blob: 0c5f7002673b8bc35ab6d4bb9e9c2bde1525746e [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/accessibility/ax_tree_serializer.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include "base/macros.h"
#include "base/strings/string_number_conversions.h"
#include "testing/gmock/include/gmock/gmock-matchers.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/accessibility/ax_common.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_serializable_tree.h"
using testing::UnorderedElementsAre;
namespace ui {
using BasicAXTreeSerializer =
AXTreeSerializer<const AXNode*, AXNodeData, AXTreeData>;
// The framework for these tests is that each test sets up |treedata0_|
// and |treedata1_| and then calls GetTreeSerializer, which creates a
// serializer for a tree that's initially in state |treedata0_|, but then
// changes to state |treedata1_|. This allows each test to check the
// updates created by AXTreeSerializer or unit-test its private
// member functions.
class AXTreeSerializerTest : public testing::Test {
public:
AXTreeSerializerTest() {}
~AXTreeSerializerTest() override {}
protected:
void CreateTreeSerializer();
AXTreeUpdate treedata0_;
AXTreeUpdate treedata1_;
std::unique_ptr<AXSerializableTree> tree0_;
std::unique_ptr<AXSerializableTree> tree1_;
std::unique_ptr<AXTreeSource<const AXNode*, AXNodeData, AXTreeData>>
tree0_source_;
std::unique_ptr<AXTreeSource<const AXNode*, AXNodeData, AXTreeData>>
tree1_source_;
std::unique_ptr<BasicAXTreeSerializer> serializer_;
private:
DISALLOW_COPY_AND_ASSIGN(AXTreeSerializerTest);
};
void AXTreeSerializerTest::CreateTreeSerializer() {
if (serializer_)
return;
tree0_ = std::make_unique<AXSerializableTree>(treedata0_);
tree1_ = std::make_unique<AXSerializableTree>(treedata1_);
// Serialize tree0 so that AXTreeSerializer thinks that its client
// is totally in sync.
tree0_source_.reset(tree0_->CreateTreeSource());
serializer_ = std::make_unique<BasicAXTreeSerializer>(tree0_source_.get());
AXTreeUpdate unused_update;
ASSERT_TRUE(serializer_->SerializeChanges(tree0_->root(), &unused_update));
// Pretend that tree0_ turned into tree1_. The next call to
// AXTreeSerializer will force it to consider these changes to
// the tree and send them as part of the next update.
tree1_source_.reset(tree1_->CreateTreeSource());
serializer_->ChangeTreeSourceForTesting(tree1_source_.get());
}
// In this test, one child is added to the root. Only the root and
// new child should be added.
TEST_F(AXTreeSerializerTest, UpdateContainsOnlyChangedNodes) {
// (1 (2 3))
treedata0_.root_id = 1;
treedata0_.nodes.resize(3);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[0].child_ids.push_back(3);
treedata0_.nodes[1].id = 2;
treedata0_.nodes[2].id = 3;
// (1 (4 2 3))
treedata1_.root_id = 1;
treedata1_.nodes.resize(4);
treedata1_.nodes[0].id = 1;
treedata1_.nodes[0].child_ids.push_back(4);
treedata1_.nodes[0].child_ids.push_back(2);
treedata1_.nodes[0].child_ids.push_back(3);
treedata1_.nodes[1].id = 2;
treedata1_.nodes[2].id = 3;
treedata1_.nodes[3].id = 4;
CreateTreeSerializer();
AXTreeUpdate update;
ASSERT_TRUE(serializer_->SerializeChanges(tree1_->GetFromId(1), &update));
// The update should only touch nodes 1 and 4 - nodes 2 and 3 are unchanged
// and shouldn't be affected.
EXPECT_EQ(0, update.node_id_to_clear);
ASSERT_EQ(2u, update.nodes.size());
EXPECT_EQ(1, update.nodes[0].id);
EXPECT_EQ(4, update.nodes[1].id);
}
// When the root changes, the whole tree is updated, even if some of it
// is unaffected.
TEST_F(AXTreeSerializerTest, NewRootUpdatesEntireTree) {
// (1 (2 (3 (4))))
treedata0_.root_id = 1;
treedata0_.nodes.resize(4);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[1].id = 2;
treedata0_.nodes[1].child_ids.push_back(3);
treedata0_.nodes[2].id = 3;
treedata0_.nodes[2].child_ids.push_back(4);
treedata0_.nodes[3].id = 4;
// (5 (2 (3 (4))))
treedata1_.root_id = 5;
treedata1_.nodes.resize(4);
treedata1_.nodes[0].id = 5;
treedata1_.nodes[0].child_ids.push_back(2);
treedata1_.nodes[1].id = 2;
treedata1_.nodes[1].child_ids.push_back(3);
treedata1_.nodes[2].id = 3;
treedata1_.nodes[2].child_ids.push_back(4);
treedata1_.nodes[3].id = 4;
CreateTreeSerializer();
AXTreeUpdate update;
ASSERT_TRUE(serializer_->SerializeChanges(tree1_->GetFromId(4), &update));
// The update should delete the subtree rooted at node id=1, and
// then include all four nodes in the update, even though the
// subtree rooted at id=2 didn't actually change.
EXPECT_EQ(1, update.node_id_to_clear);
ASSERT_EQ(4u, update.nodes.size());
EXPECT_EQ(5, update.nodes[0].id);
EXPECT_EQ(2, update.nodes[1].id);
EXPECT_EQ(3, update.nodes[2].id);
EXPECT_EQ(4, update.nodes[3].id);
}
// When a node is reparented, the subtree including both the old parent
// and new parent of the reparented node must be deleted and recreated.
TEST_F(AXTreeSerializerTest, ReparentingUpdatesSubtree) {
// (1 (2 (3 (4) 5)))
treedata0_.root_id = 1;
treedata0_.nodes.resize(5);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[1].id = 2;
treedata0_.nodes[1].child_ids.push_back(3);
treedata0_.nodes[1].child_ids.push_back(5);
treedata0_.nodes[2].id = 3;
treedata0_.nodes[2].child_ids.push_back(4);
treedata0_.nodes[3].id = 4;
treedata0_.nodes[4].id = 5;
// Node 5 has been reparented from being a child of node 2,
// to a child of node 4.
// (1 (2 (3 (4 (5)))))
treedata1_.root_id = 1;
treedata1_.nodes.resize(5);
treedata1_.nodes[0].id = 1;
treedata1_.nodes[0].child_ids.push_back(2);
treedata1_.nodes[1].id = 2;
treedata1_.nodes[1].child_ids.push_back(3);
treedata1_.nodes[2].id = 3;
treedata1_.nodes[2].child_ids.push_back(4);
treedata1_.nodes[3].id = 4;
treedata1_.nodes[3].child_ids.push_back(5);
treedata1_.nodes[4].id = 5;
CreateTreeSerializer();
AXTreeUpdate update;
ASSERT_TRUE(serializer_->SerializeChanges(tree1_->GetFromId(4), &update));
// The update should unserialize without errors.
AXTree dst_tree(treedata0_);
EXPECT_TRUE(dst_tree.Unserialize(update)) << dst_tree.error();
// The update should delete the subtree rooted at node id=2, and
// then include nodes 2...5.
EXPECT_EQ(2, update.node_id_to_clear);
ASSERT_EQ(4u, update.nodes.size());
EXPECT_EQ(2, update.nodes[0].id);
EXPECT_EQ(3, update.nodes[1].id);
EXPECT_EQ(4, update.nodes[2].id);
EXPECT_EQ(5, update.nodes[3].id);
}
// Similar to ReparentingUpdatesSubtree, except that InvalidateSubtree is
// called on id=1 - we need to make sure that the reparenting is still
// detected.
TEST_F(AXTreeSerializerTest, ReparentingWithInvalidationUpdatesSubtree) {
// (1 (2 (3 (4 (5)))))
treedata0_.root_id = 1;
treedata0_.nodes.resize(5);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[1].id = 2;
treedata0_.nodes[1].child_ids.push_back(3);
treedata0_.nodes[2].id = 3;
treedata0_.nodes[2].child_ids.push_back(4);
treedata0_.nodes[3].id = 4;
treedata0_.nodes[3].child_ids.push_back(5);
treedata0_.nodes[4].id = 5;
// Node 5 has been reparented from being a child of node 4,
// to a child of node 2.
// (1 (2 (3 (4) 5)))
treedata1_.root_id = 1;
treedata1_.nodes.resize(5);
treedata1_.nodes[0].id = 1;
treedata1_.nodes[0].child_ids.push_back(2);
treedata1_.nodes[1].id = 2;
treedata1_.nodes[1].child_ids.push_back(3);
treedata1_.nodes[1].child_ids.push_back(5);
treedata1_.nodes[2].id = 3;
treedata1_.nodes[2].child_ids.push_back(4);
treedata1_.nodes[3].id = 4;
treedata1_.nodes[4].id = 5;
CreateTreeSerializer();
AXTreeUpdate update;
serializer_->InvalidateSubtree(tree1_->GetFromId(1));
ASSERT_TRUE(serializer_->SerializeChanges(tree1_->GetFromId(4), &update));
// The update should unserialize without errors.
AXTree dst_tree(treedata0_);
EXPECT_TRUE(dst_tree.Unserialize(update)) << dst_tree.error();
}
// A variant of AXTreeSource that returns true for IsValid() for one
// particular id.
class AXTreeSourceWithInvalidId
: public AXTreeSource<const AXNode*, AXNodeData, AXTreeData> {
public:
AXTreeSourceWithInvalidId(AXTree* tree, int invalid_id)
: tree_(tree),
invalid_id_(invalid_id) {}
~AXTreeSourceWithInvalidId() override {}
// AXTreeSource implementation.
bool GetTreeData(AXTreeData* data) const override {
*data = AXTreeData();
return true;
}
AXNode* GetRoot() const override { return tree_->root(); }
AXNode* GetFromId(int32_t id) const override { return tree_->GetFromId(id); }
int32_t GetId(const AXNode* node) const override { return node->id(); }
void GetChildren(const AXNode* node,
std::vector<const AXNode*>* out_children) const override {
*out_children = std::vector<const AXNode*>(node->children().cbegin(),
node->children().cend());
}
AXNode* GetParent(const AXNode* node) const override {
return node->parent();
}
bool IsIgnored(const AXNode* node) const override {
return node->IsIgnored();
}
bool IsValid(const AXNode* node) const override {
return node != nullptr && node->id() != invalid_id_;
}
bool IsEqual(const AXNode* node1, const AXNode* node2) const override {
return node1 == node2;
}
const AXNode* GetNull() const override { return nullptr; }
void SerializeNode(const AXNode* node, AXNodeData* out_data) const override {
*out_data = node->data();
if (node->id() == invalid_id_)
out_data->id = -1;
}
private:
AXTree* tree_;
int invalid_id_;
DISALLOW_COPY_AND_ASSIGN(AXTreeSourceWithInvalidId);
};
// Test that the serializer skips invalid children.
TEST(AXTreeSerializerInvalidTest, InvalidChild) {
// (1 (2 3))
AXTreeUpdate treedata;
treedata.root_id = 1;
treedata.nodes.resize(3);
treedata.nodes[0].id = 1;
treedata.nodes[0].child_ids.push_back(2);
treedata.nodes[0].child_ids.push_back(3);
treedata.nodes[1].id = 2;
treedata.nodes[2].id = 3;
AXTree tree(treedata);
AXTreeSourceWithInvalidId source(&tree, 3);
BasicAXTreeSerializer serializer(&source);
AXTreeUpdate update;
ASSERT_TRUE(serializer.SerializeChanges(tree.root(), &update));
ASSERT_EQ(2U, update.nodes.size());
EXPECT_EQ(1, update.nodes[0].id);
EXPECT_EQ(2, update.nodes[1].id);
}
// Test that we can set a maximum number of nodes to serialize.
TEST_F(AXTreeSerializerTest, MaximumSerializedNodeCount) {
// (1 (2 (3 4) 5 (6 7)))
treedata0_.root_id = 1;
treedata0_.nodes.resize(7);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[0].child_ids.push_back(5);
treedata0_.nodes[1].id = 2;
treedata0_.nodes[1].child_ids.push_back(3);
treedata0_.nodes[1].child_ids.push_back(4);
treedata0_.nodes[2].id = 3;
treedata0_.nodes[3].id = 4;
treedata0_.nodes[4].id = 5;
treedata0_.nodes[4].child_ids.push_back(6);
treedata0_.nodes[4].child_ids.push_back(7);
treedata0_.nodes[5].id = 6;
treedata0_.nodes[6].id = 7;
tree0_ = std::make_unique<AXSerializableTree>(treedata0_);
tree0_source_.reset(tree0_->CreateTreeSource());
serializer_ = std::make_unique<BasicAXTreeSerializer>(tree0_source_.get());
serializer_->set_max_node_count(4);
AXTreeUpdate update;
ASSERT_TRUE(serializer_->SerializeChanges(tree0_->root(), &update));
// It actually serializes 5 nodes, not 4 - to be consistent.
// It skips the children of node 5.
ASSERT_EQ(5u, update.nodes.size());
}
#if !defined(AX_FAIL_FAST_BUILD)
// If duplicate ids are encountered, it returns an error and the next
// update will re-send the entire tree.
TEST_F(AXTreeSerializerTest, DuplicateIdsReturnsErrorAndFlushes) {
// (1 (2 (3 (4) 5)))
treedata0_.root_id = 1;
treedata0_.nodes.resize(5);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[1].id = 2;
treedata0_.nodes[1].child_ids.push_back(3);
treedata0_.nodes[1].child_ids.push_back(5);
treedata0_.nodes[2].id = 3;
treedata0_.nodes[2].child_ids.push_back(4);
treedata0_.nodes[3].id = 4;
treedata0_.nodes[4].id = 5;
// (1 (2 (6 (7) 5)))
treedata1_.root_id = 1;
treedata1_.nodes.resize(5);
treedata1_.nodes[0].id = 1;
treedata1_.nodes[0].child_ids.push_back(2);
treedata1_.nodes[1].id = 2;
treedata1_.nodes[1].child_ids.push_back(6);
treedata1_.nodes[1].child_ids.push_back(5);
treedata1_.nodes[2].id = 6;
treedata1_.nodes[2].child_ids.push_back(7);
treedata1_.nodes[3].id = 7;
treedata1_.nodes[4].id = 5;
CreateTreeSerializer();
// Do some open-heart surgery on tree1, giving it a duplicate node.
// This could not happen with an AXTree, but could happen with
// another AXTreeSource if the structure it wraps is buggy. We want to
// fail but not crash when that happens.
std::vector<AXNode*> node2_children;
node2_children.push_back(tree1_->GetFromId(7));
node2_children.push_back(tree1_->GetFromId(6));
tree1_->GetFromId(2)->SwapChildren(&node2_children);
AXTreeUpdate update;
ASSERT_FALSE(serializer_->SerializeChanges(tree1_->GetFromId(7), &update));
// Swap it back, fixing the tree.
tree1_->GetFromId(2)->SwapChildren(&node2_children);
// Now try to serialize again. We should get the whole tree because the
// previous failed call to SerializeChanges reset it.
update = AXTreeUpdate();
serializer_->SerializeChanges(tree1_->GetFromId(7), &update);
ASSERT_EQ(5u, update.nodes.size());
}
#endif // !defined(AX_FAIL_FAST_BUILD)
// If a tree serializer is reset, that means it doesn't know about
// the state of the client tree anymore. The safest thing to do in
// that circumstance is to force the client to clear everything.
TEST_F(AXTreeSerializerTest, ResetUpdatesNodeIdToClear) {
// (1 (2 (3 (4 (5)))))
treedata0_.root_id = 1;
treedata0_.nodes.resize(5);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[1].id = 2;
treedata0_.nodes[1].child_ids.push_back(3);
treedata0_.nodes[2].id = 3;
treedata0_.nodes[2].child_ids.push_back(4);
treedata0_.nodes[3].id = 4;
treedata0_.nodes[3].child_ids.push_back(5);
treedata0_.nodes[4].id = 5;
// Node 5 has been reparented from being a child of node 4,
// to a child of node 2.
// (1 (2 (3 (4) 5)))
treedata1_.root_id = 1;
treedata1_.nodes.resize(5);
treedata1_.nodes[0].id = 1;
treedata1_.nodes[0].child_ids.push_back(2);
treedata1_.nodes[1].id = 2;
treedata1_.nodes[1].child_ids.push_back(3);
treedata1_.nodes[1].child_ids.push_back(5);
treedata1_.nodes[2].id = 3;
treedata1_.nodes[2].child_ids.push_back(4);
treedata1_.nodes[3].id = 4;
treedata1_.nodes[4].id = 5;
CreateTreeSerializer();
serializer_->Reset();
AXTreeUpdate update;
ASSERT_TRUE(serializer_->SerializeChanges(tree1_->GetFromId(4), &update));
// The update should unserialize without errors.
AXTree dst_tree(treedata0_);
EXPECT_TRUE(dst_tree.Unserialize(update)) << dst_tree.error();
}
// Ensure that calling Reset doesn't cause any problems if
// the root changes.
TEST_F(AXTreeSerializerTest, ResetWorksWithNewRootId) {
// (1 (2))
treedata0_.root_id = 1;
treedata0_.nodes.resize(2);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[1].id = 2;
// (3 (4))
treedata1_.root_id = 3;
treedata1_.nodes.resize(2);
treedata1_.nodes[0].id = 3;
treedata1_.nodes[0].child_ids.push_back(4);
treedata1_.nodes[1].id = 4;
CreateTreeSerializer();
serializer_->Reset();
AXTreeUpdate update;
ASSERT_TRUE(serializer_->SerializeChanges(tree1_->GetFromId(4), &update));
// The update should unserialize without errors.
AXTree dst_tree(treedata0_);
EXPECT_TRUE(dst_tree.Unserialize(update)) << dst_tree.error();
}
// Wraps an AXTreeSource and provides access to the results of the
// SerializerClearedNode callback.
class AXTreeSourceTestWrapper
: public AXTreeSource<const AXNode*, AXNodeData, AXTreeData> {
public:
explicit AXTreeSourceTestWrapper(
AXTreeSource<const AXNode*, AXNodeData, AXTreeData>* tree_source)
: tree_source_(tree_source) {}
~AXTreeSourceTestWrapper() override = default;
// Override SerializerClearedNode and provide a way to access it.
void SerializerClearedNode(int32_t node_id) override {
cleared_node_ids_.insert(node_id);
}
void ClearClearedNodeIds() { cleared_node_ids_.clear(); }
std::set<int32_t>& cleared_node_ids() { return cleared_node_ids_; }
// The rest of the AXTreeSource implementation just calls through to
// tree_source_.
bool GetTreeData(AXTreeData* data) const override {
return tree_source_->GetTreeData(data);
}
const AXNode* GetRoot() const override { return tree_source_->GetRoot(); }
const AXNode* GetFromId(int32_t id) const override {
return tree_source_->GetFromId(id);
}
int32_t GetId(const AXNode* node) const override {
return tree_source_->GetId(node);
}
void GetChildren(const AXNode* node,
std::vector<const AXNode*>* out_children) const override {
return tree_source_->GetChildren(node, out_children);
}
const AXNode* GetParent(const AXNode* node) const override {
return tree_source_->GetParent(node);
}
bool IsIgnored(const AXNode* node) const override {
return tree_source_->IsIgnored(node);
}
bool IsValid(const AXNode* node) const override {
return tree_source_->IsValid(node);
}
bool IsEqual(const AXNode* node1, const AXNode* node2) const override {
return tree_source_->IsEqual(node1, node2);
}
const AXNode* GetNull() const override { return tree_source_->GetNull(); }
void SerializeNode(const AXNode* node, AXNodeData* out_data) const override {
tree_source_->SerializeNode(node, out_data);
}
private:
AXTreeSource<const AXNode*, AXNodeData, AXTreeData>* tree_source_;
std::set<int32_t> cleared_node_ids_;
};
TEST_F(AXTreeSerializerTest, TestClearedNodesWhenUpdatingRoot) {
// (1 (2 (3 (4))))
treedata0_.root_id = 1;
treedata0_.nodes.resize(4);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[1].id = 2;
treedata0_.nodes[1].child_ids.push_back(3);
treedata0_.nodes[2].id = 3;
treedata0_.nodes[2].child_ids.push_back(4);
treedata0_.nodes[3].id = 4;
// (5 (2 (3 (4))))
treedata1_.root_id = 5;
treedata1_.nodes.resize(4);
treedata1_.nodes[0].id = 5;
treedata1_.nodes[0].child_ids.push_back(2);
treedata1_.nodes[1].id = 2;
treedata1_.nodes[1].child_ids.push_back(3);
treedata1_.nodes[2].id = 3;
treedata1_.nodes[2].child_ids.push_back(4);
treedata1_.nodes[3].id = 4;
// Similar sequence to CreateTreeSerializer, but using
// AXTreeSourceTestWrapper instead.
tree0_ = std::make_unique<AXSerializableTree>(treedata0_);
tree1_ = std::make_unique<AXSerializableTree>(treedata1_);
tree0_source_.reset(tree0_->CreateTreeSource());
AXTreeSourceTestWrapper tree0_source_wrapper(tree0_source_.get());
serializer_ = std::make_unique<BasicAXTreeSerializer>(&tree0_source_wrapper);
AXTreeUpdate unused_update;
ASSERT_TRUE(serializer_->SerializeChanges(tree0_->root(), &unused_update));
tree1_source_.reset(tree1_->CreateTreeSource());
AXTreeSourceTestWrapper tree1_source_wrapper(tree1_source_.get());
serializer_->ChangeTreeSourceForTesting(&tree1_source_wrapper);
ASSERT_EQ(4U, serializer_->ClientTreeNodeCount());
// If we swap out the root, all of the node IDs should have
// SerializerClearedNode called on them.
tree1_source_wrapper.ClearClearedNodeIds();
ASSERT_TRUE(serializer_->SerializeChanges(tree1_->root(), &unused_update));
EXPECT_THAT(tree1_source_wrapper.cleared_node_ids(),
UnorderedElementsAre(1, 2, 3, 4));
// Destroy the serializer first so that the AXTreeSources it points to
// don't go out of scope first.
serializer_.reset();
}
TEST_F(AXTreeSerializerTest, TestClearedNodesWhenUpdatingBranch) {
// (1 (2 (3 (4))))
treedata0_.root_id = 1;
treedata0_.nodes.resize(4);
treedata0_.nodes[0].id = 1;
treedata0_.nodes[0].child_ids.push_back(2);
treedata0_.nodes[1].id = 2;
treedata0_.nodes[1].child_ids.push_back(3);
treedata0_.nodes[2].id = 3;
treedata0_.nodes[2].child_ids.push_back(4);
treedata0_.nodes[3].id = 4;
// (1 (2 (5 (6))))
treedata1_.root_id = 1;
treedata1_.nodes.resize(4);
treedata1_.nodes[0].id = 1;
treedata1_.nodes[0].child_ids.push_back(2);
treedata1_.nodes[1].id = 2;
treedata1_.nodes[1].child_ids.push_back(5);
treedata1_.nodes[2].id = 5;
treedata1_.nodes[2].child_ids.push_back(6);
treedata1_.nodes[3].id = 6;
// Similar sequence to CreateTreeSerializer, but using
// AXTreeSourceTestWrapper instead.
tree0_ = std::make_unique<AXSerializableTree>(treedata0_);
tree1_ = std::make_unique<AXSerializableTree>(treedata1_);
tree0_source_.reset(tree0_->CreateTreeSource());
AXTreeSourceTestWrapper tree0_source_wrapper(tree0_source_.get());
serializer_ = std::make_unique<BasicAXTreeSerializer>(&tree0_source_wrapper);
AXTreeUpdate unused_update;
ASSERT_TRUE(serializer_->SerializeChanges(tree0_->root(), &unused_update));
tree1_source_.reset(tree1_->CreateTreeSource());
AXTreeSourceTestWrapper tree1_source_wrapper(tree1_source_.get());
serializer_->ChangeTreeSourceForTesting(&tree1_source_wrapper);
ASSERT_EQ(4U, serializer_->ClientTreeNodeCount());
// If we replace one branch with another, we should get calls to
// SerializerClearedNode with all of the node IDs no longer in the tree.
tree1_source_wrapper.ClearClearedNodeIds();
ASSERT_TRUE(
serializer_->SerializeChanges(tree1_->GetFromId(2), &unused_update));
EXPECT_THAT(tree1_source_wrapper.cleared_node_ids(),
UnorderedElementsAre(3, 4));
// Destroy the serializer first so that the AXTreeSources it points to
// don't go out of scope first.
serializer_.reset();
}
} // namespace ui