blob: 2ef3ad089ce13977ae5f832b447292d865596a2d [file] [log] [blame]
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "remoting/host/heartbeat_sender.h"
#include <math.h>
#include <cstdint>
#include <utility>
#include "base/functional/bind.h"
#include "base/rand_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringize_macros.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "net/base/network_interfaces.h"
#include "net/traffic_annotation/network_traffic_annotation.h"
#include "remoting/base/constants.h"
#include "remoting/base/http_status.h"
#include "remoting/base/logging.h"
#include "remoting/base/protobuf_http_client.h"
#include "remoting/base/protobuf_http_request.h"
#include "remoting/base/protobuf_http_request_config.h"
#include "remoting/base/service_urls.h"
#include "remoting/host/host_config.h"
#include "remoting/signaling/ftl_signal_strategy.h"
#include "remoting/signaling/signaling_address.h"
#include "services/network/public/cpp/shared_url_loader_factory.h"
namespace remoting {
namespace {
// TODO garykac: Remove this unused traffic annotation in a separate cl.
constexpr net::NetworkTrafficAnnotationTag kUnusedTrafficAnnotation =
net::DefineNetworkTrafficAnnotation("heartbeat_sender",
R"(
semantics {
sender: "Chrome Remote Desktop"
description:
"Sends heartbeat data to the Chrome Remote Desktop backend so that "
"the client knows about the presence of the host."
trigger:
"Starting a Chrome Remote Desktop host."
data:
"Chrome Remote Desktop Host ID and some non-PII information about "
"the host system such as the Chrome Remote Desktop version and the "
"OS version."
destination: OTHER
destination_other: "Chrome Remote Desktop directory service"
}
policy {
cookies_allowed: NO
setting:
"This request cannot be stopped in settings, but will not be sent "
"if the user does not use Chrome Remote Desktop."
policy_exception_justification:
"Not implemented."
})");
void IgnoreTrafficAnnotation(
const net::NetworkTrafficAnnotationTag& traffic_annotation) {}
constexpr base::TimeDelta kMinimumHeartbeatInterval = base::Minutes(3);
constexpr base::TimeDelta kResendDelayOnHostNotFound = base::Seconds(10);
constexpr base::TimeDelta kResendDelayOnUnauthenticated = base::Seconds(10);
constexpr int kMaxResendOnHostNotFoundCount =
12; // 2 minutes (12 x 10 seconds).
constexpr int kMaxResendOnUnauthenticatedCount =
6; // 1 minute (10 x 6 seconds).
const net::BackoffEntry::Policy kBackoffPolicy = {
// Number of initial errors (in sequence) to ignore before applying
// exponential back-off rules.
0,
// Initial delay for exponential back-off in ms. (10s)
10000,
// Factor by which the waiting time will be multiplied.
2,
// Fuzzing percentage. ex: 10% will spread requests randomly
// between 90%-100% of the calculated time.
0.5,
// Maximum amount of time we are willing to delay our request in ms. (10m)
600000,
// Time to keep an entry from being discarded even when it
// has no significant state, -1 to never discard.
-1,
// Starts with initial delay.
false,
};
} // namespace
HeartbeatSender::HeartbeatSender(
Delegate* delegate,
const std::string& host_id,
SignalStrategy* signal_strategy,
OAuthTokenGetter* oauth_token_getter,
std::unique_ptr<HeartbeatServiceClient> heartbeat_service,
Observer* observer,
scoped_refptr<network::SharedURLLoaderFactory> url_loader_factory,
bool set_fqdn)
: delegate_(delegate),
host_id_(host_id),
signal_strategy_(signal_strategy),
oauth_token_getter_(oauth_token_getter),
service_client_(std::move(heartbeat_service)),
observer_(observer),
backoff_(&kBackoffPolicy) {
DCHECK(delegate_);
DCHECK(signal_strategy_);
DCHECK(observer_);
signal_strategy_->AddListener(this);
OnSignalStrategyStateChange(signal_strategy_->GetState());
set_fqdn_ = set_fqdn;
// Touch the unused traffic annotation value to avoid complaints.
IgnoreTrafficAnnotation(kUnusedTrafficAnnotation);
}
HeartbeatSender::~HeartbeatSender() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
signal_strategy_->RemoveListener(this);
}
void HeartbeatSender::SetHostOfflineReason(
const std::string& host_offline_reason,
const base::TimeDelta& timeout,
base::OnceCallback<void(bool success)> ack_callback) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!host_offline_reason_ack_callback_);
host_offline_reason_ = host_offline_reason;
host_offline_reason_ack_callback_ = std::move(ack_callback);
host_offline_reason_timeout_timer_.Start(
FROM_HERE, timeout, this, &HeartbeatSender::OnHostOfflineReasonTimeout);
if (signal_strategy_->GetState() == SignalStrategy::State::CONNECTED) {
SendFullHeartbeat();
}
}
void HeartbeatSender::OnSignalStrategyStateChange(SignalStrategy::State state) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
switch (state) {
case SignalStrategy::State::CONNECTED:
SendFullHeartbeat();
break;
case SignalStrategy::State::DISCONNECTED:
service_client_->CancelPendingRequests();
heartbeat_timer_.Stop();
break;
default:
// Do nothing
break;
}
}
bool HeartbeatSender::OnSignalStrategyIncomingStanza(
const jingle_xmpp::XmlElement* stanza) {
return false;
}
void HeartbeatSender::OnHostOfflineReasonTimeout() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(host_offline_reason_ack_callback_);
std::move(host_offline_reason_ack_callback_).Run(false);
}
void HeartbeatSender::OnHostOfflineReasonAck() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (!host_offline_reason_ack_callback_) {
DCHECK(!host_offline_reason_timeout_timer_.IsRunning());
return;
}
DCHECK(host_offline_reason_timeout_timer_.IsRunning());
host_offline_reason_timeout_timer_.Stop();
std::move(host_offline_reason_ack_callback_).Run(true);
}
void HeartbeatSender::ClearHeartbeatTimer() {
// Drop previous heartbeat and timer so that it doesn't interfere with the
// current one.
service_client_->CancelPendingRequests();
heartbeat_timer_.Stop();
}
void HeartbeatSender::SendFullHeartbeat() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (signal_strategy_->GetState() != SignalStrategy::State::CONNECTED) {
LOG(WARNING) << "Not sending heartbeat because the signal strategy is not "
"connected.";
return;
}
HOST_LOG << "Sending full heartbeat.";
ClearHeartbeatTimer();
std::optional<std::string> offline_reason;
if (!host_offline_reason_.empty()) {
offline_reason = host_offline_reason_;
HOST_LOG << "Sending offline reason: " << host_offline_reason_;
}
std::optional<std::string> signaling_id;
auto signaling_id_str = signal_strategy_->GetLocalAddress().id();
if (!signaling_id_str.empty()) {
signaling_id = signaling_id_str;
}
service_client_->SendFullHeartbeat(
!initial_heartbeat_sent_, std::move(signaling_id),
std::move(offline_reason),
base::BindOnce(&HeartbeatSender::OnLegacyHeartbeatResponse,
base::Unretained(this)));
observer_->OnHeartbeatSent();
}
void HeartbeatSender::SendLiteHeartbeat(bool useLiteHeartbeat) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (signal_strategy_->GetState() != SignalStrategy::State::CONNECTED) {
LOG(WARNING) << "Not sending heartbeat because the signal strategy is not "
"connected.";
return;
}
HOST_LOG << "Sending heartbeat.";
ClearHeartbeatTimer();
if (useLiteHeartbeat) {
service_client_->SendLiteHeartbeat(base::BindOnce(
&HeartbeatSender::OnSendHeartbeatResponse, base::Unretained(this)));
} else {
std::optional<std::string> offline_reason;
if (!host_offline_reason_.empty()) {
offline_reason = host_offline_reason_;
}
std::optional<std::string> signaling_id;
auto signaling_id_str = signal_strategy_->GetLocalAddress().id();
if (!signaling_id_str.empty()) {
signaling_id = signaling_id_str;
}
service_client_->SendFullHeartbeat(
!initial_heartbeat_sent_, std::move(signaling_id),
std::move(offline_reason),
base::BindOnce(&HeartbeatSender::OnLegacyHeartbeatResponse,
base::Unretained(this)));
}
observer_->OnHeartbeatSent();
}
bool HeartbeatSender::CheckHttpStatus(const HttpStatus& status) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (status.ok()) {
backoff_.Reset();
// Notify listener of the first successful heartbeat.
if (!initial_heartbeat_sent_) {
delegate_->OnFirstHeartbeatSuccessful();
initial_heartbeat_sent_ = true;
}
// Notify caller of SetHostOfflineReason that we got an ack and don't
// schedule another heartbeat.
if (!host_offline_reason_.empty()) {
OnHostOfflineReasonAck();
return false;
}
} else {
LOG(ERROR) << "Heartbeat failed. Error code: "
<< static_cast<int>(status.error_code()) << ", "
<< status.error_message();
backoff_.InformOfRequest(false);
}
if (status.error_code() == HttpStatus::Code::DEADLINE_EXCEEDED) {
LOG(ERROR) << "Heartbeat timed out.";
}
// If the host was registered immediately before it sends a heartbeat,
// then server-side latency may prevent the server recognizing the
// host ID in the heartbeat. So even if all of the first few heartbeats
// get a "host ID not found" error, that's not a good enough reason to
// exit.
if (status.error_code() == HttpStatus::Code::NOT_FOUND &&
(initial_heartbeat_sent_ ||
(backoff_.failure_count() > kMaxResendOnHostNotFoundCount))) {
delegate_->OnHostNotFound();
return false;
}
if (status.error_code() == HttpStatus::Code::UNAUTHENTICATED) {
oauth_token_getter_->InvalidateCache();
if (backoff_.failure_count() > kMaxResendOnUnauthenticatedCount) {
delegate_->OnAuthFailed();
return false;
}
}
return true;
}
base::TimeDelta HeartbeatSender::CalculateDelay(
const HttpStatus& status,
std::optional<base::TimeDelta> optMinDelay) {
// Calculate delay before sending the next message.
base::TimeDelta delay;
switch (status.error_code()) {
case HttpStatus::Code::OK:
if (optMinDelay.has_value()) {
LOG_IF(WARNING, *optMinDelay < kMinimumHeartbeatInterval)
<< "Received suspicious interval_seconds: " << *optMinDelay
<< ". Using minimum interval: " << kMinimumHeartbeatInterval;
}
delay = optMinDelay.value_or(kMinimumHeartbeatInterval);
break;
case HttpStatus::Code::NOT_FOUND:
delay = kResendDelayOnHostNotFound;
break;
case HttpStatus::Code::UNAUTHENTICATED:
delay = kResendDelayOnUnauthenticated;
break;
default:
delay = backoff_.GetTimeUntilRelease();
LOG(ERROR) << "Heartbeat failed due to unexpected error. Will retry in "
<< delay;
break;
}
return delay;
}
void HeartbeatSender::OnLegacyHeartbeatResponse(
const HttpStatus& status,
std::optional<base::TimeDelta> wait_interval,
const std::string& primary_user_email,
std::optional<bool> require_session_authorization,
std::optional<bool> use_lite_heartbeat) {
if (CheckHttpStatus(status)) {
bool useLiteHeartbeat = false;
if (status.error_code() == HttpStatus::Code::OK) {
if (use_lite_heartbeat.has_value()) {
useLiteHeartbeat = *use_lite_heartbeat;
}
if (!primary_user_email.empty()) {
delegate_->OnUpdateHostOwner(primary_user_email);
}
if (require_session_authorization.has_value()) {
bool require = *require_session_authorization;
delegate_->OnUpdateRequireSessionAuthorization(require);
}
}
heartbeat_timer_.Start(
FROM_HERE, CalculateDelay(status, std::move(wait_interval)),
base::BindOnce(&HeartbeatSender::SendLiteHeartbeat,
base::Unretained(this), useLiteHeartbeat));
}
}
void HeartbeatSender::OnSendHeartbeatResponse(
const HttpStatus& status,
std::optional<base::TimeDelta> wait_interval,
const std::string& primary_user_email,
std::optional<bool> require_session_authorization,
std::optional<bool> use_lite_heartbeat) {
if (CheckHttpStatus(status)) {
heartbeat_timer_.Start(FROM_HERE,
CalculateDelay(status, std::move(wait_interval)),
base::BindOnce(&HeartbeatSender::SendLiteHeartbeat,
base::Unretained(this), true));
}
}
} // namespace remoting