blob: 936d25bb140a6d2887aa435afdc2b0f38402bdf4 [file] [log] [blame]
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/net/referrer.h"
#include <limits.h>
#include "base/logging.h"
namespace chrome_browser_net {
//------------------------------------------------------------------------------
// Smoothing parameter for updating subresource_use_rate_.
// We always combine our old expected value, weighted by some factor, with the
// new expected value Enew. The new "expected value" is the number of actual
// connections made due to the curernt navigations.
// This means the formula (in a concise form) is:
// Eupdated = Eold * W + Enew * (1 - W)
// That means that IF we end up needing to connect, we should apply the formula:
// Pupdated = Pold * W + Enew * (1 - W)
// If we visit the containing url, but don't end up needing a connection:
// Pupdated = Pold * W
// To achive the above upating algorithm, we end up doing the multiplication
// by W every time we contemplate doing a preconneciton (i.e., when we navigate
// to the containing URL, and consider doing a preconnection), and then IFF we
// learn that we really needed a connection to the subresource, we complete the
// above algorithm by adding the (1 - W) for each connection we make.
// We weight the new expected value by a factor which is in the range of 0.0 to
// 1.0.
static const double kWeightingForOldExpectedValue = 0.66;
// The expected value needed before we actually do a preconnection.
static const double kPreconnectWorthyExpectedValue = 0.7;
// The expected value that we'll need a preconnection when we first see the
// subresource getting fetched. Very conservative is 0.0, which will mean that
// we have to wait for a while before using preconnection... but we do persist
// results, so we'll have the learned answer in the long run.
static const double kInitialExpectedValue = 0.0;
// static
bool Referrer::use_preconnect_valuations_ = false;
void Referrer::SuggestHost(const GURL& url) {
// Limit how large our list can get, in case we make mistakes about what
// hostnames are in sub-resources (example: Some advertisments have a link to
// the ad agency, and then provide a "surprising" redirect to the advertised
// entity, which then (mistakenly) appears to be a subresource on the page
// hosting the ad).
// TODO(jar): Do experiments to optimize the max count of suggestions.
static const size_t kMaxSuggestions = 10;
if (!url.has_host()) // TODO(jar): Is this really needed????
return;
DCHECK(url == url.GetWithEmptyPath());
SubresourceMap::iterator it = find(url);
if (it != end()) {
it->second.SubresourceIsNeeded();
return;
}
if (kMaxSuggestions <= size()) {
DeleteLeastUseful();
DCHECK(kMaxSuggestions > size());
}
(*this)[url].SubresourceIsNeeded();
}
void Referrer::DeleteLeastUseful() {
// Find the item with the lowest value. Most important is preconnection_rate,
// next is latency savings, and last is lifetime (age).
GURL least_useful_url;
double lowest_rate_seen = 0.0;
// We use longs for durations because we will use multiplication on them.
int64 lowest_latency_seen = 0; // Duration in milliseconds.
int64 least_useful_lifetime = 0; // Duration in milliseconds.
const base::Time kNow(base::Time::Now()); // Avoid multiple calls.
for (SubresourceMap::iterator it = begin(); it != end(); ++it) {
int64 lifetime = (kNow - it->second.birth_time()).InMilliseconds();
int64 latency = it->second.latency().InMilliseconds();
double rate = it->second.subresource_use_rate();
if (least_useful_url.has_host()) {
if (rate > lowest_rate_seen)
continue;
if (!latency && !lowest_latency_seen) {
// Older name is less useful.
if (lifetime <= least_useful_lifetime)
continue;
} else {
// Compare the ratios:
// latency/lifetime
// vs.
// lowest_latency_seen/least_useful_lifetime
// by cross multiplying (to avoid integer division hassles). Overflow's
// won't happen until both latency and lifetime pass about 49 days.
if (latency * least_useful_lifetime >
lowest_latency_seen * lifetime) {
continue;
}
}
}
least_useful_url = it->first;
lowest_rate_seen = rate;
lowest_latency_seen = latency;
least_useful_lifetime = lifetime;
}
erase(least_useful_url);
// Note: there is a small chance that we will discard a least_useful_url
// that is currently being prefetched because it *was* in this referer list.
// In that case, when a benefit appears in AccrueValue() below, we are careful
// to check before accessing the member.
}
void Referrer::AccrueValue(const base::TimeDelta& delta,
const GURL& url) {
SubresourceMap::iterator it = find(url);
// Be careful that we weren't evicted from this referrer in DeleteLeastUseful.
if (it != end())
it->second.AccrueValue(delta);
}
bool Referrer::Trim() {
bool has_some_latency_left = false;
for (SubresourceMap::iterator it = begin(); it != end(); ++it)
if (it->second.Trim())
has_some_latency_left = true;
return has_some_latency_left;
}
bool ReferrerValue::Trim() {
int64 latency_ms = latency_.InMilliseconds() / 2;
latency_ = base::TimeDelta::FromMilliseconds(latency_ms);
return latency_ms > 0 ||
subresource_use_rate_ > kPreconnectWorthyExpectedValue / 2;
}
void Referrer::Deserialize(const Value& value) {
if (value.GetType() != Value::TYPE_LIST)
return;
const ListValue* subresource_list(static_cast<const ListValue*>(&value));
size_t index = 0; // Bounds checking is done by subresource_list->Get*().
while (true) {
std::string url_spec;
if (!subresource_list->GetString(index++, &url_spec))
return;
int latency_ms;
if (!subresource_list->GetInteger(index++, &latency_ms))
return;
double rate;
if (!subresource_list->GetReal(index++, &rate))
return;
GURL url(url_spec);
base::TimeDelta latency = base::TimeDelta::FromMilliseconds(latency_ms);
// TODO(jar): We could be more direct, and change birth date or similar to
// show that this is a resurrected value we're adding in. I'm not yet sure
// of how best to optimize the learning and pruning (Trim) algorithm at this
// level, so for now, we just suggest subresources, which leaves them all
// with the same birth date (typically start of process).
SuggestHost(url);
AccrueValue(latency, url);
(*this)[url].SetSubresourceUseRate(rate);
}
}
Value* Referrer::Serialize() const {
ListValue* subresource_list(new ListValue);
for (const_iterator it = begin(); it != end(); ++it) {
StringValue* url_spec(new StringValue(it->first.spec()));
int latency_integer = static_cast<int>(it->second.latency().
InMilliseconds());
// Watch out for overflow in the above static_cast! Check to see if we went
// negative, and just use a "big" value. The value seems unimportant once
// we get to such high latencies. Probable cause of high latency is a bug
// in other code, so also do a DCHECK.
DCHECK_GE(latency_integer, 0);
if (latency_integer < 0)
latency_integer = INT_MAX;
FundamentalValue* latency(new FundamentalValue(latency_integer));
FundamentalValue* rate(new FundamentalValue(
it->second.subresource_use_rate()));
subresource_list->Append(url_spec);
subresource_list->Append(latency);
subresource_list->Append(rate);
}
return subresource_list;
}
//------------------------------------------------------------------------------
ReferrerValue::ReferrerValue()
: birth_time_(base::Time::Now()),
navigation_count_(0),
preconnection_count_(0),
subresource_use_rate_(kInitialExpectedValue) {
}
void ReferrerValue::SubresourceIsNeeded() {
DCHECK_GE(kWeightingForOldExpectedValue, 0);
DCHECK_LE(kWeightingForOldExpectedValue, 1.0);
++navigation_count_;
subresource_use_rate_ += 1 - kWeightingForOldExpectedValue;
}
bool ReferrerValue::IsPreconnectWorthDoing() {
bool preconnecting = kPreconnectWorthyExpectedValue < subresource_use_rate_;
if (preconnecting)
++preconnection_count_;
subresource_use_rate_ *= kWeightingForOldExpectedValue;
// Note: the use rate is temporarilly possibly incorect, as we need to find
// out if we really end up connecting. This will happen in a few hundred
// milliseconds (when content arrives, etc.).
return preconnecting;
}
} // namespace chrome_browser_net