blob: a41213174ad5a82f8e9f82143f628b8a66122a03 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/omnibox/browser/shortcuts_provider.h"
#include <stddef.h>
#include <algorithm>
#include <cmath>
#include <map>
#include <utility>
#include <vector>
#include "base/i18n/break_iterator.h"
#include "base/i18n/case_conversion.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "components/history/core/browser/history_service.h"
#include "components/omnibox/browser/autocomplete_i18n.h"
#include "components/omnibox/browser/autocomplete_input.h"
#include "components/omnibox/browser/autocomplete_match.h"
#include "components/omnibox/browser/autocomplete_provider_client.h"
#include "components/omnibox/browser/autocomplete_result.h"
#include "components/omnibox/browser/history_provider.h"
#include "components/omnibox/browser/match_compare.h"
#include "components/omnibox/browser/omnibox_field_trial.h"
#include "components/omnibox/browser/url_prefix.h"
#include "components/prefs/pref_service.h"
#include "components/url_formatter/url_fixer.h"
#include "third_party/metrics_proto/omnibox_input_type.pb.h"
#include "url/third_party/mozilla/url_parse.h"
namespace {
class DestinationURLEqualsURL {
public:
explicit DestinationURLEqualsURL(const GURL& url) : url_(url) {}
bool operator()(const AutocompleteMatch& match) const {
return match.destination_url == url_;
}
private:
const GURL url_;
};
// ShortcutMatch holds sufficient information about a single match from the
// shortcut database to allow for destination deduping and relevance sorting.
// After those stages the top matches are converted to the more heavyweight
// AutocompleteMatch struct. Avoiding constructing the larger struct for
// every such match can save significant time when there are many shortcut
// matches to process.
struct ShortcutMatch {
ShortcutMatch(int relevance,
const GURL& stripped_destination_url,
const ShortcutsDatabase::Shortcut* shortcut)
: relevance(relevance),
stripped_destination_url(stripped_destination_url),
shortcut(shortcut),
contents(shortcut->match_core.contents),
type(static_cast<AutocompleteMatch::Type>(shortcut->match_core.type)) {}
int relevance;
GURL stripped_destination_url;
const ShortcutsDatabase::Shortcut* shortcut;
base::string16 contents;
AutocompleteMatch::Type type;
};
// Sorts |matches| by destination, taking into account demotions based on
// |page_classification| when resolving ties about which of several
// duplicates to keep. The matches are also deduplicated.
void SortAndDedupMatches(
metrics::OmniboxEventProto::PageClassification page_classification,
std::vector<ShortcutMatch>* matches) {
// Sort matches such that duplicate matches are consecutive.
std::sort(matches->begin(), matches->end(),
DestinationSort<ShortcutMatch>(page_classification));
// Erase duplicate matches. Duplicate matches are those with
// stripped_destination_url fields equal and non empty.
matches->erase(
std::unique(matches->begin(), matches->end(),
[](const ShortcutMatch& elem1, const ShortcutMatch& elem2) {
return !elem1.stripped_destination_url.is_empty() &&
(elem1.stripped_destination_url ==
elem2.stripped_destination_url);
}),
matches->end());
}
} // namespace
const int ShortcutsProvider::kShortcutsProviderDefaultMaxRelevance = 1199;
ShortcutsProvider::ShortcutsProvider(AutocompleteProviderClient* client)
: AutocompleteProvider(AutocompleteProvider::TYPE_SHORTCUTS),
client_(client),
initialized_(false) {
scoped_refptr<ShortcutsBackend> backend = client_->GetShortcutsBackend();
if (backend.get()) {
backend->AddObserver(this);
if (backend->initialized())
initialized_ = true;
}
}
void ShortcutsProvider::Start(const AutocompleteInput& input,
bool minimal_changes) {
TRACE_EVENT0("omnibox", "ShortcutsProvider::Start");
matches_.clear();
if (input.from_omnibox_focus() ||
(input.type() == metrics::OmniboxInputType::INVALID) ||
input.text().empty() || !initialized_)
return;
base::TimeTicks start_time = base::TimeTicks::Now();
GetMatches(input);
if (input.text().length() < 6) {
base::TimeTicks end_time = base::TimeTicks::Now();
std::string name = "ShortcutsProvider.QueryIndexTime." +
base::SizeTToString(input.text().size());
base::HistogramBase* counter = base::Histogram::FactoryGet(
name, 1, 1000, 50, base::Histogram::kUmaTargetedHistogramFlag);
counter->Add(static_cast<int>((end_time - start_time).InMilliseconds()));
}
}
void ShortcutsProvider::DeleteMatch(const AutocompleteMatch& match) {
// Copy the URL since deleting from |matches_| will invalidate |match|.
GURL url(match.destination_url);
DCHECK(url.is_valid());
// When a user deletes a match, they probably mean for the URL to disappear
// out of history entirely. So nuke all shortcuts that map to this URL.
scoped_refptr<ShortcutsBackend> backend =
client_->GetShortcutsBackendIfExists();
if (backend.get()) // Can be NULL in Incognito.
backend->DeleteShortcutsWithURL(url);
matches_.erase(std::remove_if(matches_.begin(), matches_.end(),
DestinationURLEqualsURL(url)),
matches_.end());
// NOTE: |match| is now dead!
// Delete the match from the history DB. This will eventually result in a
// second call to DeleteShortcutsWithURL(), which is harmless.
history::HistoryService* const history_service = client_->GetHistoryService();
DCHECK(history_service);
history_service->DeleteURL(url);
}
ShortcutsProvider::~ShortcutsProvider() {
scoped_refptr<ShortcutsBackend> backend =
client_->GetShortcutsBackendIfExists();
if (backend.get())
backend->RemoveObserver(this);
}
// static
ShortcutsProvider::WordMap ShortcutsProvider::CreateWordMapForString(
const base::string16& text) {
// First, convert |text| to a vector of the unique words in it.
WordMap word_map;
base::i18n::BreakIterator word_iter(text,
base::i18n::BreakIterator::BREAK_WORD);
if (!word_iter.Init())
return word_map;
std::vector<base::string16> words;
while (word_iter.Advance()) {
if (word_iter.IsWord())
words.push_back(word_iter.GetString());
}
if (words.empty())
return word_map;
std::sort(words.begin(), words.end());
words.erase(std::unique(words.begin(), words.end()), words.end());
// Now create a map from (first character) to (words beginning with that
// character). We insert in reverse lexicographical order and rely on the
// multimap preserving insertion order for values with the same key. (This
// is mandated in C++11, and part of that decision was based on a survey of
// existing implementations that found that it was already true everywhere.)
std::reverse(words.begin(), words.end());
for (std::vector<base::string16>::const_iterator i(words.begin());
i != words.end(); ++i)
word_map.insert(std::make_pair((*i)[0], *i));
return word_map;
}
// static
ACMatchClassifications ShortcutsProvider::ClassifyAllMatchesInString(
const base::string16& find_text,
const WordMap& find_words,
const base::string16& text,
const bool text_is_search_query,
const ACMatchClassifications& original_class) {
DCHECK(!find_text.empty());
DCHECK(!find_words.empty());
// The code below assumes |text| is nonempty and therefore the resulting
// classification vector should always be nonempty as well. Returning early
// if |text| is empty assures we'll return the (correct) empty vector rather
// than a vector with a single (0, NONE) match.
if (text.empty())
return original_class;
// First check whether |text| begins with |find_text| and mark that whole
// section as a match if so.
base::string16 text_lowercase(base::i18n::ToLower(text));
const ACMatchClassification::Style& class_of_find_text =
text_is_search_query ? ACMatchClassification::NONE
: ACMatchClassification::MATCH;
const ACMatchClassification::Style& class_of_additional_text =
text_is_search_query ? ACMatchClassification::MATCH
: ACMatchClassification::NONE;
ACMatchClassifications match_class;
size_t last_position = 0;
if (base::StartsWith(text_lowercase, find_text,
base::CompareCase::SENSITIVE)) {
match_class.push_back(ACMatchClassification(0, class_of_find_text));
last_position = find_text.length();
// If |text_lowercase| is actually equal to |find_text|, we don't need to
// (and in fact shouldn't) put a trailing NONE classification after the end
// of the string.
if (last_position < text_lowercase.length()) {
match_class.push_back(
ACMatchClassification(last_position, class_of_additional_text));
}
} else {
// |match_class| should start at position 0. If the first matching word is
// found at position 0, this will be popped from the vector further down.
match_class.push_back(ACMatchClassification(0, class_of_additional_text));
}
// Now, starting with |last_position|, check each character in
// |text_lowercase| to see if we have words starting with that character in
// |find_words|. If so, check each of them to see if they match the portion
// of |text_lowercase| beginning with |last_position|. Accept the first
// matching word found (which should be the longest possible match at this
// location, given the construction of |find_words|) and add a MATCH region to
// |match_class|, moving |last_position| to be after the matching word. If we
// found no matching words, move to the next character and repeat.
while (last_position < text_lowercase.length()) {
std::pair<WordMap::const_iterator, WordMap::const_iterator> range(
find_words.equal_range(text_lowercase[last_position]));
size_t next_character = last_position + 1;
for (WordMap::const_iterator i(range.first); i != range.second; ++i) {
const base::string16& word = i->second;
size_t word_end = last_position + word.length();
if ((word_end <= text_lowercase.length()) &&
!text_lowercase.compare(last_position, word.length(), word)) {
// Collapse adjacent ranges into one.
if (match_class.back().offset == last_position)
match_class.pop_back();
AutocompleteMatch::AddLastClassificationIfNecessary(
&match_class, last_position, class_of_find_text);
if (word_end < text_lowercase.length()) {
match_class.push_back(
ACMatchClassification(word_end, class_of_additional_text));
}
last_position = word_end;
break;
}
}
last_position = std::max(last_position, next_character);
}
return AutocompleteMatch::MergeClassifications(original_class, match_class);
}
void ShortcutsProvider::OnShortcutsLoaded() {
initialized_ = true;
}
void ShortcutsProvider::GetMatches(const AutocompleteInput& input) {
scoped_refptr<ShortcutsBackend> backend =
client_->GetShortcutsBackendIfExists();
if (!backend.get())
return;
// Get the URLs from the shortcuts database with keys that partially or
// completely match the search term.
base::string16 term_string(base::i18n::ToLower(input.text()));
DCHECK(!term_string.empty());
int max_relevance;
if (!OmniboxFieldTrial::ShortcutsScoringMaxRelevance(
input.current_page_classification(), &max_relevance))
max_relevance = kShortcutsProviderDefaultMaxRelevance;
TemplateURLService* template_url_service = client_->GetTemplateURLService();
const base::string16 fixed_up_input(FixupUserInput(input).second);
std::vector<ShortcutMatch> shortcut_matches;
for (ShortcutsBackend::ShortcutMap::const_iterator it =
FindFirstMatch(term_string, backend.get());
it != backend->shortcuts_map().end() &&
base::StartsWith(it->first, term_string,
base::CompareCase::SENSITIVE);
++it) {
// Don't return shortcuts with zero relevance.
int relevance = CalculateScore(term_string, it->second, max_relevance);
if (relevance) {
const ShortcutsDatabase::Shortcut& shortcut = it->second;
GURL stripped_destination_url(AutocompleteMatch::GURLToStrippedGURL(
shortcut.match_core.destination_url, input, template_url_service,
shortcut.match_core.keyword));
shortcut_matches.push_back(
ShortcutMatch(relevance, stripped_destination_url, &it->second));
}
}
// Remove duplicates. This is important because it's common to have multiple
// shortcuts pointing to the same URL, e.g., ma, mai, and mail all pointing
// to mail.google.com, so typing "m" will return them all. If we then simply
// clamp to kMaxMatches and let the SortAndDedupMatches take care of
// collapsing the duplicates, we'll effectively only be returning one match,
// instead of several possibilities.
//
// Note that while removing duplicates, we don't populate a match's
// |duplicate_matches| field--duplicates don't need to be preserved in the
// matches because they are only used for deletions, and this provider
// deletes matches based on the URL.
SortAndDedupMatches(input.current_page_classification(), &shortcut_matches);
// Find best matches.
std::partial_sort(
shortcut_matches.begin(),
shortcut_matches.begin() +
std::min(AutocompleteProvider::kMaxMatches, shortcut_matches.size()),
shortcut_matches.end(),
[](const ShortcutMatch& elem1, const ShortcutMatch& elem2) {
// Ensure a stable sort by sorting equal-relevance matches
// alphabetically.
return elem1.relevance == elem2.relevance
? elem1.contents < elem2.contents
: elem1.relevance > elem2.relevance;
});
if (shortcut_matches.size() > AutocompleteProvider::kMaxMatches) {
shortcut_matches.erase(
shortcut_matches.begin() + AutocompleteProvider::kMaxMatches,
shortcut_matches.end());
}
// Create and initialize autocomplete matches from shortcut matches.
// Also guarantee that all relevance scores are decreasing (but do not assign
// any scores below 1).
WordMap terms_map(CreateWordMapForString(term_string));
matches_.reserve(shortcut_matches.size());
for (ShortcutMatch& match : shortcut_matches) {
max_relevance = std::min(max_relevance, match.relevance);
matches_.push_back(ShortcutToACMatch(*match.shortcut, max_relevance, input,
fixed_up_input, term_string,
terms_map));
if (max_relevance > 1)
--max_relevance;
}
}
AutocompleteMatch ShortcutsProvider::ShortcutToACMatch(
const ShortcutsDatabase::Shortcut& shortcut,
int relevance,
const AutocompleteInput& input,
const base::string16& fixed_up_input_text,
const base::string16 term_string,
const WordMap& terms_map) {
DCHECK(!input.text().empty());
AutocompleteMatch match;
match.provider = this;
match.relevance = relevance;
match.deletable = true;
match.fill_into_edit = shortcut.match_core.fill_into_edit;
match.destination_url = shortcut.match_core.destination_url;
DCHECK(match.destination_url.is_valid());
match.contents = shortcut.match_core.contents;
match.contents_class = AutocompleteMatch::ClassificationsFromString(
shortcut.match_core.contents_class);
match.description = shortcut.match_core.description;
match.description_class = AutocompleteMatch::ClassificationsFromString(
shortcut.match_core.description_class);
match.transition = ui::PageTransitionFromInt(shortcut.match_core.transition);
match.type = static_cast<AutocompleteMatch::Type>(shortcut.match_core.type);
match.keyword = shortcut.match_core.keyword;
match.RecordAdditionalInfo("number of hits", shortcut.number_of_hits);
match.RecordAdditionalInfo("last access time", shortcut.last_access_time);
match.RecordAdditionalInfo("original input text",
base::UTF16ToUTF8(shortcut.text));
// Set |inline_autocompletion| and |allowed_to_be_default_match| if possible.
// If the match is a search query this is easy: simply check whether the
// user text is a prefix of the query. If the match is a navigation, we
// assume the fill_into_edit looks something like a URL, so we use
// URLPrefix::GetInlineAutocompleteOffset() to try and strip off any prefixes
// that the user might not think would change the meaning, but would
// otherwise prevent inline autocompletion. This allows, for example, the
// input of "foo.c" to autocomplete to "foo.com" for a fill_into_edit of
// "http://foo.com".
const bool is_search_type = AutocompleteMatch::IsSearchType(match.type);
if (is_search_type) {
if (match.fill_into_edit.size() >= input.text().size() &&
std::equal(match.fill_into_edit.begin(),
match.fill_into_edit.begin() + input.text().size(),
input.text().begin(),
SimpleCaseInsensitiveCompareUCS2())) {
match.inline_autocompletion =
match.fill_into_edit.substr(input.text().length());
match.allowed_to_be_default_match =
!input.prevent_inline_autocomplete() ||
match.inline_autocompletion.empty();
}
} else {
const size_t inline_autocomplete_offset =
URLPrefix::GetInlineAutocompleteOffset(
input.text(), fixed_up_input_text, true, match.fill_into_edit);
if (inline_autocomplete_offset != base::string16::npos) {
match.inline_autocompletion =
match.fill_into_edit.substr(inline_autocomplete_offset);
match.allowed_to_be_default_match =
!HistoryProvider::PreventInlineAutocomplete(input) ||
match.inline_autocompletion.empty();
}
}
match.EnsureUWYTIsAllowedToBeDefault(input, client_->GetTemplateURLService());
// Try to mark pieces of the contents and description as matches if they
// appear in |input.text()|.
if (!terms_map.empty()) {
match.contents_class =
ClassifyAllMatchesInString(term_string, terms_map, match.contents,
is_search_type, match.contents_class);
match.description_class = ClassifyAllMatchesInString(
term_string, terms_map, match.description,
/*text_is_search_query=*/false, match.description_class);
}
return match;
}
ShortcutsBackend::ShortcutMap::const_iterator ShortcutsProvider::FindFirstMatch(
const base::string16& keyword,
ShortcutsBackend* backend) {
DCHECK(backend);
ShortcutsBackend::ShortcutMap::const_iterator it =
backend->shortcuts_map().lower_bound(keyword);
// Lower bound not necessarily matches the keyword, check for item pointed by
// the lower bound iterator to at least start with keyword.
return ((it == backend->shortcuts_map().end()) ||
base::StartsWith(it->first, keyword, base::CompareCase::SENSITIVE))
? it
: backend->shortcuts_map().end();
}
int ShortcutsProvider::CalculateScore(
const base::string16& terms,
const ShortcutsDatabase::Shortcut& shortcut,
int max_relevance) {
DCHECK(!terms.empty());
DCHECK_LE(terms.length(), shortcut.text.length());
// The initial score is based on how much of the shortcut the user has typed.
// Using the square root of the typed fraction boosts the base score rapidly
// as characters are typed, compared with simply using the typed fraction
// directly. This makes sense since the first characters typed are much more
// important for determining how likely it is a user wants a particular
// shortcut than are the remaining continued characters.
double base_score = max_relevance * sqrt(static_cast<double>(terms.length()) /
shortcut.text.length());
// Then we decay this by half each week.
const double kLn2 = 0.6931471805599453;
base::TimeDelta time_passed = base::Time::Now() - shortcut.last_access_time;
// Clamp to 0 in case time jumps backwards (e.g. due to DST).
double decay_exponent =
std::max(0.0, kLn2 * static_cast<double>(time_passed.InMicroseconds()) /
base::Time::kMicrosecondsPerWeek);
// We modulate the decay factor based on how many times the shortcut has been
// used. Newly created shortcuts decay at full speed; otherwise, decaying by
// half takes |n| times as much time, where n increases by
// (1.0 / each 5 additional hits), up to a maximum of 5x as long.
const double kMaxDecaySpeedDivisor = 5.0;
const double kNumUsesPerDecaySpeedDivisorIncrement = 5.0;
double decay_divisor = std::min(
kMaxDecaySpeedDivisor,
(shortcut.number_of_hits + kNumUsesPerDecaySpeedDivisorIncrement - 1) /
kNumUsesPerDecaySpeedDivisorIncrement);
return static_cast<int>((base_score / exp(decay_exponent / decay_divisor)) +
0.5);
}