| // Copyright 2011 The Chromium Authors | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "base/rand_util.h" | 
 |  | 
 | #include <stddef.h> | 
 | #include <stdint.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <limits> | 
 | #include <memory> | 
 | #include <vector> | 
 |  | 
 | #include "base/compiler_specific.h" | 
 | #include "base/containers/span.h" | 
 | #include "base/logging.h" | 
 | #include "base/time/time.h" | 
 | #include "testing/gtest/include/gtest/gtest.h" | 
 |  | 
 | namespace base { | 
 |  | 
 | namespace { | 
 |  | 
 | constexpr int kIntMin = std::numeric_limits<int>::min(); | 
 | constexpr int kIntMax = std::numeric_limits<int>::max(); | 
 |  | 
 | }  // namespace | 
 |  | 
 | TEST(RandUtilTest, RandInt) { | 
 |   EXPECT_EQ(RandInt(0, 0), 0); | 
 |   EXPECT_EQ(RandInt(kIntMin, kIntMin), kIntMin); | 
 |   EXPECT_EQ(RandInt(kIntMax, kIntMax), kIntMax); | 
 |  | 
 |   // Check that the DCHECKS in RandInt() don't fire due to internal overflow. | 
 |   // There was a 50% chance of that happening, so calling it 40 times means | 
 |   // the chances of this passing by accident are tiny (9e-13). | 
 |   for (int i = 0; i < 40; ++i) { | 
 |     RandInt(kIntMin, kIntMax); | 
 |   } | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandDouble) { | 
 |   // Force 64-bit precision, making sure we're not in a 80-bit FPU register. | 
 |   volatile double number = RandDouble(); | 
 |   EXPECT_LT(number, 1.0); | 
 |   EXPECT_GE(number, 0.0); | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandFloat) { | 
 |   // Force 32-bit precision, making sure we're not in an 80-bit FPU register. | 
 |   volatile float number = RandFloat(); | 
 |   EXPECT_LT(number, 1.0f); | 
 |   EXPECT_GE(number, 0.0f); | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandBool) { | 
 |   // This test should finish extremely quickly unless `RandBool()` can only give | 
 |   // one result value. | 
 |   for (bool seen_false = false, seen_true = false; !seen_false || !seen_true;) { | 
 |     (RandBool() ? seen_true : seen_false) = true; | 
 |   } | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandTimeDelta) { | 
 |   { | 
 |     const auto delta = RandTimeDelta(-Seconds(2), -Seconds(1)); | 
 |     EXPECT_GE(delta, -Seconds(2)); | 
 |     EXPECT_LT(delta, -Seconds(1)); | 
 |   } | 
 |  | 
 |   { | 
 |     const auto delta = RandTimeDelta(-Seconds(2), Seconds(2)); | 
 |     EXPECT_GE(delta, -Seconds(2)); | 
 |     EXPECT_LT(delta, Seconds(2)); | 
 |   } | 
 |  | 
 |   { | 
 |     const auto delta = RandTimeDelta(Seconds(1), Seconds(2)); | 
 |     EXPECT_GE(delta, Seconds(1)); | 
 |     EXPECT_LT(delta, Seconds(2)); | 
 |   } | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandTimeDeltaUpTo) { | 
 |   const auto delta = RandTimeDeltaUpTo(Seconds(2)); | 
 |   EXPECT_FALSE(delta.is_negative()); | 
 |   EXPECT_LT(delta, Seconds(2)); | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandomizeByPercentage) { | 
 |   EXPECT_EQ(0, RandomizeByPercentage(0, 100)); | 
 |   EXPECT_EQ(100, RandomizeByPercentage(100, 0)); | 
 |  | 
 |   // Check that 10 +/- 200% will eventually produce values in each range | 
 |   // [-10, 0), [0, 10), [10, 20), [20, 30). | 
 |   for (bool a = false, b = false, c = false, d = false; !a || !b || !c || !d;) { | 
 |     const int r = RandomizeByPercentage(10, 200); | 
 |     EXPECT_GE(r, -10); | 
 |     EXPECT_LT(r, 30); | 
 |     a |= (r < 0); | 
 |     b |= (r >= 0 && r < 10); | 
 |     c |= (r >= 10 && r < 20); | 
 |     d |= (r >= 20); | 
 |   } | 
 | } | 
 |  | 
 | TEST(RandUtilTest, BitsToOpenEndedUnitInterval) { | 
 |   // Force 64-bit precision, making sure we're not in an 80-bit FPU register. | 
 |   volatile double all_zeros = BitsToOpenEndedUnitInterval(0x0); | 
 |   EXPECT_EQ(0.0, all_zeros); | 
 |  | 
 |   // Force 64-bit precision, making sure we're not in an 80-bit FPU register. | 
 |   volatile double smallest_nonzero = BitsToOpenEndedUnitInterval(0x1); | 
 |   EXPECT_LT(0.0, smallest_nonzero); | 
 |  | 
 |   for (uint64_t i = 0x2; i < 0x10; ++i) { | 
 |     // Force 64-bit precision, making sure we're not in an 80-bit FPU register. | 
 |     volatile double number = BitsToOpenEndedUnitInterval(i); | 
 |     EXPECT_EQ(i * smallest_nonzero, number); | 
 |   } | 
 |  | 
 |   // Force 64-bit precision, making sure we're not in an 80-bit FPU register. | 
 |   volatile double all_ones = BitsToOpenEndedUnitInterval(UINT64_MAX); | 
 |   EXPECT_GT(1.0, all_ones); | 
 | } | 
 |  | 
 | TEST(RandUtilTest, BitsToOpenEndedUnitIntervalF) { | 
 |   // Force 32-bit precision, making sure we're not in an 80-bit FPU register. | 
 |   volatile float all_zeros = BitsToOpenEndedUnitIntervalF(0x0); | 
 |   EXPECT_EQ(0.f, all_zeros); | 
 |  | 
 |   // Force 32-bit precision, making sure we're not in an 80-bit FPU register. | 
 |   volatile float smallest_nonzero = BitsToOpenEndedUnitIntervalF(0x1); | 
 |   EXPECT_LT(0.f, smallest_nonzero); | 
 |  | 
 |   for (uint64_t i = 0x2; i < 0x10; ++i) { | 
 |     // Force 32-bit precision, making sure we're not in an 80-bit FPU register. | 
 |     volatile float number = BitsToOpenEndedUnitIntervalF(i); | 
 |     EXPECT_EQ(i * smallest_nonzero, number); | 
 |   } | 
 |  | 
 |   // Force 32-bit precision, making sure we're not in an 80-bit FPU register. | 
 |   volatile float all_ones = BitsToOpenEndedUnitIntervalF(UINT64_MAX); | 
 |   EXPECT_GT(1.f, all_ones); | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandBytes) { | 
 |   const size_t buffer_size = 50; | 
 |   uint8_t buffer[buffer_size]; | 
 |   UNSAFE_TODO(memset(buffer, 0, buffer_size)); | 
 |   RandBytes(buffer); | 
 |   std::sort(buffer, UNSAFE_TODO(buffer + buffer_size)); | 
 |   // Probability of occurrence of less than 25 unique bytes in 50 random bytes | 
 |   // is below 10^-25. | 
 |   UNSAFE_TODO( | 
 |       EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25)); | 
 | } | 
 |  | 
 | // Verify that calling RandBytes with an empty buffer doesn't fail. | 
 | TEST(RandUtilTest, RandBytes0) { | 
 |   RandBytes(span<uint8_t>()); | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandBytesAsVector) { | 
 |   std::vector<uint8_t> random_vec = RandBytesAsVector(0); | 
 |   EXPECT_TRUE(random_vec.empty()); | 
 |   random_vec = RandBytesAsVector(1); | 
 |   EXPECT_EQ(1U, random_vec.size()); | 
 |   random_vec = RandBytesAsVector(145); | 
 |   EXPECT_EQ(145U, random_vec.size()); | 
 |   char accumulator = 0; | 
 |   for (auto i : random_vec) { | 
 |     accumulator |= i; | 
 |   } | 
 |   // In theory this test can fail, but it won't before the universe dies of | 
 |   // heat death. | 
 |   EXPECT_NE(0, accumulator); | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandBytesAsString) { | 
 |   std::string random_string = RandBytesAsString(1); | 
 |   EXPECT_EQ(1U, random_string.size()); | 
 |   random_string = RandBytesAsString(145); | 
 |   EXPECT_EQ(145U, random_string.size()); | 
 |   char accumulator = 0; | 
 |   for (auto i : random_string) { | 
 |     accumulator |= i; | 
 |   } | 
 |   // In theory this test can fail, but it won't before the universe dies of | 
 |   // heat death. | 
 |   EXPECT_NE(0, accumulator); | 
 | } | 
 |  | 
 | // Make sure that it is still appropriate to use RandGenerator in conjunction | 
 | // with std::random_shuffle(). | 
 | TEST(RandUtilTest, RandGeneratorForRandomShuffle) { | 
 |   EXPECT_EQ(RandGenerator(1), 0U); | 
 |   EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(), | 
 |             std::numeric_limits<int64_t>::max()); | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandGeneratorIsUniform) { | 
 |   // Verify that RandGenerator has a uniform distribution. This is a | 
 |   // regression test that consistently failed when RandGenerator was | 
 |   // implemented this way: | 
 |   // | 
 |   //   return RandUint64() % max; | 
 |   // | 
 |   // A degenerate case for such an implementation is e.g. a top of | 
 |   // range that is 2/3rds of the way to MAX_UINT64, in which case the | 
 |   // bottom half of the range would be twice as likely to occur as the | 
 |   // top half. A bit of calculus care of jar@ shows that the largest | 
 |   // measurable delta is when the top of the range is 3/4ths of the | 
 |   // way, so that's what we use in the test. | 
 |   constexpr uint64_t kTopOfRange = | 
 |       (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL; | 
 |   constexpr double kExpectedAverage = static_cast<double>(kTopOfRange / 2); | 
 |   constexpr double kAllowedVariance = kExpectedAverage / 50.0;  // +/- 2% | 
 |   constexpr int kMinAttempts = 1000; | 
 |   constexpr int kMaxAttempts = 1000000; | 
 |  | 
 |   double cumulative_average = 0.0; | 
 |   int count = 0; | 
 |   while (count < kMaxAttempts) { | 
 |     uint64_t value = RandGenerator(kTopOfRange); | 
 |     cumulative_average = (count * cumulative_average + value) / (count + 1); | 
 |  | 
 |     // Don't quit too quickly for things to start converging, or we may have | 
 |     // a false positive. | 
 |     if (count > kMinAttempts && | 
 |         kExpectedAverage - kAllowedVariance < cumulative_average && | 
 |         cumulative_average < kExpectedAverage + kAllowedVariance) { | 
 |       break; | 
 |     } | 
 |  | 
 |     ++count; | 
 |   } | 
 |  | 
 |   ASSERT_LT(count, kMaxAttempts) << "Expected average was " << kExpectedAverage | 
 |                                  << ", average ended at " << cumulative_average; | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) { | 
 |   // This tests to see that our underlying random generator is good | 
 |   // enough, for some value of good enough. | 
 |   uint64_t kAllZeros = 0ULL; | 
 |   uint64_t kAllOnes = ~kAllZeros; | 
 |   uint64_t found_ones = kAllZeros; | 
 |   uint64_t found_zeros = kAllOnes; | 
 |  | 
 |   for (size_t i = 0; i < 1000; ++i) { | 
 |     uint64_t value = RandUint64(); | 
 |     found_ones |= value; | 
 |     found_zeros &= value; | 
 |  | 
 |     if (found_zeros == kAllZeros && found_ones == kAllOnes) { | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   FAIL() << "Didn't achieve all bit values in maximum number of tries."; | 
 | } | 
 |  | 
 | TEST(RandUtilTest, RandBytesLonger) { | 
 |   // Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we | 
 |   // handle longer requests than that. | 
 |   std::string random_string0 = RandBytesAsString(255); | 
 |   EXPECT_EQ(255u, random_string0.size()); | 
 |   std::string random_string1 = RandBytesAsString(1023); | 
 |   EXPECT_EQ(1023u, random_string1.size()); | 
 |   std::string random_string2 = RandBytesAsString(4097); | 
 |   EXPECT_EQ(4097u, random_string2.size()); | 
 | } | 
 |  | 
 | // Benchmark test for RandBytes().  Disabled since it's intentionally slow and | 
 | // does not test anything that isn't already tested by the existing RandBytes() | 
 | // tests. | 
 | TEST(RandUtilTest, DISABLED_RandBytesPerf) { | 
 |   // Benchmark the performance of |kTestIterations| of RandBytes() using a | 
 |   // buffer size of |kTestBufferSize|. | 
 |   const int kTestIterations = 10; | 
 |   const size_t kTestBufferSize = 1 * 1024 * 1024; | 
 |  | 
 |   std::array<uint8_t, kTestBufferSize> buffer; | 
 |   const TimeTicks now = TimeTicks::Now(); | 
 |   for (int i = 0; i < kTestIterations; ++i) { | 
 |     RandBytes(buffer); | 
 |   } | 
 |   const TimeTicks end = TimeTicks::Now(); | 
 |  | 
 |   LOG(INFO) << "RandBytes(" << kTestBufferSize | 
 |             << ") took: " << (end - now).InMicroseconds() << "µs"; | 
 | } | 
 |  | 
 | TEST(RandUtilTest, InsecureRandomGeneratorProducesBothValuesOfAllBits) { | 
 |   // This tests to see that our underlying random generator is good | 
 |   // enough, for some value of good enough. | 
 |   uint64_t kAllZeros = 0ULL; | 
 |   uint64_t kAllOnes = ~kAllZeros; | 
 |   uint64_t found_ones = kAllZeros; | 
 |   uint64_t found_zeros = kAllOnes; | 
 |  | 
 |   InsecureRandomGenerator generator; | 
 |  | 
 |   for (size_t i = 0; i < 1000; ++i) { | 
 |     uint64_t value = generator.RandUint64(); | 
 |     found_ones |= value; | 
 |     found_zeros &= value; | 
 |  | 
 |     if (found_zeros == kAllZeros && found_ones == kAllOnes) { | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   FAIL() << "Didn't achieve all bit values in maximum number of tries."; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | constexpr double kXp1Percent = -2.33; | 
 | constexpr double kXp99Percent = 2.33; | 
 |  | 
 | double ChiSquaredCriticalValue(double nu, double x_p) { | 
 |   // From "The Art Of Computer Programming" (TAOCP), Volume 2, Section 3.3.1, | 
 |   // Table 1. This is the asymptotic value for nu > 30, up to O(1 / sqrt(nu)). | 
 |   return nu + sqrt(2. * nu) * x_p + 2. / 3. * (x_p * x_p) - 2. / 3.; | 
 | } | 
 |  | 
 | int ExtractBits(uint64_t value, int from_bit, int num_bits) { | 
 |   return (value >> from_bit) & ((1 << num_bits) - 1); | 
 | } | 
 |  | 
 | // Performs a Chi-Squared test on a subset of |num_bits| extracted starting from | 
 | // |from_bit| in the generated value. | 
 | // | 
 | // See TAOCP, Volume 2, Section 3.3.1, and | 
 | // https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test for details. | 
 | // | 
 | // This is only one of the many, many random number generator test we could do, | 
 | // but they are cumbersome, as they are typically very slow, and expected to | 
 | // fail from time to time, due to their probabilistic nature. | 
 | // | 
 | // The generator we use has however been vetted with the BigCrush test suite | 
 | // from Marsaglia, so this should suffice as a smoke test that our | 
 | // implementation is wrong. | 
 | bool ChiSquaredTest(InsecureRandomGenerator& gen, | 
 |                     size_t n, | 
 |                     int from_bit, | 
 |                     int num_bits) { | 
 |   const int range = 1 << num_bits; | 
 |   CHECK_EQ(static_cast<int>(n % range), 0) << "Makes computations simpler"; | 
 |   std::vector<size_t> samples(range, 0); | 
 |  | 
 |   // Count how many samples pf each value are found. All buckets should be | 
 |   // almost equal if the generator is suitably uniformly random. | 
 |   for (size_t i = 0; i < n; i++) { | 
 |     int sample = ExtractBits(gen.RandUint64(), from_bit, num_bits); | 
 |     samples[sample] += 1; | 
 |   } | 
 |  | 
 |   // Compute the Chi-Squared statistic, which is: | 
 |   // \Sum_{k=0}^{range-1} \frac{(count - expected)^2}{expected} | 
 |   double chi_squared = 0.; | 
 |   double expected_count = n / range; | 
 |   for (size_t sample_count : samples) { | 
 |     double deviation = sample_count - expected_count; | 
 |     chi_squared += (deviation * deviation) / expected_count; | 
 |   } | 
 |  | 
 |   // The generator should produce numbers that are not too far of (chi_squared | 
 |   // lower than a given quantile), but not too close to the ideal distribution | 
 |   // either (chi_squared is too low). | 
 |   // | 
 |   // See The Art Of Computer Programming, Volume 2, Section 3.3.1 for details. | 
 |   return chi_squared > ChiSquaredCriticalValue(range - 1, kXp1Percent) && | 
 |          chi_squared < ChiSquaredCriticalValue(range - 1, kXp99Percent); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | TEST(RandUtilTest, InsecureRandomGeneratorChiSquared) { | 
 |   constexpr int kIterations = 50; | 
 |  | 
 |   // Specifically test the low bits, which are usually weaker in random number | 
 |   // generators. We don't use them for the 32 bit number generation, but let's | 
 |   // make sure they are still suitable. | 
 |   for (int start_bit : {1, 2, 3, 8, 12, 20, 32, 48, 54}) { | 
 |     int pass_count = 0; | 
 |     for (int i = 0; i < kIterations; i++) { | 
 |       size_t samples = 1 << 16; | 
 |       InsecureRandomGenerator gen; | 
 |       // Fix the seed to make the test non-flaky. | 
 |       gen.ReseedForTesting(kIterations + 1); | 
 |       bool pass = ChiSquaredTest(gen, samples, start_bit, 8); | 
 |       pass_count += pass; | 
 |     } | 
 |  | 
 |     // We exclude 1% on each side, so we expect 98% of tests to pass, meaning 98 | 
 |     // * kIterations / 100. However this is asymptotic, so add a bit of leeway. | 
 |     int expected_pass_count = (kIterations * 98) / 100; | 
 |     EXPECT_GE(pass_count, expected_pass_count - ((kIterations * 2) / 100)) | 
 |         << "For start_bit = " << start_bit; | 
 |   } | 
 | } | 
 |  | 
 | TEST(RandUtilTest, InsecureRandomGeneratorRandDouble) { | 
 |   InsecureRandomGenerator gen; | 
 |  | 
 |   for (int i = 0; i < 1000; i++) { | 
 |     volatile double x = gen.RandDouble(); | 
 |     EXPECT_GE(x, 0.); | 
 |     EXPECT_LT(x, 1.); | 
 |   } | 
 | } | 
 |  | 
 | TEST(RandUtilTest, MetricsSubSampler) { | 
 |   MetricsSubSampler sub_sampler; | 
 |   int true_count = 0; | 
 |   int false_count = 0; | 
 |   for (int i = 0; i < 1000; ++i) { | 
 |     if (sub_sampler.ShouldSample(0.5)) { | 
 |       ++true_count; | 
 |     } else { | 
 |       ++false_count; | 
 |     } | 
 |   } | 
 |  | 
 |   // Validate that during normal operation MetricsSubSampler::ShouldSample() | 
 |   // does not always give the same result. It's technically possible to fail | 
 |   // this test during normal operation but if the sampling is realistic it | 
 |   // should happen about once every 2^999 times (the likelihood of the [1,999] | 
 |   // results being the same as [0], which can be either). This should not make | 
 |   // this test flaky in the eyes of automated testing. | 
 |   EXPECT_GT(true_count, 0); | 
 |   EXPECT_GT(false_count, 0); | 
 | } | 
 |  | 
 | TEST(RandUtilTest, MetricsSubSamplerTestingSupport) { | 
 |   MetricsSubSampler sub_sampler; | 
 |  | 
 |   // ScopedAlwaysSampleForTesting makes ShouldSample() return true with | 
 |   // any probability. | 
 |   { | 
 |     MetricsSubSampler::ScopedAlwaysSampleForTesting always_sample; | 
 |     for (int i = 0; i < 100; ++i) { | 
 |       EXPECT_TRUE(sub_sampler.ShouldSample(0)); | 
 |       EXPECT_TRUE(sub_sampler.ShouldSample(0.5)); | 
 |       EXPECT_TRUE(sub_sampler.ShouldSample(1)); | 
 |     } | 
 |   } | 
 |  | 
 |   // ScopedNeverSampleForTesting makes ShouldSample() return true with | 
 |   // any probability. | 
 |   { | 
 |     MetricsSubSampler::ScopedNeverSampleForTesting always_sample; | 
 |     for (int i = 0; i < 100; ++i) { | 
 |       EXPECT_FALSE(sub_sampler.ShouldSample(0)); | 
 |       EXPECT_FALSE(sub_sampler.ShouldSample(0.5)); | 
 |       EXPECT_FALSE(sub_sampler.ShouldSample(1)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace base |