blob: 8d39211bf53aafac53512bcde7d48b1526bd80a4 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Test of classes in the tracked_objects.h classes.
#include "base/tracked_objects.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include "base/macros.h"
#include "base/process/process_handle.h"
#include "base/strings/stringprintf.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
// Various tests use the address of the line number as a fake unique PC for
// Locations that need to be equivalent.
const int kLineNumber = 1776;
const char kFile[] = "FixedUnitTestFileName";
const char kWorkerThreadName[] = "WorkerThread-*";
const char kMainThreadName[] = "SomeMainThreadName";
const char kStillAlive[] = "Still_Alive";
const int32_t kAllocOps = 23;
const int32_t kFreeOps = 27;
const int32_t kAllocatedBytes = 59934;
const int32_t kFreedBytes = 2 * kAllocatedBytes;
const int32_t kAllocOverheadBytes = kAllocOps * 8;
const int32_t kMaxAllocatedBytes = kAllocatedBytes / 2;
namespace tracked_objects {
class TrackedObjectsTest : public testing::Test {
protected:
TrackedObjectsTest() {
// On entry, leak any database structures in case they are still in use by
// prior threads.
ThreadData::ShutdownSingleThreadedCleanup(true);
test_time_ = 0;
ThreadData::now_function_for_testing_ = &TrackedObjectsTest::GetTestTime;
}
~TrackedObjectsTest() override {
// We should not need to leak any structures we create, since we are
// single threaded, and carefully accounting for items.
ThreadData::ShutdownSingleThreadedCleanup(false);
}
// Reset the profiler state.
void Reset() {
ThreadData::ShutdownSingleThreadedCleanup(false);
test_time_ = 0;
}
// Simulate a birth on the thread named |thread_name|, at the given
// |location|.
void TallyABirth(const base::Location& location,
const std::string& thread_name) {
// If the |thread_name| is empty, we don't initialize system with a thread
// name, so we're viewed as a worker thread.
if (!thread_name.empty())
ThreadData::InitializeThreadContext(kMainThreadName);
// Do not delete |birth|. We don't own it.
Births* birth = ThreadData::TallyABirthIfActive(location);
if (ThreadData::status() == ThreadData::DEACTIVATED)
EXPECT_EQ(reinterpret_cast<Births*>(NULL), birth);
else
EXPECT_NE(reinterpret_cast<Births*>(NULL), birth);
}
// Helper function to verify the most common test expectations.
void ExpectSimpleProcessData(const ProcessDataSnapshot& process_data,
const std::string& function_name,
const std::string& birth_thread,
const std::string& death_thread,
int count,
int run_duration,
int queue_duration) {
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
ASSERT_EQ(1u, process_data_phase.tasks.size());
EXPECT_EQ(kFile, process_data_phase.tasks[0].birth.location.file_name);
EXPECT_EQ(function_name,
process_data_phase.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase.tasks[0].birth.location.line_number);
EXPECT_EQ(birth_thread,
process_data_phase.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(count, process_data_phase.tasks[0].death_data.count);
EXPECT_EQ(count * run_duration,
process_data_phase.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(run_duration,
process_data_phase.tasks[0].death_data.run_duration_max);
EXPECT_EQ(run_duration,
process_data_phase.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(count * queue_duration,
process_data_phase.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(queue_duration,
process_data_phase.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(queue_duration,
process_data_phase.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(death_thread,
process_data_phase.tasks[0].death_sanitized_thread_name);
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
// Sets time that will be returned by ThreadData::Now().
static void SetTestTime(unsigned int test_time) { test_time_ = test_time; }
int GetNumThreadData() {
int num_thread_data = 0;
ThreadData* current = ThreadData::first();
while (current) {
++num_thread_data;
current = current->next();
}
return num_thread_data;
}
private:
// Returns test time in milliseconds.
static unsigned int GetTestTime() { return test_time_; }
// Test time in milliseconds.
static unsigned int test_time_;
};
// static
unsigned int TrackedObjectsTest::test_time_;
TEST_F(TrackedObjectsTest, TaskStopwatchNoStartStop) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
// Check that creating and destroying a stopwatch without starting it doesn't
// crash.
TaskStopwatch stopwatch;
}
TEST_F(TrackedObjectsTest, MinimalStartupShutdown) {
// Minimal test doesn't even create any tasks.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
EXPECT_FALSE(ThreadData::first()); // No activity even on this thread.
ThreadData* data = ThreadData::Get();
EXPECT_TRUE(ThreadData::first()); // Now class was constructed.
ASSERT_TRUE(data);
EXPECT_FALSE(data->next());
EXPECT_EQ(data, ThreadData::Get());
ThreadData::BirthMap birth_map;
ThreadData::DeathsSnapshot deaths;
data->SnapshotMaps(0, &birth_map, &deaths);
EXPECT_EQ(0u, birth_map.size());
EXPECT_EQ(0u, deaths.size());
// Clean up with no leaking.
Reset();
// Do it again, just to be sure we reset state completely.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
EXPECT_FALSE(ThreadData::first()); // No activity even on this thread.
data = ThreadData::Get();
EXPECT_TRUE(ThreadData::first()); // Now class was constructed.
ASSERT_TRUE(data);
EXPECT_FALSE(data->next());
EXPECT_EQ(data, ThreadData::Get());
birth_map.clear();
deaths.clear();
data->SnapshotMaps(0, &birth_map, &deaths);
EXPECT_EQ(0u, birth_map.size());
EXPECT_EQ(0u, deaths.size());
}
TEST_F(TrackedObjectsTest, DeathDataTestRecordDurations) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
std::unique_ptr<DeathData> data(new DeathData());
ASSERT_NE(data, nullptr);
EXPECT_EQ(data->run_duration_sum(), 0);
EXPECT_EQ(data->run_duration_max(), 0);
EXPECT_EQ(data->run_duration_sample(), 0);
EXPECT_EQ(data->queue_duration_sum(), 0);
EXPECT_EQ(data->queue_duration_max(), 0);
EXPECT_EQ(data->queue_duration_sample(), 0);
EXPECT_EQ(data->count(), 0);
EXPECT_EQ(nullptr, data->last_phase_snapshot());
base::TimeDelta run_duration = base::TimeDelta::FromMilliseconds(42);
base::TimeDelta queue_duration = base::TimeDelta::FromMilliseconds(8);
const int kUnrandomInt = 0; // Fake random int that ensure we sample data.
data->RecordDurations(queue_duration, run_duration, kUnrandomInt);
EXPECT_EQ(data->run_duration_sum(), run_duration.InMilliseconds());
EXPECT_EQ(data->run_duration_max(), run_duration.InMilliseconds());
EXPECT_EQ(data->run_duration_sample(), run_duration.InMilliseconds());
EXPECT_EQ(data->queue_duration_sum(), queue_duration.InMilliseconds());
EXPECT_EQ(data->queue_duration_max(), queue_duration.InMilliseconds());
EXPECT_EQ(data->queue_duration_sample(), queue_duration.InMilliseconds());
EXPECT_EQ(data->count(), 1);
EXPECT_EQ(nullptr, data->last_phase_snapshot());
data->RecordDurations(queue_duration, run_duration, kUnrandomInt);
EXPECT_EQ(data->run_duration_sum(),
(run_duration + run_duration).InMilliseconds());
EXPECT_EQ(data->run_duration_max(), run_duration.InMilliseconds());
EXPECT_EQ(data->run_duration_sample(), run_duration.InMilliseconds());
EXPECT_EQ(data->queue_duration_sum(),
(queue_duration + queue_duration).InMilliseconds());
EXPECT_EQ(data->queue_duration_max(), queue_duration.InMilliseconds());
EXPECT_EQ(data->queue_duration_sample(), queue_duration.InMilliseconds());
EXPECT_EQ(data->count(), 2);
EXPECT_EQ(nullptr, data->last_phase_snapshot());
}
TEST_F(TrackedObjectsTest, DeathDataTestRecordAllocations) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
std::unique_ptr<DeathData> data(new DeathData());
ASSERT_NE(data, nullptr);
EXPECT_EQ(data->alloc_ops(), 0);
EXPECT_EQ(data->free_ops(), 0);
EXPECT_EQ(data->allocated_bytes(), 0);
EXPECT_EQ(data->freed_bytes(), 0);
EXPECT_EQ(data->alloc_overhead_bytes(), 0);
EXPECT_EQ(data->max_allocated_bytes(), 0);
EXPECT_EQ(nullptr, data->last_phase_snapshot());
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kMaxAllocatedBytes);
EXPECT_EQ(data->alloc_ops(), kAllocOps);
EXPECT_EQ(data->free_ops(), kFreeOps);
EXPECT_EQ(data->allocated_bytes(), kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kMaxAllocatedBytes);
// Record another batch, with a smaller max.
const int32_t kSmallerMaxAllocatedBytes = kMaxAllocatedBytes / 2;
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kSmallerMaxAllocatedBytes);
EXPECT_EQ(data->alloc_ops(), 2 * kAllocOps);
EXPECT_EQ(data->free_ops(), 2 * kFreeOps);
EXPECT_EQ(data->allocated_bytes(), 2 * kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), 2 * kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), 2 * kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kMaxAllocatedBytes);
// Now with a larger max.
const int32_t kLargerMaxAllocatedBytes = kMaxAllocatedBytes * 2;
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kLargerMaxAllocatedBytes);
EXPECT_EQ(data->alloc_ops(), 3 * kAllocOps);
EXPECT_EQ(data->free_ops(), 3 * kFreeOps);
EXPECT_EQ(data->allocated_bytes(), 3 * kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), 3 * kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), 3 * kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kLargerMaxAllocatedBytes);
// Saturate everything but aggregate byte counts.
// In the 32 bit implementation, this tests the case where the low-order
// word goes negative.
data->RecordAllocations(INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX);
EXPECT_EQ(data->alloc_ops(), INT_MAX);
EXPECT_EQ(data->free_ops(), INT_MAX);
// The cumulative byte counts are 64 bit wide, and won't saturate easily.
EXPECT_EQ(data->allocated_bytes(),
static_cast<int64_t>(INT_MAX) +
static_cast<int64_t>(3 * kAllocatedBytes));
EXPECT_EQ(data->freed_bytes(),
static_cast<int64_t>(INT_MAX) + 3 * kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(),
static_cast<int64_t>(INT_MAX) + 3 * kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), INT_MAX);
// The byte counts will be pushed past the 32 bit value range.
data->RecordAllocations(INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX);
EXPECT_EQ(data->alloc_ops(), INT_MAX);
EXPECT_EQ(data->free_ops(), INT_MAX);
// The cumulative byte counts are 64 bit wide, and won't saturate easily.
EXPECT_EQ(data->allocated_bytes(),
2 * static_cast<int64_t>(INT_MAX) +
static_cast<int64_t>(3 * kAllocatedBytes));
EXPECT_EQ(data->freed_bytes(),
2 * static_cast<int64_t>(INT_MAX) + 3 * kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(),
2 * static_cast<int64_t>(INT_MAX) + 3 * kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), INT_MAX);
}
TEST_F(TrackedObjectsTest, DeathDataTest2Phases) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
std::unique_ptr<DeathData> data(new DeathData());
ASSERT_NE(data, nullptr);
const base::TimeDelta run_duration = base::TimeDelta::FromMilliseconds(42);
const base::TimeDelta queue_duration = base::TimeDelta::FromMilliseconds(8);
const int kUnrandomInt = 0; // Fake random int that ensure we sample data.
data->RecordDurations(queue_duration, run_duration, kUnrandomInt);
data->RecordDurations(queue_duration, run_duration, kUnrandomInt);
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kMaxAllocatedBytes);
data->OnProfilingPhaseCompleted(123);
EXPECT_EQ(data->run_duration_sum(),
(run_duration + run_duration).InMilliseconds());
EXPECT_EQ(data->run_duration_max(), 0);
EXPECT_EQ(data->run_duration_sample(), run_duration.InMilliseconds());
EXPECT_EQ(data->queue_duration_sum(),
(queue_duration + queue_duration).InMilliseconds());
EXPECT_EQ(data->queue_duration_max(), 0);
EXPECT_EQ(data->queue_duration_sample(), queue_duration.InMilliseconds());
EXPECT_EQ(data->count(), 2);
EXPECT_EQ(data->alloc_ops(), kAllocOps);
EXPECT_EQ(data->free_ops(), kFreeOps);
EXPECT_EQ(data->allocated_bytes(), kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kMaxAllocatedBytes);
ASSERT_NE(nullptr, data->last_phase_snapshot());
EXPECT_EQ(123, data->last_phase_snapshot()->profiling_phase);
EXPECT_EQ(2, data->last_phase_snapshot()->death_data.count);
EXPECT_EQ(2 * run_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.run_duration_sum);
EXPECT_EQ(run_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.run_duration_max);
EXPECT_EQ(run_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.run_duration_sample);
EXPECT_EQ(2 * queue_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.queue_duration_sum);
EXPECT_EQ(queue_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.queue_duration_max);
EXPECT_EQ(queue_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.queue_duration_sample);
EXPECT_EQ(kAllocOps, data->last_phase_snapshot()->death_data.alloc_ops);
EXPECT_EQ(kFreeOps, data->last_phase_snapshot()->death_data.free_ops);
EXPECT_EQ(kAllocatedBytes,
data->last_phase_snapshot()->death_data.allocated_bytes);
EXPECT_EQ(kFreedBytes, data->last_phase_snapshot()->death_data.freed_bytes);
EXPECT_EQ(kAllocOverheadBytes,
data->last_phase_snapshot()->death_data.alloc_overhead_bytes);
EXPECT_EQ(kMaxAllocatedBytes,
data->last_phase_snapshot()->death_data.max_allocated_bytes);
EXPECT_EQ(nullptr, data->last_phase_snapshot()->prev);
const base::TimeDelta run_duration1 = base::TimeDelta::FromMilliseconds(21);
const base::TimeDelta queue_duration1 = base::TimeDelta::FromMilliseconds(4);
data->RecordDurations(queue_duration1, run_duration1, kUnrandomInt);
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kMaxAllocatedBytes);
EXPECT_EQ(data->run_duration_sum(),
(run_duration + run_duration + run_duration1).InMilliseconds());
EXPECT_EQ(data->run_duration_max(), run_duration1.InMilliseconds());
EXPECT_EQ(data->run_duration_sample(), run_duration1.InMilliseconds());
EXPECT_EQ(
data->queue_duration_sum(),
(queue_duration + queue_duration + queue_duration1).InMilliseconds());
EXPECT_EQ(data->queue_duration_max(), queue_duration1.InMilliseconds());
EXPECT_EQ(data->queue_duration_sample(), queue_duration1.InMilliseconds());
EXPECT_EQ(data->count(), 3);
EXPECT_EQ(data->alloc_ops(), 2 * kAllocOps);
EXPECT_EQ(data->free_ops(), 2 * kFreeOps);
EXPECT_EQ(data->allocated_bytes(), 2 * kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), 2 * kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), 2 * kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kMaxAllocatedBytes);
ASSERT_NE(nullptr, data->last_phase_snapshot());
EXPECT_EQ(123, data->last_phase_snapshot()->profiling_phase);
EXPECT_EQ(2, data->last_phase_snapshot()->death_data.count);
EXPECT_EQ(2 * run_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.run_duration_sum);
EXPECT_EQ(run_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.run_duration_max);
EXPECT_EQ(run_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.run_duration_sample);
EXPECT_EQ(2 * queue_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.queue_duration_sum);
EXPECT_EQ(queue_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.queue_duration_max);
EXPECT_EQ(queue_duration.InMilliseconds(),
data->last_phase_snapshot()->death_data.queue_duration_sample);
EXPECT_EQ(kAllocOps, data->last_phase_snapshot()->death_data.alloc_ops);
EXPECT_EQ(kFreeOps, data->last_phase_snapshot()->death_data.free_ops);
EXPECT_EQ(kAllocatedBytes,
data->last_phase_snapshot()->death_data.allocated_bytes);
EXPECT_EQ(kFreedBytes, data->last_phase_snapshot()->death_data.freed_bytes);
EXPECT_EQ(kAllocOverheadBytes,
data->last_phase_snapshot()->death_data.alloc_overhead_bytes);
EXPECT_EQ(kMaxAllocatedBytes,
data->last_phase_snapshot()->death_data.max_allocated_bytes);
EXPECT_EQ(nullptr, data->last_phase_snapshot()->prev);
}
TEST_F(TrackedObjectsTest, Delta) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
DeathDataSnapshot snapshot;
snapshot.count = 10;
snapshot.run_duration_sum = 100;
snapshot.run_duration_max = 50;
snapshot.run_duration_sample = 25;
snapshot.queue_duration_sum = 200;
snapshot.queue_duration_max = 101;
snapshot.queue_duration_sample = 26;
snapshot.alloc_ops = 95;
snapshot.free_ops = 90;
snapshot.allocated_bytes = 10240;
snapshot.freed_bytes = 4096;
snapshot.alloc_overhead_bytes = 950;
snapshot.max_allocated_bytes = 10240;
DeathDataSnapshot older_snapshot;
older_snapshot.count = 2;
older_snapshot.run_duration_sum = 95;
older_snapshot.run_duration_max = 48;
older_snapshot.run_duration_sample = 22;
older_snapshot.queue_duration_sum = 190;
older_snapshot.queue_duration_max = 99;
older_snapshot.queue_duration_sample = 21;
older_snapshot.alloc_ops = 45;
older_snapshot.free_ops = 40;
older_snapshot.allocated_bytes = 4096;
older_snapshot.freed_bytes = 2048;
older_snapshot.alloc_overhead_bytes = 450;
older_snapshot.max_allocated_bytes = 10200;
const DeathDataSnapshot& delta = snapshot.Delta(older_snapshot);
EXPECT_EQ(8, delta.count);
EXPECT_EQ(5, delta.run_duration_sum);
EXPECT_EQ(50, delta.run_duration_max);
EXPECT_EQ(25, delta.run_duration_sample);
EXPECT_EQ(10, delta.queue_duration_sum);
EXPECT_EQ(101, delta.queue_duration_max);
EXPECT_EQ(26, delta.queue_duration_sample);
EXPECT_EQ(50, delta.alloc_ops);
EXPECT_EQ(50, delta.free_ops);
EXPECT_EQ(6144, delta.allocated_bytes);
EXPECT_EQ(2048, delta.freed_bytes);
EXPECT_EQ(500, delta.alloc_overhead_bytes);
EXPECT_EQ(10240, delta.max_allocated_bytes);
}
TEST_F(TrackedObjectsTest, DeactivatedBirthOnlyToSnapshotWorkerThread) {
// Start in the deactivated state.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::DEACTIVATED);
const char kFunction[] = "DeactivatedBirthOnlyToSnapshotWorkerThread";
base::Location location(kFunction, kFile, kLineNumber, &kLineNumber);
TallyABirth(location, std::string());
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
ASSERT_EQ(0u, process_data_phase.tasks.size());
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
TEST_F(TrackedObjectsTest, DeactivatedBirthOnlyToSnapshotMainThread) {
// Start in the deactivated state.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::DEACTIVATED);
const char kFunction[] = "DeactivatedBirthOnlyToSnapshotMainThread";
base::Location location(kFunction, kFile, kLineNumber, &kLineNumber);
TallyABirth(location, kMainThreadName);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
ASSERT_EQ(0u, process_data_phase.tasks.size());
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
TEST_F(TrackedObjectsTest, BirthOnlyToSnapshotWorkerThread) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "BirthOnlyToSnapshotWorkerThread";
base::Location location(kFunction, kFile, kLineNumber, &kLineNumber);
TallyABirth(location, std::string());
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ExpectSimpleProcessData(process_data, kFunction, kWorkerThreadName,
kStillAlive, 1, 0, 0);
}
TEST_F(TrackedObjectsTest, BirthOnlyToSnapshotMainThread) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "BirthOnlyToSnapshotMainThread";
base::Location location(kFunction, kFile, kLineNumber, &kLineNumber);
TallyABirth(location, kMainThreadName);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ExpectSimpleProcessData(process_data, kFunction, kMainThreadName, kStillAlive,
1, 0, 0);
}
} // namespace tracked_objects