blob: 89016cdaadc567034768bc4cce2726610513d9e6 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/gcm_driver/crypto/p256_key_util.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <vector>
#include "base/logging.h"
#include "base/strings/string_util.h"
#include "crypto/ec_private_key.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/ecdh.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
namespace gcm {
namespace {
// The first byte in an uncompressed P-256 point per SEC1 2.3.3.
const char kUncompressedPointForm = 0x04;
// A P-256 field element consists of 32 bytes.
const size_t kFieldBytes = 32;
// A P-256 point in uncompressed form consists of 0x04 (to denote that the point
// is uncompressed per SEC1 2.3.3) followed by two, 32-byte field elements.
const size_t kUncompressedPointBytes = 1 + 2 * kFieldBytes;
} // namespace
bool CreateP256KeyPair(std::string* out_private_key,
std::string* out_public_key) {
DCHECK(out_private_key);
DCHECK(out_public_key);
std::unique_ptr<crypto::ECPrivateKey> key_pair(
crypto::ECPrivateKey::Create());
if (!key_pair.get()) {
DLOG(ERROR) << "Unable to generate a new P-256 key pair.";
return false;
}
std::vector<uint8_t> private_key;
// Export the encrypted private key with an empty password. This is not done
// to provide any security, but rather to achieve a consistent private key
// storage between the BoringSSL and NSS implementations.
if (!key_pair->ExportEncryptedPrivateKey(&private_key)) {
DLOG(ERROR) << "Unable to export the private key.";
return false;
}
std::string candidate_public_key;
// ECPrivateKey::ExportRawPublicKey() returns the EC point in the uncompressed
// point format, but does not include the leading byte of value 0x04 that
// indicates usage of uncompressed points, per SEC1 2.3.3.
if (!key_pair->ExportRawPublicKey(&candidate_public_key) ||
candidate_public_key.size() != 2 * kFieldBytes) {
DLOG(ERROR) << "Unable to export the public key.";
return false;
}
out_private_key->assign(reinterpret_cast<const char*>(private_key.data()),
private_key.size());
// Concatenate the leading 0x04 byte and the two uncompressed points.
out_public_key->reserve(kUncompressedPointBytes);
out_public_key->push_back(kUncompressedPointForm);
out_public_key->append(candidate_public_key);
return true;
}
bool ComputeSharedP256Secret(const base::StringPiece& private_key,
const base::StringPiece& peer_public_key,
std::string* out_shared_secret) {
DCHECK(out_shared_secret);
std::unique_ptr<crypto::ECPrivateKey> local_key_pair(
crypto::ECPrivateKey::CreateFromEncryptedPrivateKeyInfo(
std::vector<uint8_t>(private_key.data(),
private_key.data() + private_key.size())));
if (!local_key_pair) {
DLOG(ERROR) << "Unable to create the local key pair.";
return false;
}
EC_KEY* ec_private_key = EVP_PKEY_get0_EC_KEY(local_key_pair->key());
if (!ec_private_key || !EC_KEY_check_key(ec_private_key)) {
DLOG(ERROR) << "The private key is invalid.";
return false;
}
bssl::UniquePtr<EC_POINT> point(
EC_POINT_new(EC_KEY_get0_group(ec_private_key)));
if (!point ||
!EC_POINT_oct2point(
EC_KEY_get0_group(ec_private_key), point.get(),
reinterpret_cast<const uint8_t*>(peer_public_key.data()),
peer_public_key.size(), nullptr)) {
DLOG(ERROR) << "Can't convert peer public value to curve point.";
return false;
}
uint8_t result[kFieldBytes];
if (ECDH_compute_key(result, sizeof(result), point.get(), ec_private_key,
nullptr) != sizeof(result)) {
DLOG(ERROR) << "Unable to compute the ECDH shared secret.";
return false;
}
out_shared_secret->assign(reinterpret_cast<char*>(result), sizeof(result));
return true;
}
} // namespace gcm