_siblings - 1) {
AXNode* skinny_tree_next_sibling =
skinny_tree_node->parent()->children()[index_in_parent + 1];
AXNode* fat_tree_next_sibling =
fat_tree_node->GetNextUnignoredSibling();
EXPECT_TRUE(fat_tree_next_sibling);
if (fat_tree_next_sibling) {
EXPECT_EQ(skinny_tree_next_sibling->id(),
fat_tree_next_sibling->id());
}
}
}
}
}
}
}
} // namespace ui