| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "base/time/time.h" | 
 |  | 
 | #include <CoreFoundation/CFDate.h> | 
 | #include <CoreFoundation/CFTimeZone.h> | 
 | #include <mach/mach.h> | 
 | #include <mach/mach_time.h> | 
 | #include <stddef.h> | 
 | #include <stdint.h> | 
 | #include <sys/sysctl.h> | 
 | #include <sys/time.h> | 
 | #include <sys/types.h> | 
 | #include <time.h> | 
 |  | 
 | #include "base/logging.h" | 
 | #include "base/mac/mach_logging.h" | 
 | #include "base/mac/scoped_cftyperef.h" | 
 | #include "base/mac/scoped_mach_port.h" | 
 | #include "base/macros.h" | 
 | #include "base/numerics/safe_conversions.h" | 
 | #include "build/build_config.h" | 
 |  | 
 | namespace { | 
 |  | 
 | #if defined(OS_MACOSX) && !defined(OS_IOS) | 
 | int64_t MachAbsoluteTimeToTicks(uint64_t mach_absolute_time) { | 
 |   static mach_timebase_info_data_t timebase_info; | 
 |   if (timebase_info.denom == 0) { | 
 |     // Zero-initialization of statics guarantees that denom will be 0 before | 
 |     // calling mach_timebase_info.  mach_timebase_info will never set denom to | 
 |     // 0 as that would be invalid, so the zero-check can be used to determine | 
 |     // whether mach_timebase_info has already been called.  This is | 
 |     // recommended by Apple's QA1398. | 
 |     kern_return_t kr = mach_timebase_info(&timebase_info); | 
 |     MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info"; | 
 |   } | 
 |  | 
 |   // timebase_info converts absolute time tick units into nanoseconds.  Convert | 
 |   // to microseconds up front to stave off overflows. | 
 |   base::CheckedNumeric<uint64_t> result(mach_absolute_time / | 
 |                                         base::Time::kNanosecondsPerMicrosecond); | 
 |   result *= timebase_info.numer; | 
 |   result /= timebase_info.denom; | 
 |  | 
 |   // Don't bother with the rollover handling that the Windows version does. | 
 |   // With numer and denom = 1 (the expected case), the 64-bit absolute time | 
 |   // reported in nanoseconds is enough to last nearly 585 years. | 
 |   return base::checked_cast<int64_t>(result.ValueOrDie()); | 
 | } | 
 | #endif  // defined(OS_MACOSX) && !defined(OS_IOS) | 
 |  | 
 | int64_t ComputeCurrentTicks() { | 
 | #if defined(OS_IOS) | 
 |   // On iOS mach_absolute_time stops while the device is sleeping. Instead use | 
 |   // now - KERN_BOOTTIME to get a time difference that is not impacted by clock | 
 |   // changes. KERN_BOOTTIME will be updated by the system whenever the system | 
 |   // clock change. | 
 |   struct timeval boottime; | 
 |   int mib[2] = {CTL_KERN, KERN_BOOTTIME}; | 
 |   size_t size = sizeof(boottime); | 
 |   int kr = sysctl(mib, arraysize(mib), &boottime, &size, nullptr, 0); | 
 |   DCHECK_EQ(KERN_SUCCESS, kr); | 
 |   base::TimeDelta time_difference = | 
 |       base::Time::Now() - (base::Time::FromTimeT(boottime.tv_sec) + | 
 |                            base::TimeDelta::FromMicroseconds(boottime.tv_usec)); | 
 |   return time_difference.InMicroseconds(); | 
 | #else | 
 |   // mach_absolute_time is it when it comes to ticks on the Mac.  Other calls | 
 |   // with less precision (such as TickCount) just call through to | 
 |   // mach_absolute_time. | 
 |   return MachAbsoluteTimeToTicks(mach_absolute_time()); | 
 | #endif  // defined(OS_IOS) | 
 | } | 
 |  | 
 | int64_t ComputeThreadTicks() { | 
 | #if defined(OS_IOS) | 
 |   NOTREACHED(); | 
 |   return 0; | 
 | #else | 
 |   base::mac::ScopedMachSendRight thread(mach_thread_self()); | 
 |   mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; | 
 |   thread_basic_info_data_t thread_info_data; | 
 |  | 
 |   if (thread.get() == MACH_PORT_NULL) { | 
 |     DLOG(ERROR) << "Failed to get mach_thread_self()"; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   kern_return_t kr = thread_info( | 
 |       thread.get(), | 
 |       THREAD_BASIC_INFO, | 
 |       reinterpret_cast<thread_info_t>(&thread_info_data), | 
 |       &thread_info_count); | 
 |   MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info"; | 
 |  | 
 |   base::CheckedNumeric<int64_t> absolute_micros( | 
 |       thread_info_data.user_time.seconds + | 
 |       thread_info_data.system_time.seconds); | 
 |   absolute_micros *= base::Time::kMicrosecondsPerSecond; | 
 |   absolute_micros += (thread_info_data.user_time.microseconds + | 
 |                       thread_info_data.system_time.microseconds); | 
 |   return absolute_micros.ValueOrDie(); | 
 | #endif  // defined(OS_IOS) | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | namespace base { | 
 |  | 
 | // The Time routines in this file use Mach and CoreFoundation APIs, since the | 
 | // POSIX definition of time_t in Mac OS X wraps around after 2038--and | 
 | // there are already cookie expiration dates, etc., past that time out in | 
 | // the field.  Using CFDate prevents that problem, and using mach_absolute_time | 
 | // for TimeTicks gives us nice high-resolution interval timing. | 
 |  | 
 | // Time ----------------------------------------------------------------------- | 
 |  | 
 | // Core Foundation uses a double second count since 2001-01-01 00:00:00 UTC. | 
 | // The UNIX epoch is 1970-01-01 00:00:00 UTC. | 
 | // Windows uses a Gregorian epoch of 1601.  We need to match this internally | 
 | // so that our time representations match across all platforms.  See bug 14734. | 
 | //   irb(main):010:0> Time.at(0).getutc() | 
 | //   => Thu Jan 01 00:00:00 UTC 1970 | 
 | //   irb(main):011:0> Time.at(-11644473600).getutc() | 
 | //   => Mon Jan 01 00:00:00 UTC 1601 | 
 | static const int64_t kWindowsEpochDeltaSeconds = INT64_C(11644473600); | 
 |  | 
 | // static | 
 | const int64_t Time::kWindowsEpochDeltaMicroseconds = | 
 |     kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond; | 
 |  | 
 | // Some functions in time.cc use time_t directly, so we provide an offset | 
 | // to convert from time_t (Unix epoch) and internal (Windows epoch). | 
 | // static | 
 | const int64_t Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds; | 
 |  | 
 | // static | 
 | Time Time::Now() { | 
 |   return FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent()); | 
 | } | 
 |  | 
 | // static | 
 | Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) { | 
 |   static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity, | 
 |                 "CFAbsoluteTime must have an infinity value"); | 
 |   if (t == 0) | 
 |     return Time();  // Consider 0 as a null Time. | 
 |   if (t == std::numeric_limits<CFAbsoluteTime>::infinity()) | 
 |     return Max(); | 
 |   return Time(static_cast<int64_t>((t + kCFAbsoluteTimeIntervalSince1970) * | 
 |                                    kMicrosecondsPerSecond) + | 
 |               kWindowsEpochDeltaMicroseconds); | 
 | } | 
 |  | 
 | CFAbsoluteTime Time::ToCFAbsoluteTime() const { | 
 |   static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity, | 
 |                 "CFAbsoluteTime must have an infinity value"); | 
 |   if (is_null()) | 
 |     return 0;  // Consider 0 as a null Time. | 
 |   if (is_max()) | 
 |     return std::numeric_limits<CFAbsoluteTime>::infinity(); | 
 |   return (static_cast<CFAbsoluteTime>(us_ - kWindowsEpochDeltaMicroseconds) / | 
 |       kMicrosecondsPerSecond) - kCFAbsoluteTimeIntervalSince1970; | 
 | } | 
 |  | 
 | // static | 
 | Time Time::NowFromSystemTime() { | 
 |   // Just use Now() because Now() returns the system time. | 
 |   return Now(); | 
 | } | 
 |  | 
 | // static | 
 | bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) { | 
 |   base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( | 
 |       is_local | 
 |           ? CFTimeZoneCopySystem() | 
 |           : CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0)); | 
 |   base::ScopedCFTypeRef<CFCalendarRef> gregorian(CFCalendarCreateWithIdentifier( | 
 |       kCFAllocatorDefault, kCFGregorianCalendar)); | 
 |   CFCalendarSetTimeZone(gregorian, time_zone); | 
 |   CFAbsoluteTime absolute_time; | 
 |   // 'S' is not defined in componentDesc in Apple documentation, but can be | 
 |   // found at http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c | 
 |   CFCalendarComposeAbsoluteTime( | 
 |       gregorian, &absolute_time, "yMdHmsS", exploded.year, exploded.month, | 
 |       exploded.day_of_month, exploded.hour, exploded.minute, exploded.second, | 
 |       exploded.millisecond); | 
 |   CFAbsoluteTime seconds = absolute_time + kCFAbsoluteTimeIntervalSince1970; | 
 |  | 
 |   // CFAbsolutTime is typedef of double. Convert seconds to | 
 |   // microseconds and then cast to int64. If | 
 |   // it cannot be suited to int64, then fail to avoid overflows. | 
 |   double microseconds = | 
 |       (seconds * kMicrosecondsPerSecond) + kWindowsEpochDeltaMicroseconds; | 
 |   if (microseconds > std::numeric_limits<int64_t>::max() || | 
 |       microseconds < std::numeric_limits<int64_t>::min()) { | 
 |     *time = Time(0); | 
 |     return false; | 
 |   } | 
 |  | 
 |   base::Time converted_time = Time(static_cast<int64_t>(microseconds)); | 
 |  | 
 |   // If |exploded.day_of_month| is set to 31 | 
 |   // on a 28-30 day month, it will return the first day of the next month. | 
 |   // Thus round-trip the time and compare the initial |exploded| with | 
 |   // |utc_to_exploded| time. | 
 |   base::Time::Exploded to_exploded; | 
 |   if (!is_local) | 
 |     converted_time.UTCExplode(&to_exploded); | 
 |   else | 
 |     converted_time.LocalExplode(&to_exploded); | 
 |  | 
 |   if (ExplodedMostlyEquals(to_exploded, exploded)) { | 
 |     *time = converted_time; | 
 |     return true; | 
 |   } | 
 |  | 
 |   *time = Time(0); | 
 |   return false; | 
 | } | 
 |  | 
 | void Time::Explode(bool is_local, Exploded* exploded) const { | 
 |   // Avoid rounding issues, by only putting the integral number of seconds | 
 |   // (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|). | 
 |   int64_t microsecond = us_ % kMicrosecondsPerSecond; | 
 |   if (microsecond < 0) | 
 |     microsecond += kMicrosecondsPerSecond; | 
 |   CFAbsoluteTime seconds = ((us_ - microsecond) / kMicrosecondsPerSecond) - | 
 |                            kWindowsEpochDeltaSeconds - | 
 |                            kCFAbsoluteTimeIntervalSince1970; | 
 |  | 
 |   base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( | 
 |       is_local | 
 |           ? CFTimeZoneCopySystem() | 
 |           : CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0)); | 
 |   base::ScopedCFTypeRef<CFCalendarRef> gregorian(CFCalendarCreateWithIdentifier( | 
 |       kCFAllocatorDefault, kCFGregorianCalendar)); | 
 |   CFCalendarSetTimeZone(gregorian, time_zone); | 
 |   int second, day_of_week; | 
 |   // 'E' sets the day of week, but is not defined in componentDesc in Apple | 
 |   // documentation. It can be found in open source code here: | 
 |   // http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c | 
 |   CFCalendarDecomposeAbsoluteTime(gregorian, seconds, "yMdHmsE", | 
 |                                   &exploded->year, &exploded->month, | 
 |                                   &exploded->day_of_month, &exploded->hour, | 
 |                                   &exploded->minute, &second, &day_of_week); | 
 |   // Make sure seconds are rounded down towards -infinity. | 
 |   exploded->second = floor(second); | 
 |   // |Exploded|'s convention for day of week is 0 = Sunday, i.e. different | 
 |   // from CF's 1 = Sunday. | 
 |   exploded->day_of_week = (day_of_week - 1) % 7; | 
 |   // Calculate milliseconds ourselves, since we rounded the |seconds|, making | 
 |   // sure to round towards -infinity. | 
 |   exploded->millisecond = | 
 |       (microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond : | 
 |                            (microsecond - kMicrosecondsPerMillisecond + 1) / | 
 |                                kMicrosecondsPerMillisecond; | 
 | } | 
 |  | 
 | // TimeTicks ------------------------------------------------------------------ | 
 |  | 
 | // static | 
 | TimeTicks TimeTicks::Now() { | 
 |   return TimeTicks(ComputeCurrentTicks()); | 
 | } | 
 |  | 
 | // static | 
 | bool TimeTicks::IsHighResolution() { | 
 |   return true; | 
 | } | 
 |  | 
 | // static | 
 | bool TimeTicks::IsConsistentAcrossProcesses() { | 
 |   return true; | 
 | } | 
 |  | 
 | #if defined(OS_MACOSX) && !defined(OS_IOS) | 
 | // static | 
 | TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) { | 
 |   return TimeTicks(MachAbsoluteTimeToTicks(mach_absolute_time)); | 
 | } | 
 | #endif  // defined(OS_MACOSX) && !defined(OS_IOS) | 
 |  | 
 | // static | 
 | TimeTicks::Clock TimeTicks::GetClock() { | 
 | #if defined(OS_IOS) | 
 |   return Clock::IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME; | 
 | #else | 
 |   return Clock::MAC_MACH_ABSOLUTE_TIME; | 
 | #endif  // defined(OS_IOS) | 
 | } | 
 |  | 
 | // static | 
 | ThreadTicks ThreadTicks::Now() { | 
 |   return ThreadTicks(ComputeThreadTicks()); | 
 | } | 
 |  | 
 | }  // namespace base |