blob: b52ba9cdf13fbe5b37f85047ebf71b138d48357e [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/resources/picture_layer_tiling.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <set>
#include "base/logging.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/trace_event_argument.h"
#include "cc/base/math_util.h"
#include "cc/resources/tile.h"
#include "cc/resources/tile_priority.h"
#include "ui/gfx/geometry/point_conversions.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/safe_integer_conversions.h"
#include "ui/gfx/geometry/size_conversions.h"
namespace cc {
namespace {
const float kSoonBorderDistanceViewportPercentage = 0.15f;
const float kMaxSoonBorderDistanceInScreenPixels = 312.f;
} // namespace
scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create(
float contents_scale,
scoped_refptr<RasterSource> raster_source,
PictureLayerTilingClient* client,
size_t max_tiles_for_interest_area,
float skewport_target_time_in_seconds,
int skewport_extrapolation_limit_in_content_pixels) {
return make_scoped_ptr(new PictureLayerTiling(
contents_scale, raster_source, client, max_tiles_for_interest_area,
skewport_target_time_in_seconds,
skewport_extrapolation_limit_in_content_pixels));
}
PictureLayerTiling::PictureLayerTiling(
float contents_scale,
scoped_refptr<RasterSource> raster_source,
PictureLayerTilingClient* client,
size_t max_tiles_for_interest_area,
float skewport_target_time_in_seconds,
int skewport_extrapolation_limit_in_content_pixels)
: max_tiles_for_interest_area_(max_tiles_for_interest_area),
skewport_target_time_in_seconds_(skewport_target_time_in_seconds),
skewport_extrapolation_limit_in_content_pixels_(
skewport_extrapolation_limit_in_content_pixels),
contents_scale_(contents_scale),
client_(client),
raster_source_(raster_source),
resolution_(NON_IDEAL_RESOLUTION),
tiling_data_(gfx::Size(), gfx::Size(), kBorderTexels),
can_require_tiles_for_activation_(false),
current_content_to_screen_scale_(0.f),
has_visible_rect_tiles_(false),
has_skewport_rect_tiles_(false),
has_soon_border_rect_tiles_(false),
has_eventually_rect_tiles_(false) {
DCHECK(!raster_source->IsSolidColor());
gfx::Size content_bounds = gfx::ToCeiledSize(
gfx::ScaleSize(raster_source_->GetSize(), contents_scale));
gfx::Size tile_size = client_->CalculateTileSize(content_bounds);
DCHECK(!gfx::ToFlooredSize(gfx::ScaleSize(raster_source_->GetSize(),
contents_scale)).IsEmpty())
<< "Tiling created with scale too small as contents become empty."
<< " Layer bounds: " << raster_source_->GetSize().ToString()
<< " Contents scale: " << contents_scale;
tiling_data_.SetTilingSize(content_bounds);
tiling_data_.SetMaxTextureSize(tile_size);
}
PictureLayerTiling::~PictureLayerTiling() {
for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it)
it->second->set_shared(false);
}
// static
float PictureLayerTiling::CalculateSoonBorderDistance(
const gfx::Rect& visible_rect_in_content_space,
float content_to_screen_scale) {
float max_dimension = std::max(visible_rect_in_content_space.width(),
visible_rect_in_content_space.height());
return std::min(
kMaxSoonBorderDistanceInScreenPixels / content_to_screen_scale,
max_dimension * kSoonBorderDistanceViewportPercentage);
}
Tile* PictureLayerTiling::CreateTile(int i,
int j,
const PictureLayerTiling* twin_tiling,
PictureLayerTiling* recycled_twin) {
// Can't have both a (pending or active) twin and a recycled twin tiling.
DCHECK_IMPLIES(twin_tiling, !recycled_twin);
DCHECK_IMPLIES(recycled_twin, !twin_tiling);
TileMapKey key(i, j);
DCHECK(tiles_.find(key) == tiles_.end());
gfx::Rect paint_rect = tiling_data_.TileBoundsWithBorder(i, j);
gfx::Rect tile_rect = paint_rect;
tile_rect.set_size(tiling_data_.max_texture_size());
// Check our twin for a valid tile.
if (twin_tiling &&
tiling_data_.max_texture_size() ==
twin_tiling->tiling_data_.max_texture_size()) {
if (Tile* candidate_tile = twin_tiling->TileAt(i, j)) {
gfx::Rect rect =
gfx::ScaleToEnclosingRect(paint_rect, 1.0f / contents_scale_);
const Region* invalidation = client_->GetPendingInvalidation();
if (!invalidation || !invalidation->Intersects(rect)) {
DCHECK(!candidate_tile->is_shared());
DCHECK_EQ(i, candidate_tile->tiling_i_index());
DCHECK_EQ(j, candidate_tile->tiling_j_index());
candidate_tile->set_shared(true);
tiles_[key] = candidate_tile;
return candidate_tile;
}
}
}
if (!raster_source_->CoversRect(tile_rect, contents_scale_))
return nullptr;
// Create a new tile because our twin didn't have a valid one.
scoped_refptr<Tile> tile = client_->CreateTile(contents_scale_, tile_rect);
DCHECK(!tile->is_shared());
tile->set_tiling_index(i, j);
tiles_[key] = tile;
if (recycled_twin) {
DCHECK(recycled_twin->tiles_.find(key) == recycled_twin->tiles_.end());
// Do what recycled_twin->CreateTile() would do.
tile->set_shared(true);
recycled_twin->tiles_[key] = tile;
}
return tile.get();
}
void PictureLayerTiling::CreateMissingTilesInLiveTilesRect() {
const PictureLayerTiling* twin_tiling =
client_->GetPendingOrActiveTwinTiling(this);
// There is no recycled twin during commit from the main thread which is when
// this occurs.
PictureLayerTiling* null_recycled_twin = nullptr;
DCHECK_EQ(null_recycled_twin, client_->GetRecycledTwinTiling(this));
bool include_borders = false;
for (TilingData::Iterator iter(
&tiling_data_, live_tiles_rect_, include_borders);
iter;
++iter) {
TileMapKey key = iter.index();
TileMap::iterator find = tiles_.find(key);
if (find != tiles_.end())
continue;
CreateTile(key.first, key.second, twin_tiling, null_recycled_twin);
}
VerifyLiveTilesRect(false);
}
void PictureLayerTiling::CloneTilesAndPropertiesFrom(
const PictureLayerTiling& twin_tiling) {
DCHECK_EQ(&twin_tiling, client_->GetPendingOrActiveTwinTiling(this));
SetRasterSourceAndResize(twin_tiling.raster_source_);
DCHECK_EQ(twin_tiling.contents_scale_, contents_scale_);
DCHECK_EQ(twin_tiling.raster_source_, raster_source_);
DCHECK_EQ(twin_tiling.tile_size().ToString(), tile_size().ToString());
resolution_ = twin_tiling.resolution_;
SetLiveTilesRect(twin_tiling.live_tiles_rect());
// Recreate unshared tiles.
std::vector<TileMapKey> to_remove;
for (const auto& tile_map_pair : tiles_) {
TileMapKey key = tile_map_pair.first;
Tile* tile = tile_map_pair.second.get();
if (!tile->is_shared())
to_remove.push_back(key);
}
// The recycled twin does not exist since there is a pending twin (which is
// |twin_tiling|).
PictureLayerTiling* null_recycled_twin = nullptr;
DCHECK_EQ(null_recycled_twin, client_->GetRecycledTwinTiling(this));
for (const auto& key : to_remove) {
RemoveTileAt(key.first, key.second, null_recycled_twin);
CreateTile(key.first, key.second, &twin_tiling, null_recycled_twin);
}
// Create any missing tiles from the |twin_tiling|.
for (const auto& tile_map_pair : twin_tiling.tiles_) {
TileMapKey key = tile_map_pair.first;
Tile* tile = tile_map_pair.second.get();
if (!tile->is_shared())
CreateTile(key.first, key.second, &twin_tiling, null_recycled_twin);
}
DCHECK_EQ(twin_tiling.tiles_.size(), tiles_.size());
#if DCHECK_IS_ON()
for (const auto& tile_map_pair : tiles_)
DCHECK(tile_map_pair.second->is_shared());
VerifyLiveTilesRect(false);
#endif
UpdateTilePriorityRects(twin_tiling.current_content_to_screen_scale_,
twin_tiling.current_visible_rect_,
twin_tiling.current_skewport_rect_,
twin_tiling.current_soon_border_rect_,
twin_tiling.current_eventually_rect_,
twin_tiling.current_occlusion_in_layer_space_);
}
void PictureLayerTiling::SetRasterSourceAndResize(
scoped_refptr<RasterSource> raster_source) {
DCHECK(!raster_source->IsSolidColor());
gfx::Size old_layer_bounds = raster_source_->GetSize();
raster_source_.swap(raster_source);
gfx::Size new_layer_bounds = raster_source_->GetSize();
gfx::Size content_bounds =
gfx::ToCeiledSize(gfx::ScaleSize(new_layer_bounds, contents_scale_));
gfx::Size tile_size = client_->CalculateTileSize(content_bounds);
if (tile_size != tiling_data_.max_texture_size()) {
tiling_data_.SetTilingSize(content_bounds);
tiling_data_.SetMaxTextureSize(tile_size);
// When the tile size changes, the TilingData positions no longer work
// as valid keys to the TileMap, so just drop all tiles and clear the live
// tiles rect.
Reset();
return;
}
if (old_layer_bounds == new_layer_bounds)
return;
// The SetLiveTilesRect() method would drop tiles outside the new bounds,
// but may do so incorrectly if resizing the tiling causes the number of
// tiles in the tiling_data_ to change.
gfx::Rect content_rect(content_bounds);
int before_left = tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.x());
int before_top = tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.y());
int before_right =
tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.right() - 1);
int before_bottom =
tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.bottom() - 1);
// The live_tiles_rect_ is clamped to stay within the tiling size as we
// change it.
live_tiles_rect_.Intersect(content_rect);
tiling_data_.SetTilingSize(content_bounds);
int after_right = -1;
int after_bottom = -1;
if (!live_tiles_rect_.IsEmpty()) {
after_right =
tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.right() - 1);
after_bottom =
tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.bottom() - 1);
}
// There is no recycled twin since this is run on the pending tiling
// during commit, and on the active tree during activate.
PictureLayerTiling* null_recycled_twin = nullptr;
DCHECK_EQ(null_recycled_twin, client_->GetRecycledTwinTiling(this));
// Drop tiles outside the new layer bounds if the layer shrank.
for (int i = after_right + 1; i <= before_right; ++i) {
for (int j = before_top; j <= before_bottom; ++j)
RemoveTileAt(i, j, null_recycled_twin);
}
for (int i = before_left; i <= after_right; ++i) {
for (int j = after_bottom + 1; j <= before_bottom; ++j)
RemoveTileAt(i, j, null_recycled_twin);
}
// If the layer grew, the live_tiles_rect_ is not changed, but a new row
// and/or column of tiles may now exist inside the same live_tiles_rect_.
const PictureLayerTiling* twin_tiling =
client_->GetPendingOrActiveTwinTiling(this);
if (after_right > before_right) {
DCHECK_EQ(after_right, before_right + 1);
for (int j = before_top; j <= after_bottom; ++j)
CreateTile(after_right, j, twin_tiling, null_recycled_twin);
}
if (after_bottom > before_bottom) {
DCHECK_EQ(after_bottom, before_bottom + 1);
for (int i = before_left; i <= before_right; ++i)
CreateTile(i, after_bottom, twin_tiling, null_recycled_twin);
}
}
void PictureLayerTiling::Invalidate(const Region& layer_invalidation) {
if (live_tiles_rect_.IsEmpty())
return;
std::vector<TileMapKey> new_tile_keys;
gfx::Rect expanded_live_tiles_rect =
tiling_data_.ExpandRectIgnoringBordersToTileBounds(live_tiles_rect_);
for (Region::Iterator iter(layer_invalidation); iter.has_rect();
iter.next()) {
gfx::Rect layer_rect = iter.rect();
gfx::Rect content_rect =
gfx::ScaleToEnclosingRect(layer_rect, contents_scale_);
// Consider tiles inside the live tiles rect even if only their border
// pixels intersect the invalidation. But don't consider tiles outside
// the live tiles rect with the same conditions, as they won't exist.
int border_pixels = tiling_data_.border_texels();
content_rect.Inset(-border_pixels, -border_pixels);
// Avoid needless work by not bothering to invalidate where there aren't
// tiles.
content_rect.Intersect(expanded_live_tiles_rect);
if (content_rect.IsEmpty())
continue;
// Since the content_rect includes border pixels already, don't include
// borders when iterating to avoid double counting them.
bool include_borders = false;
for (TilingData::Iterator iter(
&tiling_data_, content_rect, include_borders);
iter;
++iter) {
// There is no recycled twin for the pending tree during commit, or for
// the active tree during activation.
PictureLayerTiling* null_recycled_twin = nullptr;
DCHECK_EQ(null_recycled_twin, client_->GetRecycledTwinTiling(this));
if (RemoveTileAt(iter.index_x(), iter.index_y(), null_recycled_twin))
new_tile_keys.push_back(iter.index());
}
}
if (!new_tile_keys.empty()) {
// During commit from the main thread, invalidations can never be shared
// with the active tree since the active tree has different content there.
// And when invalidating an active-tree tiling, it means there was no
// pending tiling to clone from.
const PictureLayerTiling* null_twin_tiling = nullptr;
PictureLayerTiling* null_recycled_twin = nullptr;
DCHECK_EQ(null_recycled_twin, client_->GetRecycledTwinTiling(this));
for (size_t i = 0; i < new_tile_keys.size(); ++i) {
CreateTile(new_tile_keys[i].first, new_tile_keys[i].second,
null_twin_tiling, null_recycled_twin);
}
}
}
void PictureLayerTiling::SetRasterSourceOnTiles() {
// Shared (ie. non-invalidated) tiles on the pending tree are updated to use
// the new raster source. When this raster source is activated, the raster
// source will remain valid for shared tiles in the active tree.
for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it)
it->second->set_raster_source(raster_source_);
VerifyLiveTilesRect(false);
}
PictureLayerTiling::CoverageIterator::CoverageIterator()
: tiling_(NULL),
current_tile_(NULL),
tile_i_(0),
tile_j_(0),
left_(0),
top_(0),
right_(-1),
bottom_(-1) {
}
PictureLayerTiling::CoverageIterator::CoverageIterator(
const PictureLayerTiling* tiling,
float dest_scale,
const gfx::Rect& dest_rect)
: tiling_(tiling),
dest_rect_(dest_rect),
dest_to_content_scale_(0),
current_tile_(NULL),
tile_i_(0),
tile_j_(0),
left_(0),
top_(0),
right_(-1),
bottom_(-1) {
DCHECK(tiling_);
if (dest_rect_.IsEmpty())
return;
dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale;
gfx::Rect content_rect =
gfx::ScaleToEnclosingRect(dest_rect_,
dest_to_content_scale_,
dest_to_content_scale_);
// IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to
// check for non-intersection first.
content_rect.Intersect(gfx::Rect(tiling_->tiling_size()));
if (content_rect.IsEmpty())
return;
left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x());
top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y());
right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(
content_rect.right() - 1);
bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(
content_rect.bottom() - 1);
tile_i_ = left_ - 1;
tile_j_ = top_;
++(*this);
}
PictureLayerTiling::CoverageIterator::~CoverageIterator() {
}
PictureLayerTiling::CoverageIterator&
PictureLayerTiling::CoverageIterator::operator++() {
if (tile_j_ > bottom_)
return *this;
bool first_time = tile_i_ < left_;
bool new_row = false;
tile_i_++;
if (tile_i_ > right_) {
tile_i_ = left_;
tile_j_++;
new_row = true;
if (tile_j_ > bottom_) {
current_tile_ = NULL;
return *this;
}
}
current_tile_ = tiling_->TileAt(tile_i_, tile_j_);
// Calculate the current geometry rect. Due to floating point rounding
// and ToEnclosingRect, tiles might overlap in destination space on the
// edges.
gfx::Rect last_geometry_rect = current_geometry_rect_;
gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_);
current_geometry_rect_ =
gfx::ScaleToEnclosingRect(content_rect,
1 / dest_to_content_scale_,
1 / dest_to_content_scale_);
current_geometry_rect_.Intersect(dest_rect_);
if (first_time)
return *this;
// Iteration happens left->right, top->bottom. Running off the bottom-right
// edge is handled by the intersection above with dest_rect_. Here we make
// sure that the new current geometry rect doesn't overlap with the last.
int min_left;
int min_top;
if (new_row) {
min_left = dest_rect_.x();
min_top = last_geometry_rect.bottom();
} else {
min_left = last_geometry_rect.right();
min_top = last_geometry_rect.y();
}
int inset_left = std::max(0, min_left - current_geometry_rect_.x());
int inset_top = std::max(0, min_top - current_geometry_rect_.y());
current_geometry_rect_.Inset(inset_left, inset_top, 0, 0);
if (!new_row) {
DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x());
DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom());
DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y());
}
return *this;
}
gfx::Rect PictureLayerTiling::CoverageIterator::geometry_rect() const {
return current_geometry_rect_;
}
gfx::RectF PictureLayerTiling::CoverageIterator::texture_rect() const {
gfx::PointF tex_origin =
tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin();
// Convert from dest space => content space => texture space.
gfx::RectF texture_rect(current_geometry_rect_);
texture_rect.Scale(dest_to_content_scale_,
dest_to_content_scale_);
texture_rect.Intersect(gfx::Rect(tiling_->tiling_size()));
if (texture_rect.IsEmpty())
return texture_rect;
texture_rect.Offset(-tex_origin.OffsetFromOrigin());
return texture_rect;
}
bool PictureLayerTiling::RemoveTileAt(int i,
int j,
PictureLayerTiling* recycled_twin) {
TileMap::iterator found = tiles_.find(TileMapKey(i, j));
if (found == tiles_.end())
return false;
found->second->set_shared(false);
tiles_.erase(found);
if (recycled_twin) {
// Recycled twin does not also have a recycled twin, so pass null.
recycled_twin->RemoveTileAt(i, j, nullptr);
}
return true;
}
void PictureLayerTiling::Reset() {
live_tiles_rect_ = gfx::Rect();
PictureLayerTiling* recycled_twin = client_->GetRecycledTwinTiling(this);
for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
it->second->set_shared(false);
if (recycled_twin)
recycled_twin->RemoveTileAt(it->first.first, it->first.second, nullptr);
}
tiles_.clear();
}
gfx::Rect PictureLayerTiling::ComputeSkewport(
double current_frame_time_in_seconds,
const gfx::Rect& visible_rect_in_content_space) const {
gfx::Rect skewport = visible_rect_in_content_space;
if (visible_rect_history_[1].frame_time_in_seconds == 0.0)
return skewport;
double time_delta = current_frame_time_in_seconds -
visible_rect_history_[1].frame_time_in_seconds;
if (time_delta == 0.0)
return skewport;
double extrapolation_multiplier =
skewport_target_time_in_seconds_ / time_delta;
int old_x = visible_rect_history_[1].visible_rect_in_content_space.x();
int old_y = visible_rect_history_[1].visible_rect_in_content_space.y();
int old_right =
visible_rect_history_[1].visible_rect_in_content_space.right();
int old_bottom =
visible_rect_history_[1].visible_rect_in_content_space.bottom();
int new_x = visible_rect_in_content_space.x();
int new_y = visible_rect_in_content_space.y();
int new_right = visible_rect_in_content_space.right();
int new_bottom = visible_rect_in_content_space.bottom();
// Compute the maximum skewport based on
// |skewport_extrapolation_limit_in_content_pixels_|.
gfx::Rect max_skewport = skewport;
max_skewport.Inset(-skewport_extrapolation_limit_in_content_pixels_,
-skewport_extrapolation_limit_in_content_pixels_);
// Inset the skewport by the needed adjustment.
skewport.Inset(extrapolation_multiplier * (new_x - old_x),
extrapolation_multiplier * (new_y - old_y),
extrapolation_multiplier * (old_right - new_right),
extrapolation_multiplier * (old_bottom - new_bottom));
// Clip the skewport to |max_skewport|.
skewport.Intersect(max_skewport);
// Finally, ensure that visible rect is contained in the skewport.
skewport.Union(visible_rect_in_content_space);
return skewport;
}
bool PictureLayerTiling::ComputeTilePriorityRects(
const gfx::Rect& viewport_in_layer_space,
float ideal_contents_scale,
double current_frame_time_in_seconds,
const Occlusion& occlusion_in_layer_space) {
if (!NeedsUpdateForFrameAtTimeAndViewport(current_frame_time_in_seconds,
viewport_in_layer_space)) {
// This should never be zero for the purposes of has_ever_been_updated().
DCHECK_NE(current_frame_time_in_seconds, 0.0);
return false;
}
gfx::Rect visible_rect_in_content_space =
gfx::ScaleToEnclosingRect(viewport_in_layer_space, contents_scale_);
if (tiling_size().IsEmpty()) {
UpdateVisibleRectHistory(current_frame_time_in_seconds,
visible_rect_in_content_space);
last_viewport_in_layer_space_ = viewport_in_layer_space;
return false;
}
// Calculate the skewport.
gfx::Rect skewport = ComputeSkewport(current_frame_time_in_seconds,
visible_rect_in_content_space);
DCHECK(skewport.Contains(visible_rect_in_content_space));
// Calculate the eventually/live tiles rect.
gfx::Size tile_size = tiling_data_.max_texture_size();
int64 eventually_rect_area =
max_tiles_for_interest_area_ * tile_size.width() * tile_size.height();
gfx::Rect eventually_rect =
ExpandRectEquallyToAreaBoundedBy(visible_rect_in_content_space,
eventually_rect_area,
gfx::Rect(tiling_size()),
&expansion_cache_);
DCHECK(eventually_rect.IsEmpty() ||
gfx::Rect(tiling_size()).Contains(eventually_rect))
<< "tiling_size: " << tiling_size().ToString()
<< " eventually_rect: " << eventually_rect.ToString();
// Calculate the soon border rect.
float content_to_screen_scale = ideal_contents_scale / contents_scale_;
gfx::Rect soon_border_rect = visible_rect_in_content_space;
float border = CalculateSoonBorderDistance(visible_rect_in_content_space,
content_to_screen_scale);
soon_border_rect.Inset(-border, -border, -border, -border);
UpdateVisibleRectHistory(current_frame_time_in_seconds,
visible_rect_in_content_space);
last_viewport_in_layer_space_ = viewport_in_layer_space;
SetLiveTilesRect(eventually_rect);
UpdateTilePriorityRects(
content_to_screen_scale, visible_rect_in_content_space, skewport,
soon_border_rect, eventually_rect, occlusion_in_layer_space);
return true;
}
void PictureLayerTiling::UpdateTilePriorityRects(
float content_to_screen_scale,
const gfx::Rect& visible_rect_in_content_space,
const gfx::Rect& skewport,
const gfx::Rect& soon_border_rect,
const gfx::Rect& eventually_rect,
const Occlusion& occlusion_in_layer_space) {
current_visible_rect_ = visible_rect_in_content_space;
current_skewport_rect_ = skewport;
current_soon_border_rect_ = soon_border_rect;
current_eventually_rect_ = eventually_rect;
current_occlusion_in_layer_space_ = occlusion_in_layer_space;
current_content_to_screen_scale_ = content_to_screen_scale;
gfx::Rect tiling_rect(tiling_size());
has_visible_rect_tiles_ = tiling_rect.Intersects(current_visible_rect_);
has_skewport_rect_tiles_ = tiling_rect.Intersects(current_skewport_rect_);
has_soon_border_rect_tiles_ =
tiling_rect.Intersects(current_soon_border_rect_);
has_eventually_rect_tiles_ = tiling_rect.Intersects(current_eventually_rect_);
}
void PictureLayerTiling::SetLiveTilesRect(
const gfx::Rect& new_live_tiles_rect) {
DCHECK(new_live_tiles_rect.IsEmpty() ||
gfx::Rect(tiling_size()).Contains(new_live_tiles_rect))
<< "tiling_size: " << tiling_size().ToString()
<< " new_live_tiles_rect: " << new_live_tiles_rect.ToString();
if (live_tiles_rect_ == new_live_tiles_rect)
return;
PictureLayerTiling* recycled_twin = client_->GetRecycledTwinTiling(this);
// Iterate to delete all tiles outside of our new live_tiles rect.
for (TilingData::DifferenceIterator iter(&tiling_data_,
live_tiles_rect_,
new_live_tiles_rect);
iter;
++iter) {
RemoveTileAt(iter.index_x(), iter.index_y(), recycled_twin);
}
const PictureLayerTiling* twin_tiling =
client_->GetPendingOrActiveTwinTiling(this);
// Iterate to allocate new tiles for all regions with newly exposed area.
for (TilingData::DifferenceIterator iter(&tiling_data_,
new_live_tiles_rect,
live_tiles_rect_);
iter;
++iter) {
TileMapKey key(iter.index());
CreateTile(key.first, key.second, twin_tiling, recycled_twin);
}
live_tiles_rect_ = new_live_tiles_rect;
VerifyLiveTilesRect(false);
if (recycled_twin) {
recycled_twin->live_tiles_rect_ = live_tiles_rect_;
recycled_twin->VerifyLiveTilesRect(true);
}
}
void PictureLayerTiling::VerifyLiveTilesRect(bool is_on_recycle_tree) const {
#if DCHECK_IS_ON()
for (auto it = tiles_.begin(); it != tiles_.end(); ++it) {
if (!it->second.get())
continue;
DCHECK(it->first.first < tiling_data_.num_tiles_x())
<< this << " " << it->first.first << "," << it->first.second
<< " num_tiles_x " << tiling_data_.num_tiles_x() << " live_tiles_rect "
<< live_tiles_rect_.ToString();
DCHECK(it->first.second < tiling_data_.num_tiles_y())
<< this << " " << it->first.first << "," << it->first.second
<< " num_tiles_y " << tiling_data_.num_tiles_y() << " live_tiles_rect "
<< live_tiles_rect_.ToString();
DCHECK(tiling_data_.TileBounds(it->first.first, it->first.second)
.Intersects(live_tiles_rect_))
<< this << " " << it->first.first << "," << it->first.second
<< " tile bounds "
<< tiling_data_.TileBounds(it->first.first, it->first.second).ToString()
<< " live_tiles_rect " << live_tiles_rect_.ToString();
DCHECK_IMPLIES(is_on_recycle_tree, it->second->is_shared());
}
#endif
}
bool PictureLayerTiling::IsTileOccluded(const Tile* tile) const {
DCHECK(tile);
if (!current_occlusion_in_layer_space_.HasOcclusion())
return false;
gfx::Rect tile_query_rect =
gfx::IntersectRects(tile->content_rect(), current_visible_rect_);
// Explicitly check if the tile is outside the viewport. If so, we need to
// return false, since occlusion for this tile is unknown.
// TODO(vmpstr): Since the current visible rect is really a viewport in
// layer space, we should probably clip tile query rect to tiling bounds
// or live tiles rect.
if (tile_query_rect.IsEmpty())
return false;
if (contents_scale_ != 1.f) {
tile_query_rect =
gfx::ScaleToEnclosingRect(tile_query_rect, 1.0f / contents_scale_);
}
return current_occlusion_in_layer_space_.IsOccluded(tile_query_rect);
}
bool PictureLayerTiling::IsTileRequiredForActivationIfVisible(
const Tile* tile) const {
DCHECK_EQ(PENDING_TREE, client_->GetTree());
// This function assumes that the tile is visible (i.e. in the viewport). The
// caller needs to make sure that this condition is met to ensure we don't
// block activation on tiles outside of the viewport.
// If we are not allowed to mark tiles as required for activation, then don't
// do it.
if (!can_require_tiles_for_activation_)
return false;
if (resolution_ != HIGH_RESOLUTION)
return false;
if (IsTileOccluded(tile))
return false;
if (client_->RequiresHighResToDraw())
return true;
const PictureLayerTiling* twin_tiling =
client_->GetPendingOrActiveTwinTiling(this);
if (!twin_tiling)
return true;
if (twin_tiling->raster_source()->GetSize() != raster_source()->GetSize())
return true;
if (twin_tiling->current_visible_rect_ != current_visible_rect_)
return true;
Tile* twin_tile =
twin_tiling->TileAt(tile->tiling_i_index(), tile->tiling_j_index());
// If twin tile is missing, it might not have a recording, so we don't need
// this tile to be required for activation.
if (!twin_tile)
return false;
return true;
}
bool PictureLayerTiling::IsTileRequiredForDrawIfVisible(
const Tile* tile) const {
DCHECK_EQ(ACTIVE_TREE, client_->GetTree());
// This function assumes that the tile is visible (i.e. in the viewport).
if (resolution_ != HIGH_RESOLUTION)
return false;
if (IsTileOccluded(tile))
return false;
return true;
}
void PictureLayerTiling::UpdateTileAndTwinPriority(Tile* tile) const {
WhichTree tree = client_->GetTree();
WhichTree twin_tree = tree == ACTIVE_TREE ? PENDING_TREE : ACTIVE_TREE;
UpdateTilePriorityForTree(tile, tree);
const PictureLayerTiling* twin_tiling =
client_->GetPendingOrActiveTwinTiling(this);
if (!tile->is_shared() || !twin_tiling) {
tile->SetPriority(twin_tree, TilePriority());
tile->set_is_occluded(twin_tree, false);
if (twin_tree == PENDING_TREE)
tile->set_required_for_activation(false);
else
tile->set_required_for_draw(false);
return;
}
twin_tiling->UpdateTilePriorityForTree(tile, twin_tree);
}
void PictureLayerTiling::UpdateTilePriorityForTree(Tile* tile,
WhichTree tree) const {
// TODO(vmpstr): This code should return the priority instead of setting it on
// the tile. This should be a part of the change to move tile priority from
// tiles into iterators.
TilePriority::PriorityBin max_tile_priority_bin =
client_->GetMaxTilePriorityBin();
DCHECK_EQ(TileAt(tile->tiling_i_index(), tile->tiling_j_index()), tile);
gfx::Rect tile_bounds =
tiling_data_.TileBounds(tile->tiling_i_index(), tile->tiling_j_index());
if (max_tile_priority_bin <= TilePriority::NOW &&
current_visible_rect_.Intersects(tile_bounds)) {
tile->SetPriority(tree, TilePriority(resolution_, TilePriority::NOW, 0));
if (tree == PENDING_TREE) {
tile->set_required_for_activation(
IsTileRequiredForActivationIfVisible(tile));
} else {
tile->set_required_for_draw(IsTileRequiredForDrawIfVisible(tile));
}
tile->set_is_occluded(tree, IsTileOccluded(tile));
return;
}
if (tree == PENDING_TREE)
tile->set_required_for_activation(false);
else
tile->set_required_for_draw(false);
tile->set_is_occluded(tree, false);
DCHECK_GT(current_content_to_screen_scale_, 0.f);
float distance_to_visible =
current_visible_rect_.ManhattanInternalDistance(tile_bounds) *
current_content_to_screen_scale_;
if (max_tile_priority_bin <= TilePriority::SOON &&
(current_soon_border_rect_.Intersects(tile_bounds) ||
current_skewport_rect_.Intersects(tile_bounds))) {
tile->SetPriority(
tree,
TilePriority(resolution_, TilePriority::SOON, distance_to_visible));
return;
}
tile->SetPriority(
tree,
TilePriority(resolution_, TilePriority::EVENTUALLY, distance_to_visible));
}
void PictureLayerTiling::GetAllTilesForTracing(
std::set<const Tile*>* tiles) const {
for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it)
tiles->insert(it->second.get());
}
void PictureLayerTiling::AsValueInto(
base::trace_event::TracedValue* state) const {
state->SetInteger("num_tiles", tiles_.size());
state->SetDouble("content_scale", contents_scale_);
MathUtil::AddToTracedValue("tiling_size", tiling_size(), state);
}
size_t PictureLayerTiling::GPUMemoryUsageInBytes() const {
size_t amount = 0;
for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
const Tile* tile = it->second.get();
amount += tile->GPUMemoryUsageInBytes();
}
return amount;
}
PictureLayerTiling::RectExpansionCache::RectExpansionCache()
: previous_target(0) {
}
namespace {
// This struct represents an event at which the expending rect intersects
// one of its boundaries. 4 intersection events will occur during expansion.
struct EdgeEvent {
enum { BOTTOM, TOP, LEFT, RIGHT } edge;
int* num_edges;
int distance;
};
// Compute the delta to expand from edges to cover target_area.
int ComputeExpansionDelta(int num_x_edges, int num_y_edges,
int width, int height,
int64 target_area) {
// Compute coefficients for the quadratic equation:
// a*x^2 + b*x + c = 0
int a = num_y_edges * num_x_edges;
int b = num_y_edges * width + num_x_edges * height;
int64 c = static_cast<int64>(width) * height - target_area;
// Compute the delta for our edges using the quadratic equation.
int delta =
(a == 0) ? -c / b : (-b + static_cast<int>(std::sqrt(
static_cast<int64>(b) * b - 4.0 * a * c))) /
(2 * a);
return std::max(0, delta);
}
} // namespace
gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy(
const gfx::Rect& starting_rect,
int64 target_area,
const gfx::Rect& bounding_rect,
RectExpansionCache* cache) {
if (starting_rect.IsEmpty())
return starting_rect;
if (cache &&
cache->previous_start == starting_rect &&
cache->previous_bounds == bounding_rect &&
cache->previous_target == target_area)
return cache->previous_result;
if (cache) {
cache->previous_start = starting_rect;
cache->previous_bounds = bounding_rect;
cache->previous_target = target_area;
}
DCHECK(!bounding_rect.IsEmpty());
DCHECK_GT(target_area, 0);
// Expand the starting rect to cover target_area, if it is smaller than it.
int delta = ComputeExpansionDelta(
2, 2, starting_rect.width(), starting_rect.height(), target_area);
gfx::Rect expanded_starting_rect = starting_rect;
if (delta > 0)
expanded_starting_rect.Inset(-delta, -delta);
gfx::Rect rect = IntersectRects(expanded_starting_rect, bounding_rect);
if (rect.IsEmpty()) {
// The starting_rect and bounding_rect are far away.
if (cache)
cache->previous_result = rect;
return rect;
}
if (delta >= 0 && rect == expanded_starting_rect) {
// The starting rect already covers the entire bounding_rect and isn't too
// large for the target_area.
if (cache)
cache->previous_result = rect;
return rect;
}
// Continue to expand/shrink rect to let it cover target_area.
// These values will be updated by the loop and uses as the output.
int origin_x = rect.x();
int origin_y = rect.y();
int width = rect.width();
int height = rect.height();
// In the beginning we will consider 2 edges in each dimension.
int num_y_edges = 2;
int num_x_edges = 2;
// Create an event list.
EdgeEvent events[] = {
{ EdgeEvent::BOTTOM, &num_y_edges, rect.y() - bounding_rect.y() },
{ EdgeEvent::TOP, &num_y_edges, bounding_rect.bottom() - rect.bottom() },
{ EdgeEvent::LEFT, &num_x_edges, rect.x() - bounding_rect.x() },
{ EdgeEvent::RIGHT, &num_x_edges, bounding_rect.right() - rect.right() }
};
// Sort the events by distance (closest first).
if (events[0].distance > events[1].distance) std::swap(events[0], events[1]);
if (events[2].distance > events[3].distance) std::swap(events[2], events[3]);
if (events[0].distance > events[2].distance) std::swap(events[0], events[2]);
if (events[1].distance > events[3].distance) std::swap(events[1], events[3]);
if (events[1].distance > events[2].distance) std::swap(events[1], events[2]);
for (int event_index = 0; event_index < 4; event_index++) {
const EdgeEvent& event = events[event_index];
int delta = ComputeExpansionDelta(
num_x_edges, num_y_edges, width, height, target_area);
// Clamp delta to our event distance.
if (delta > event.distance)
delta = event.distance;
// Adjust the edge count for this kind of edge.
--*event.num_edges;
// Apply the delta to the edges and edge events.
for (int i = event_index; i < 4; i++) {
switch (events[i].edge) {
case EdgeEvent::BOTTOM:
origin_y -= delta;
height += delta;
break;
case EdgeEvent::TOP:
height += delta;
break;
case EdgeEvent::LEFT:
origin_x -= delta;
width += delta;
break;
case EdgeEvent::RIGHT:
width += delta;
break;
}
events[i].distance -= delta;
}
// If our delta is less then our event distance, we're done.
if (delta < event.distance)
break;
}
gfx::Rect result(origin_x, origin_y, width, height);
if (cache)
cache->previous_result = result;
return result;
}
} // namespace cc