| // Copyright 2016 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #ifndef BASE_NUMERICS_SATURATED_ARITHMETIC_ARM_H_ | 
 | #define BASE_NUMERICS_SATURATED_ARITHMETIC_ARM_H_ | 
 |  | 
 | #include <limits> | 
 |  | 
 | namespace base { | 
 |  | 
 | inline int32_t SaturatedAddition(int32_t a, int32_t b) { | 
 |   int32_t result; | 
 |  | 
 |   asm("qadd %[output],%[first],%[second]" | 
 |       : [output] "=r"(result) | 
 |       : [first] "r"(a), [second] "r"(b)); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | inline int32_t SaturatedSubtraction(int32_t a, int32_t b) { | 
 |   int32_t result; | 
 |  | 
 |   asm("qsub %[output],%[first],%[second]" | 
 |       : [output] "=r"(result) | 
 |       : [first] "r"(a), [second] "r"(b)); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | inline int32_t SaturatedNegative(int32_t a) { | 
 |   return SaturatedSubtraction(0, a); | 
 | } | 
 |  | 
 | inline int GetMaxSaturatedSetResultForTesting(int fractional_shift) { | 
 |   // For ARM Asm version the set function maxes out to the biggest | 
 |   // possible integer part with the fractional part zero'd out. | 
 |   // e.g. 0x7fffffc0. | 
 |   return std::numeric_limits<int>::max() & ~((1 << fractional_shift) - 1); | 
 | } | 
 |  | 
 | inline int GetMinSaturatedSetResultForTesting(int fractional_shift) { | 
 |   return std::numeric_limits<int>::min(); | 
 | } | 
 |  | 
 | template <int fractional_shift> | 
 | inline int SaturatedSet(int value) { | 
 |   // Figure out how many bits are left for storing the integer part of | 
 |   // the fixed point number, and saturate our input to that | 
 |   enum { Saturate = 32 - fractional_shift }; | 
 |  | 
 |   int result; | 
 |  | 
 |   // The following ARM code will Saturate the passed value to the number of | 
 |   // bits used for the whole part of the fixed point representation, then | 
 |   // shift it up into place. This will result in the low <FractionShift> bits | 
 |   // all being 0's. When the value saturates this gives a different result | 
 |   // to from the C++ case; in the C++ code a saturated value has all the low | 
 |   // bits set to 1 (for a +ve number at least). This cannot be done rapidly | 
 |   // in ARM ... we live with the difference, for the sake of speed. | 
 |  | 
 |   asm("ssat %[output],%[saturate],%[value]\n\t" | 
 |       "lsl  %[output],%[shift]" | 
 |       : [output] "=r"(result) | 
 |       : [value] "r"(value), [saturate] "n"(Saturate), | 
 |         [shift] "n"(fractional_shift)); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | template <int fractional_shift> | 
 | inline int SaturatedSet(unsigned value) { | 
 |   // Here we are being passed an unsigned value to saturate, | 
 |   // even though the result is returned as a signed integer. The ARM | 
 |   // instruction for unsigned saturation therefore needs to be given one | 
 |   // less bit (i.e. the sign bit) for the saturation to work correctly; hence | 
 |   // the '31' below. | 
 |   enum { Saturate = 31 - fractional_shift }; | 
 |  | 
 |   // The following ARM code will Saturate the passed value to the number of | 
 |   // bits used for the whole part of the fixed point representation, then | 
 |   // shift it up into place. This will result in the low <FractionShift> bits | 
 |   // all being 0's. When the value saturates this gives a different result | 
 |   // to from the C++ case; in the C++ code a saturated value has all the low | 
 |   // bits set to 1. This cannot be done rapidly in ARM, so we live with the | 
 |   // difference, for the sake of speed. | 
 |  | 
 |   int result; | 
 |  | 
 |   asm("usat %[output],%[saturate],%[value]\n\t" | 
 |       "lsl  %[output],%[shift]" | 
 |       : [output] "=r"(result) | 
 |       : [value] "r"(value), [saturate] "n"(Saturate), | 
 |         [shift] "n"(fractional_shift)); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | }  // namespace base | 
 |  | 
 | #endif  // BASE_NUMERICS_SATURATED_ARITHMETIC_ARM_H_ |