blob: fcc461f3ef80051e39b1554a3d7ab31e7228267f [file] [log] [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef MOJO_PUBLIC_CPP_BINDINGS_MESSAGE_H_
#define MOJO_PUBLIC_CPP_BINDINGS_MESSAGE_H_
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <string_view>
#include <vector>
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/component_export.h"
#include "base/containers/span.h"
#include "base/functional/callback.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "mojo/public/cpp/bindings/connection_group.h"
#include "mojo/public/cpp/bindings/lib/buffer.h"
#include "mojo/public/cpp/bindings/lib/message_internal.h"
#include "mojo/public/cpp/bindings/lib/unserialized_message_context.h"
#include "mojo/public/cpp/bindings/scoped_interface_endpoint_handle.h"
#include "mojo/public/cpp/system/message.h"
#include "third_party/perfetto/include/perfetto/tracing/traced_value_forward.h"
namespace mojo {
class AssociatedGroupController;
using ReportBadMessageCallback =
base::OnceCallback<void(std::string_view error)>;
// Message is a holder for the data and handles to be sent over a MessagePipe.
// Message owns its data and handles, but a consumer of Message is free to
// mutate the data and handles. The message's data is comprised of a header
// followed by payload.
class COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE) Message {
public:
static const uint32_t kFlagExpectsResponse = 1 << 0;
static const uint32_t kFlagIsResponse = 1 << 1;
static const uint32_t kFlagIsSync = 1 << 2;
static const uint32_t kFlagNoInterrupt = 1 << 3;
static const uint32_t kFlagIsUrgent = 1 << 4;
// Constructs a new serialized Message object from an existing
// ScopedMessageHandle; e.g., one read from a message pipe.
//
// If the message had any handles attached, they will be extracted and
// retrievable via |handles()|. Such messages may NOT be sent back over
// another message pipe, but are otherwise safe to inspect and pass around.
//
// If handles are attached and their extraction fails for any reason,
// |*handle| remains unchanged and the returned Message will be null (i.e.
// calling IsNull() on it will return |true|).
static Message CreateFromMessageHandle(ScopedMessageHandle* message_handle);
// Constructs an uninitialized Message object.
Message();
// Constructs a new message with an unserialized context attached. This
// message may be serialized later if necessary.
Message(std::unique_ptr<internal::UnserializedMessageContext> context,
MojoCreateMessageFlags create_message_flags);
// Constructs a new serialized Message object with optional handles attached.
// This message is fully functional and may be exchanged for a
// ScopedMessageHandle for transit over a message pipe. See TakeMojoMessage().
//
// If |handles| is non-null, any handles in |*handles| are attached to the
// newly constructed message.
//
// Note that |payload_size| is only the initially known size of the message
// payload, if any. The payload can be expanded after construction using the
// interface returned by |payload_buffer()|.
//
// |estimated_payload_size| will be used to preallocate an appropriate amount
// of memory for the message buffer, based on the history of previous
// allocations for this message's |name|.
Message(uint32_t name,
uint32_t flags,
size_t payload_size,
size_t payload_interface_id_count,
MojoCreateMessageFlags create_message_flags,
std::vector<ScopedHandle>* handles,
size_t estimated_payload_size = 0);
// Same as above, but the with default MojoCreateMessageFlags.
Message(uint32_t name,
uint32_t flags,
size_t payload_size,
size_t payload_interface_id_count,
std::vector<ScopedHandle>* handles,
size_t estimated_payload_size = 0);
// Constructor for the common case of unknown `payload_size`, unspecified
// `payload_interface_id_count`, and no `handles` vector.
Message(uint32_t name,
uint32_t flags,
MojoCreateMessageFlags create_message_flags,
size_t estimated_payload_size);
// Same as above, but the with default MojoCreateMessageFlags.
Message(uint32_t name, uint32_t flags, size_t estimated_payload_size);
// Constructs a new Message object from an existing message handle. Used
// exclusively for serializing an existing unserialized message.
Message(ScopedMessageHandle handle, const internal::MessageHeaderV1& header);
// Constructs a new serialized Message object from a fully populated message
// payload (including a well-formed message header) and an optional set of
// handle attachments. This Message may not be extended with additional
// payload or handles once constructed, but its payload remains mutable as
// long as the Message is not moved and neither |Reset()| nor
// |TakeMojoMessage()| is called.
Message(base::span<const uint8_t> payload, base::span<ScopedHandle> handles);
Message(const Message&) = delete;
Message& operator=(const Message&) = delete;
// Moves |other| into a new Message object. The moved-from Message becomes
// invalid and is effectively in a default-constructed state after this call.
Message(Message&& other) noexcept;
Message& operator=(Message&& other) noexcept;
~Message();
// Resets the Message to an uninitialized state. Upon reset, the Message
// exists as if it were default-constructed: it has no data buffer and owns no
// handles.
void Reset();
// Indicates whether this Message is uninitialized.
bool IsNull() const { return !handle_.is_valid(); }
// Indicates whether this Message is in valid state. A Message may be in an
// invalid state iff it failed partial deserialization during construction
// over a ScopedMessageHandle.
bool IsValid() const;
// Indicates whether this Message is serialized.
bool is_serialized() const { return serialized_; }
// Access the raw bytes of the message.
const uint8_t* data() const {
DCHECK(payload_buffer_.is_valid());
return static_cast<const uint8_t*>(payload_buffer_.data());
}
uint8_t* mutable_data() { return const_cast<uint8_t*>(data()); }
size_t data_num_bytes() const {
DCHECK(payload_buffer_.is_valid());
return payload_buffer_.cursor();
}
// Access the header.
const internal::MessageHeader* header() const {
return reinterpret_cast<const internal::MessageHeader*>(data());
}
internal::MessageHeader* header() {
return reinterpret_cast<internal::MessageHeader*>(mutable_data());
}
const internal::MessageHeaderV1* header_v1() const {
DCHECK_GE(version(), 1u);
return reinterpret_cast<const internal::MessageHeaderV1*>(data());
}
internal::MessageHeaderV1* header_v1() {
DCHECK_GE(version(), 1u);
return reinterpret_cast<internal::MessageHeaderV1*>(mutable_data());
}
const internal::MessageHeaderV2* header_v2() const {
DCHECK_GE(version(), 2u);
return reinterpret_cast<const internal::MessageHeaderV2*>(data());
}
internal::MessageHeaderV2* header_v2() {
DCHECK_GE(version(), 2u);
return reinterpret_cast<internal::MessageHeaderV2*>(mutable_data());
}
const internal::MessageHeaderV3* header_v3() const {
DCHECK_GE(version(), 3u);
return reinterpret_cast<const internal::MessageHeaderV3*>(data());
}
internal::MessageHeaderV3* header_v3() {
DCHECK_GE(version(), 3u);
return reinterpret_cast<internal::MessageHeaderV3*>(mutable_data());
}
uint32_t version() const { return header()->version; }
uint32_t interface_id() const { return header()->interface_id; }
void set_interface_id(uint32_t id) { header()->interface_id = id; }
uint32_t name() const { return header()->name; }
bool has_flag(uint32_t flag) const { return !!(header()->flags & flag); }
// Access the request_id field (if present).
uint64_t request_id() const { return header_v1()->request_id; }
void set_request_id(uint64_t request_id) {
header_v1()->request_id = request_id;
}
void set_trace_nonce(uint32_t trace_nonce) {
header()->trace_nonce = trace_nonce;
}
// Access the payload.
const uint8_t* payload() const;
uint8_t* mutable_payload() { return const_cast<uint8_t*>(payload()); }
uint32_t payload_num_bytes() const;
uint32_t payload_num_interface_ids() const;
const uint32_t* payload_interface_ids() const;
internal::Buffer* payload_buffer() { return &payload_buffer_; }
// Access the handles of a received message. Note that these are unused on
// outgoing messages.
const std::vector<ScopedHandle>* handles() const { return &handles_; }
std::vector<ScopedHandle>* mutable_handles() { return &handles_; }
const std::vector<ScopedInterfaceEndpointHandle>*
associated_endpoint_handles() const {
return &associated_endpoint_handles_;
}
std::vector<ScopedInterfaceEndpointHandle>*
mutable_associated_endpoint_handles() {
return &associated_endpoint_handles_;
}
// Sets the ConnectionGroup to which this Message's local receiver belongs, if
// any. This is called immediately after a Message is read from a message pipe
// but before it's deserialized. If non-null, |ref| must point to a Ref that
// outlives this Message object.
void set_receiver_connection_group(const ConnectionGroup::Ref* ref) {
receiver_connection_group_ = ref;
}
const ConnectionGroup::Ref* receiver_connection_group() const {
return receiver_connection_group_;
}
// Takes a scoped MessageHandle which may be passed to |WriteMessageNew()| for
// transmission. Note that this invalidates this Message object, taking
// ownership of its internal storage and any attached handles.
ScopedMessageHandle TakeMojoMessage();
// Notifies the system that this message is "bad," in this case meaning it was
// rejected by bindings validation code.
void NotifyBadMessage(std::string_view error);
// Serializes and attaches Mojo handles and associated endpoint handles from
// |handles_| and |associated_endpoint_handles_| respectively.
void SerializeHandles(AssociatedGroupController* group_controller);
// Deserializes associated endpoint handles from the payload_interface_ids
// field, into |associated_endpoint_handles_|.
bool DeserializeAssociatedEndpointHandles(
AssociatedGroupController* group_controller);
// If this message contains serialized associated interface endponits but is
// going to be destroyed without being sent across a pipe, this notifies any
// relevant local peer endpoints about peer closure. Must be called on any
// unsent Message that is going to be destroyed after calling
// SerializeHandles().
void NotifyPeerClosureForSerializedHandles(
AssociatedGroupController* group_controller);
// If this Message has an unserialized message context attached, force it to
// be serialized immediately. Otherwise this does nothing.
void SerializeIfNecessary();
// Takes the unserialized message context from this Message if its tag matches
// |tag|.
std::unique_ptr<internal::UnserializedMessageContext> TakeUnserializedContext(
uintptr_t tag);
template <typename MessageType>
std::unique_ptr<MessageType> TakeUnserializedContext() {
auto generic_context = TakeUnserializedContext(
reinterpret_cast<uintptr_t>(&MessageType::kMessageTag));
if (!generic_context)
return nullptr;
return base::WrapUnique(
generic_context.release()->template SafeCast<MessageType>());
}
const char* heap_profiler_tag() const { return heap_profiler_tag_; }
void set_heap_profiler_tag(const char* heap_profiler_tag) {
heap_profiler_tag_ = heap_profiler_tag;
}
// Get a global trace id identifying this message. Used for connecting the
// sender and the receiver in traces.
uint64_t GetTraceId() const;
// Write a representation of this object into a trace.
void WriteIntoTrace(perfetto::TracedValue ctx) const;
#if defined(ENABLE_IPC_FUZZER)
const char* interface_name() const { return interface_name_; }
void set_interface_name(const char* interface_name) {
interface_name_ = interface_name;
}
const char* method_name() const { return method_name_; }
void set_method_name(const char* method_name) { method_name_ = method_name; }
#endif
int64_t creation_timeticks_us() const;
private:
// Internal constructor used by |CreateFromMessageHandle()| when either there
// are no attached handles or all attached handles are successfully extracted
// from the message object.
Message(ScopedMessageHandle message_handle,
std::vector<ScopedHandle> attached_handles,
internal::Buffer payload_buffer,
bool serialized);
ScopedMessageHandle handle_;
// A Buffer which may be used to allocate blocks of data within the message
// payload for reading or writing.
internal::Buffer payload_buffer_;
std::vector<ScopedHandle> handles_;
std::vector<ScopedInterfaceEndpointHandle> associated_endpoint_handles_;
raw_ptr<const ConnectionGroup::Ref, DanglingUntriaged>
receiver_connection_group_ = nullptr;
// Indicates whether this Message object is transferable, i.e. can be sent
// elsewhere. In general this is true unless |handle_| is invalid or
// serialized handles have been extracted from the serialized message object
// identified by |handle_|.
bool transferable_ = false;
// Indicates whether this Message object is serialized.
bool serialized_ = false;
const char* heap_profiler_tag_ = nullptr;
#if defined(ENABLE_IPC_FUZZER)
const char* interface_name_ = nullptr;
const char* method_name_ = nullptr;
#endif
};
class COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE) MessageFilter {
public:
virtual ~MessageFilter() = default;
// The filter may mutate the given message. This method is called before
// the message is dispatched to the associated MessageReceiver. Returns true
// if the message was accepted and false otherwise, indicating that the
// message was invalid or malformed.
[[nodiscard]] virtual bool WillDispatch(Message* message) = 0;
// The filter receives notification that the message was dispatched or
// rejected. Since the message filter is owned by the receiver it will not be
// invoked if the receiver is closed during a dispatch of a message.
virtual void DidDispatchOrReject(Message* message, bool accepted) = 0;
};
class COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE) MessageReceiver {
public:
virtual ~MessageReceiver() = default;
// Indicates whether the receiver prefers to receive serialized messages.
virtual bool PrefersSerializedMessages();
// The receiver may mutate the given message. Returns true if the message
// was accepted and false otherwise, indicating that the message was invalid
// or malformed.
[[nodiscard]] virtual bool Accept(Message* message) = 0;
};
class MessageReceiverWithResponder : public MessageReceiver {
public:
~MessageReceiverWithResponder() override = default;
// A variant on Accept that registers a MessageReceiver (known as the
// responder) to handle the response message generated from the given
// message. The responder's Accept method may be called during
// AcceptWithResponder or some time after its return.
[[nodiscard]] virtual bool AcceptWithResponder(
Message* message,
std::unique_ptr<MessageReceiver> responder) = 0;
};
// A MessageReceiver that is also able to provide status about the state
// of the underlying MessagePipe to which it will be forwarding messages
// received via the |Accept()| call.
class MessageReceiverWithStatus : public MessageReceiver {
public:
~MessageReceiverWithStatus() override = default;
// Returns |true| if this MessageReceiver is currently bound to a MessagePipe,
// the pipe has not been closed, and the pipe has not encountered an error.
virtual bool IsConnected() = 0;
// Determines if this MessageReceiver is still bound to a message pipe and has
// not encountered any errors. This is asynchronous but may be called from any
// sequence. |callback| is eventually invoked from an arbitrary sequence with
// the result of the query.
virtual void IsConnectedAsync(base::OnceCallback<void(bool)> callback) = 0;
};
// An alternative to MessageReceiverWithResponder for cases in which it
// is necessary for the implementor of this interface to know about the status
// of the MessagePipe which will carry the responses.
class MessageReceiverWithResponderStatus : public MessageReceiver {
public:
~MessageReceiverWithResponderStatus() override = default;
// A variant on Accept that registers a MessageReceiverWithStatus (known as
// the responder) to handle the response message generated from the given
// message. Any of the responder's methods (Accept or IsValid) may be called
// during AcceptWithResponder or some time after its return.
[[nodiscard]] virtual bool AcceptWithResponder(
Message* message,
std::unique_ptr<MessageReceiverWithStatus> responder) = 0;
};
class COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE) PassThroughFilter
: public MessageReceiver {
public:
PassThroughFilter();
PassThroughFilter(const PassThroughFilter&) = delete;
PassThroughFilter& operator=(const PassThroughFilter&) = delete;
~PassThroughFilter() override;
// MessageReceiver:
bool Accept(Message* message) override;
};
// Reports the currently dispatching Message as bad. Note that this is only
// legal to call from directly within the stack frame of a message dispatch. If
// you need to do asynchronous work before you can determine the legitimacy of
// a message, use GetBadMessageCallback() and retain its result until you're
// ready to invoke or discard it.
NOT_TAIL_CALLED COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE) void ReportBadMessage(
std::string_view error);
// Acquires a callback which may be run to report the currently dispatching
// Message as bad. Note that this is only legal to call from directly within the
// stack frame of a message dispatch, but the returned callback may be called
// exactly once any time thereafter to report the message as bad. This may only
// be called once per message.
COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE)
ReportBadMessageCallback GetBadMessageCallback();
// Returns true if called directly within the stack frame of a message dispatch.
// Unlike GetBadMessageCallback(), this can be called multiple times.
COMPONENT_EXPORT(MOJO_CPP_BINDINGS_BASE)
bool IsInMessageDispatch();
} // namespace mojo
#endif // MOJO_PUBLIC_CPP_BINDINGS_MESSAGE_H_